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We perform the ab initio no-core shell model (NCSM) calculation to investigate the bound state
problem of three-body Λnn system in chiral next-to-next-to-leading-order NN and chiral leading-
order YN interactions. The calculations show that no Λnn bound state exists, but predict a low-lying
Λnn resonant state near the threshold with the energy of Er = 0.124 MeV and the width of about
Γ = 1.161 MeV. In searching for Λnn resonances, we extend the NCSM calculation to the continuum
state by employing the J-matrix formalism in the scattering theory with the hyperspherical oscillator
basis.

I. INTRODUCTION

Microscopic calculations of few- and many-body sys-
tems with strangeness have been a focus in hypernu-
clear physics to explore the new dynamical features of the
structure of hypernuclei and to improve understanding of
hyperon-nucleon interactions. Indeed, hyperon-nucleon
scattering data is very limited to fully determine the YN
interactions. The existing data of few body hypernuclei
could provide the important constrain on YN interac-
tion. In hypernuclear physics, hypetriton is used as the
first testing ground for YN interaction. It is the simplest
and weakly bound hypernuclear system with Λ binding
energy about ∼ 0.13 MeV [1]. It seems like a lambda
bound to deuteron core in the study of the spin-triplet
NN interaction [2]. In the Λnn system, two neutrons in-
teract in spin-singlet state and its strength is weaker than
that in spin-triplet state. The strength of Λn is also not
sufficient to form a bound system. It expects that the
existence of a neutral bound state of two neutrons and a
hyperon is improbable. But instead, three-body Λnn res-
onance may exist and that could be used to constrain the
YN interaction. If Λnn system were a lightest neutron-
rich bound system, it would provide significant informa-
tion of Λn interaction and a better understanding of the
nature of ΛN-ΣN coupling.

There have been a number of theoretical calculations
for the Λnn system as a serious doubtful bound state
problem. Nonexistence of Λnn bound state was first re-
vealed by Dalitz and Downs [3] using a variational ap-
proach. Garcilazo [4] investigated the Λnn system by
solving Faddeev equations using YN and NN interactions
derived from a chiral constituent quark model and re-
vealed that Λnn bound system was not found. Later
the various approach such as hyperspherical harmonics
(HH)[5], Faddeev calculations [2, 6–11], variational cal-
culations [12], pionless effective field theory [13–15] with
various kinds of baryon-baryon interactions have been
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used to analyze the Λnn system and all reported that it
is highly unlikely to form a bound system in the theo-
retical analysis without a significant altering nuclear and
hypernuclear forces.

The 3
Λn hypernucleus could not be produced in the

earlier experiments due to no charge of its bound state.
However, the HypHI collaboration at GSI [16] reported
the first evidence of the existence of the 3

Λn bound state
from analysis of the observed two- and three-body decays
mode without describing any statement for the value of
binding energy. Their observation was inconsistent with
the claim of the above theoretical analysis.

In this paper, we analyze the Λnn bound state prob-
lem using the ab initio no-core shell model (NCSM)
[17–19] technique. The calculation of the Λnn system
(Jπ = 1/2+, T = 1) is performed in Jacobi coordinate
HO basis using the NN and YN interactions derived
from chiral effective field model. In the extension into
the continuum state, we apply the SS-HORSE [20–25]
formalism, which is a single state harmonic oscillator
representation of scattering equations, to calculate the
low-energy phase shifts and scattering amplitudes at the
NCSM eigenenergies by employing hyperspherical har-
monic oscillator basis. The low-lying Λnn resonance en-
ergy and width are extracted from the scattering ampli-
tude parametrization. The NCSM-SS-HORSE method
[26] has been successfully applied to study a tetraneu-
tron unbound system considered as true four-body scat-
terings. Here we first apply this method to study the
three-body system with strangeness.

II. NCSM-SS-HORSE FORMALISM

The hypernuclear Hamiltonian for two nucleon and a
hyperon system can be written

H = −
3∑
i=1

~2

2mi

~∇2
i +VNN (~r1, ~r2)+

2∑
i=1

VY N (~ri, ~r3)+∆M,

(1)
where the coordinates ~ri and masses mi are for the two
nucleon with i = 1, 2 and the hyperon with i = 3. We
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work with nonrelativistic two-body NN and YN poten-
tials, employing the leading-order chiral hyperon-nucleon
interactions with regulator cutoff ΛYN = 600 MeV [27]
and a family of 42 different nuclear interactions at next-
to-next-to-leading order (also called chiral NNLOsim fam-
ily of NN interactions) [28]. These nuclear interactions
were constructed by varying the chiral regulator cutoff
ΛNN between 450 and 600 MeV in steps of 25 MeV and
the truncation of the input NN scattering Tlab ≤ Tmax

Lab
between 125 and 290 MeV in six steps, which were ob-
tained from a simultaneous optimization of all 26 low-
energy constants (LECs) to different sets of NN and πN
scattering plus bound state observables [28]. In this work,
we mainly use the NN interactions with ΛNN=500 and
Tmax

Lab =290 MeV. The effect of ΛN -ΣN coupling is taken
into account [19].

In NCSM, three active particles are considered in the
three-dimensional harmonic oscillator (HO) basis. In the
construction of HO basis states for such a few-body Λnn
system, it is more effective to use the relative Jacobi coor-

dinates where the center of mass (c.m.) coordinate ~ξ0 is
separated, which allows us to perform NCSM calculations
in large model space. The relative Jacobi coordinates in
terms of the rescaled version of the single-particle coor-
dinates ~xi =

√
mi~ri are defined as

~ξ1 =

√
1

2
(~x1 − ~x2) ,

~ξ2 =

√
2mNmY

2mN +mY

[
1

2
√
mN

(~x1 + ~x2)− 1
√
mY

~x3

]
,

(2)

where mN and mY are the masses of nucleon and hy-

peron. ~ξ1 is the relative coordinate of the two-nucleon

pair and ~ξ2 is the relative coordinate of the hyperon with
respect to the c.m. of the two-nucleon pair. Following
the general Jacobi coordinate formulation in Ref. [19], we
construct the JT-coupled HO basis states for the system
of a two-nucleon pair and a hyperon,

|(nNN (lNNsNN )jNN tNN ,NY LY JY TY )JT 〉 , (3)

depending on the coordinates ~ξ1 and ~ξ2 respectively.
nNN , lNN , sNN , jNN , tNN (NY , LY , JY , TY ) are the
HO radial quantum number, orbital angular momentum,
spin, angular momentum and isospin of the relative two-
nucleon (hyperon) state. J and T are the total angular
momentum and total isospin of the system. The basis (3)
is antisymmetrized with respect to the exchange of two
nucleon by restricting the two nucleon relative quantum
numbers with the condition (−1)lNN+sNN+tNN = −1.
The basis (3) is suitable for evaluating two-body NN
interaction matrix elements but not for evaluating two-
body YN interaction matrix elements.

For a subsystem including YN pair and a nucleon, an-
other set of Jacobi coordinate is correspondingly intro-

duced,

~η1 =

√
(mN +mY )mN

2mN +mY

[
1
√
mN

~x1

− 1

(mN +mY )
(
√
mN~x2 +

√
mY ~x3)

]
,

~η2 =

√
mNmY

mN +mY

(
1
√
mN

~x2 −
1
√
mY

~x3

)
,

(4)

where ~η1 is the relative coordinate of a nucleon with re-
spect to the c.m. of the YN pair and ~η2 is the relative
coordinate of the YN pair. By using orthogonal trans-
formation, the antisymmetrized HO basis (3) can be ex-
panded as

|(nNN (lNNsNN )jNN tNN ,NY LY JY TY )JT 〉

=
∑
LS

L̂2Ŝ2ĵNY ĴN ĵNN ĴY (−1)sNY + 1
2+sNN+ 1

2+LN+LY

×

lNY sNY jNY
LN

1
2 JN

L S J


lNN sNN jNN

LY
1
2 JY

L S J


{

1
2

1
2 sNN

1
2 S sNY

}

× (−1)tNY +TN+tNN+TY t̂NY t̂NN

{
1
2

1
2 tNN

JY T tNY

}
× 〈nNY lNYNNLN |nNN lNNNY LY 〉d=

2mN+mY
mY

× |(nNY (lNY sNY )jNY tNY ,NNLNJN )JT 〉 ,
(5)

in terms of HO basis states

|(nNY (lNY sNY )jNY tNY ,NNLNJN )JT 〉 , (6)

depending on the coordinates ~η2 and ~η1 respectively. The
general HO bracket 〈nNY lNYNNLN |nNN lNNNY LY 〉d
follows the agreement of Ref. [29]. Y N interaction ma-
trix elements involving Λ and Σ hyperons are evaluated
in the antisymmmetrized basis (3) through its expansion
in the basis (6) as

〈
2∑
i=1

VY N (~ri, ~r3)〉 = 2 〈VY N (~η2)〉 , (7)

where the matrix elements on the right-hand side are
diagonal in all quantum numbers of the basis states (6),
except for nNY and lNY . The lowest eigenstates of the
Λnn system are calculated by the diagonalization of the
truncated Hamiltonian matrix.

To look for resonances, we extend our study to the
continuum state by employing J-Matrix formalism, also
known as Harmonic oscillator representation of scatter-
ing equation (HORSE) formalism, which arms one to
study continuum spectrum using only positive energies
obtained from bound state approach like NCSM applying
HO basis. The HORSE method can be used to describe
the open channels in the external subspace while the in-
ternal subspace is associated with the NCSM approach.
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For details of the HORSE formalism, we may refer to
Refs. [22, 30].

In the extension into continuum, the three-body ex-
tension of the J-matrix formalism for all three-body de-
cay channels is very complicated. We apply the demo-
cratic decay approximation (also known as true three-
body scattering or 3→ 3 scattering) [31] which employs
the hyperspherical harmonic (HH) basis to describe the
Λnn system decaying through only three-body break-up
channel and it does not allow for other possible two-body
channels associated with two-body sub-bound states.

The hyperspherical oscillator basis can be labeled as
|κKγ〉, where κ is the principal quantum number and K
is the hypermomentum, γ ≡ {l1, l2, L, s1, s2, S, t1, t2, T}
collects all possible quantum numbers corresponding to
the Jacobi coordinates for a three-body system. The ex-
ternal subspace is spanned by hyperspherical oscillator
functions with N ≡ 2κ+K > Nmax where the Hamilto-
nian H = T is used. Here Nmax is the maximum number
of excitation quanta defining the many-body NCSM basis
space. Because of high centrifugal barrier L(L + 1)/ρ2,
the HH states with larger K can be neglected in the case
of no sub-bound Λnn system [ρ is hyper radius with the
mass scaled Jacobi coordinates and L = K + 3/2 is the
effective momentum]. It is adequate to consider a single
hyperspherical channel with minimum hypermomentum
Kmin = 0 to describe democratic three-body decays.

We follow the SS-HORSE approach [21, 22, 26] to com-
pute the 3 → 3 scattering phase shifts at the eigenener-
gies Eν > 0 obtained directly from NCSM calculation,

tan δ(Eν) = −SNmax+2,L(Eν)

CNmax+2,L(Eν)
, (8)

where SNL and CNL are regular and irregular solutions
of free Schrödinger equation in the hyperspherical oscil-
lator representation, which can be applied in the case of
arbitrary L (both integer and half integer), taking simple
analytical expressions [21, 23, 31]

SNL(E) =

√√√√√√ (N − L +
3

2
)!

λ Γ(
N

2
+
L
2

+
9

4
)

qL+1 e−
q2

2

L
L+ 1

2

(N−L+ 3
2 )/2

(q2),

(9)

C
(±)
NL (E) =

1

π
√
λ

√
(N − L +

3

2
)! Γ(

N

2
+
L
2

+
9

4
)

Ψ(
N

2
+
L
2

+
9

4
,L +

3

2
; e∓iπq2)

qL+1 e
q2

2 e∓iπ(L+ 1
2 ),

(10)

CNL(E) =
1

2

(
C

(+)
NL (E) + C

(−)
NL (E)

)
, (11)
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FIG. 1. The eigenenergies of the NCSM Hamiltonian with
various model space sizes Nmax as a function of oscillator fre-
quency ~ω. The numbers at the end of each line represent
Nmax. The blue shaded area shows the selected energies for
parametrization of the scattering amplitude.
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FIG. 2. 3 → 3 scattering phase shifts obtained directly from
the NCSM eigenstates using Eq. (8).

where q =
√

2E
~ω is dimensionless momentum, L

L+ 1
2

κ (x)

is the associated Laguerre polynomial, λ =
√

mω
~ is the

oscillator radius at Ψ(a, c;x) which is the Tricomi func-
tion.

The SS-HORSE scattering amplitude for neutral par-
ticles may be calculated in the standard way,

f(Eν)q =
1

(cot δL(Eν)− i)
. (12)

We parameterize the scattering amplitude in the method
proposed in [32] for the case that a resonance is not
sharp, but both the potential scattering (non-resonant
background) and resonance contribution are not negligi-
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ble. The scattering amplitude may be parametrized as

F (E)q = eiδ0(E) sin δ0(E) +
−Γ/2

E − Er + iΓ/2
e2iδ0(E),

(13)
where δ0(E) is the potential scattering phase shift, de-
pending on the energy E. We will fit the SS-HORSE scat-
tering amplitude by the complex-valued function F (E)q
in the next section to determine the form of the δ0(E)
and derive the resonance energy Er and width Γ.

III. RESULTS AND DISCUSSION

The Λnn system is analyzed using the NCSM approach
with chiral NNLOsim NN and LO YN interactions. The
NCSM computational model space is characterized by a
chosen maximal total HO quanta N tot

max, that is,

2nNN + lNN + 2NY + LY ≤ N tot
max ≡ Nmax +N0, (14)

where the minimal possible number of HO quanta isN0 =
0. In Λnn case, N tot

max = Nmax. We have computed the
total energy of Λnn system in the oscillator basis with
model space truncations Nmax ≤ 36, and in the range of
the HO frequencies 1 MeV ≤ ~ω ≤ 40 MeV. It is found
that there is no Λnn bound system. The Λnn ground-
state energy as a function of the model space truncation
Nmax and HO frequency ~ω is presented in Figure 1.
The NCSM energies decrease with increasing Nmax and
with decreasing ~ω. Our model used here can reproduce
well the binding energy of hypertriton [33] and also for
s-shell hypernuclei, 4

ΛH and 4
ΛHe, which will be a future

publication.
The SS-HORSE phase shifts covering all computed

NCSM energies calculated by using Eq. (8) are shown in
Figure 2. The phase shifts obtained with smaller Nmax lie
in a wide energy region as the obtained Λnn ground-state
energies spread widely. With Nmax increasing, however,
the obtained Λnn ground-state energies converge to lower
values, as shown in Figure 1, and hence the correspond-
ing phase shifts shift to the lower energy region. The
first convergence of phase shifts is achieved at smaller
energies with larger Nmax, almost the same results at
Nmax = 34 and 36 MeV. We follow the selection proce-
dure of Ref. [21, 26, 34] and select a set of eigenvalues
Eν from the Nmax= 10-36 model spaces, which is illus-
trated by the shaded area in Figure 1, to produce a single
smooth curve of phase shifts for parametrization. The
SS-HORSE phase shifts corresponding to these selected
smaller eigenvalues are plotted in Figure 3.

We compute the SS-HORSE low-energy scattering
amplitude for the purpose of extracting the resonance
parameters from scattering amplitude parametrization.
The function |f(Eν)q|2 of the scattering amplitude given
in Eq. (12) is shown by symbols in Figure 4. The fit-
ting to the SS-HORSE result |f(Eν)q|2 by the function
|F (E)q|2 leads the δ0(E) to the form

δ0(E) = a0 + a2(
√
E)2 + a4(

√
E)4, (15)
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FIG. 3. 3 → 3 scattering phase shifts obtained from selected
NCSM eigenstates with Nmax ∈ [10, 36] for scattering ampli-
tude parametrization.
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FIG. 4. The scattering amplitude |f(E)q|2 using Eq. (12) ob-
tained from NCSM eigenstates (symbol). The solid line shows
the parametrization of scattering amplitude in Eq. (13).

with the adjustable parameters a0 = 1.856, a2 = −0.014
MeV−1, a4 = 2.959×10−4 MeV−2. The resonance energy
and width are derived, Er = 0.124 MeV and Γ = 1.161
MeV. The result is in good agreement with those in Ref.
[7, 11] and lies within the estimated range of the location
and width of a Λnn pole [35]. We look forward to the
results of Λnn bound and resonance states from the on-
going experiment (E12-17-003) at Jefferson Lab (JLab)
[36]. Such Λnn bound and resonance states, if any, are
expected to provide new perspective on Λn interactions.

SUMMARY

We have performed ab initio no-core shell model calcu-
lations for the Λnn system (Jπ = 1/2+, T = 1) without
tuning the strength of realistic NN and YN potentials at
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various Nmax and ~ω values with full inclusion of ΛN -
ΣN coupling, and found that no bound state exists. To
look for resonance states of the Λnn, we have applied
the NCSM-SS-HORSE technique to calculate the Λnn
scattering phase shifts which suggest a Λnn resonant
state at energy Er = 0.124 MeV and Γ = 1.161 MeV.
Further theoretical studies and experimental searches for
Λnn resonances would be of great benefit of constraining
Λn interactions.
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