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MMP-3 Mediates Psychosine-Induced Globoid Cell Formation:

Implications for Leukodystrophy Pathology
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Roberto Pagarigan1, Evan Y. Snyder2, Ernesto R. Bongarzone3, and Stephen J. Crocker1

1Department of Neuroscience, University of Connecticut Health Center, Farmington, CT

2Stem Cells and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla,

CA

3Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, IL.

Abstract

Globoid cell leukodystrophy (GLD) or Krabbe disease, is a fatal demyelinating disease attributed

to mutations in the galactocerebrosidase (GALC) gene. Loss of function mutations in GALC result

in accumulation of the glycolipid intermediate, galactosylsphingosine (psychosine). Due to the

cytotoxicity of psychosine, it has been hypothesized that accumulated psychosine underlie the

pathophysiology of GLD. However, the cellular mechanisms of GLD pathophysiology remain

unclear. Globoid cells, multinucleated microglia/macrophages in the central nervous system

(CNS), are a defining characteristic of GLD. Here we report that exposure of primary glial

cultures to psychosine induces the expression and the production of matrix metalloproteinase

(MMP)-3 that mediated a morphological transformation of microglia into a multinucleated globoid

cell type. Additionally, psychosine-induced globoid cell formation from microglia was prevented

by either genetic ablation or chemical inhibition of MMP-3. These effects are microglia-specific

as peripheral macrophages exposed to psychosine did not become activated or express increased

levels of MMP-3. In the brain from twitcher mice, a murine model of human GLD, elevated

MMP-3 expression relative to wild-type littermates was contemporaneous with disease onset and

further increased with disease progression. Further, bone marrow transplantation (BMT), currently

the only therapeutically beneficial treatment for GLD, did not mitigate the elevated expression of

MMP-3 in twitcher mice. Hence, elevated expression of MMP-3 in GLD may promote microglial

responses to psychosine that may represent an important pathophysiological process in this disease

and its treatment.
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INTRODUCTION

Leukodystrophies are rare genetic diseases affecting CNS white matter. Globoid cell

leukodystrophy (GLD), also known as Krabbe disease (Krabbe, 1916), is a commonly-

pediatric de/dysmyelinating disease with an incidence of about 1 in 100,000 (Duffner et al.,

2009). GLD has been attributed to a deficiency of the lysosomal enzyme,

galactocerebrosidase (GALC), resulting from loss of function mutations in the GALC gene

(Wenger, 2001). These loss of function mutations in GALC result in a metabolic defect and

an accumulation of a sphingolipid intermediate, galactosylsphingosine (psychosine) (Suzuki

and Suzuki, 1970). The excessive accumulation of psychosine in oligodendrocytes coupled

with the toxicity of this metabolite has led to the “psychosine hypothesis” of GLD

(Miyatake and Suzuki, 1972; Suzuki, 1998). This hypothesis proposes that elevated levels of

psychosine cause the death of oligodendrocytes, which results in the prominent white matter

pathology of GLD. However, when oligodendrocytes from the twitcher mouse model of this

disease are transplanted into dysmyelinating shiverer mice, these oligodendrocytes

differentiate and myelinate (Kondo et al., 2005). Thus, oligodendrocyte cell death and

demyelination in GLD are not a cell-autonomous process.

Microgliosis and infiltration of peripheral macrophages into the CNS parenchyma are

notable pathologic changes in GLD. Robust microglial activation in the brains of GLD

patients provide a unique and defining feature of this disease: they transform into highly

active, multinucleated phagocytes referred to as “globoid cells.” These globoid cells are also

observed in animal models of this disease (Suzuki, 1985). Globoid cells are known to

develop from phagocytes during the course of this disease; however, it is not clear whether

these giant multinucleated cells arise from resident CNS microglia and/or infiltrating

macrophages. Discerning which cell types contribute to the formation and activation of these

highly activated phagocytes is expected to provide new insights into the pathogenesis of

GLD.

In a variety of demyelinating diseases, there is a well-established role for matrix

metalloproteinases (MMPs), a family of extracellular endopeptidases that play significant

roles in tissue remodeling and regeneration (Yong et al., 2001). MMPs are known to cleave

all components of the extracellular matrix (ECM) and thereby serve important homeostatic

functions. Particularly relevant to a potential role in GLD, dysregulated activities of MMPs

have been associated with a wide variety of neurodegenerative and demyelinating diseases,

including multiple sclerosis. A role for MMPs in a leukodystrophy has not been previously

reported. In multiple sclerosis, elevated expression of MMPs by leukocytes facilitates the

extravasation of autoreactive T cells into the CNS parenchyma (Gijbels et al., 1994).

Increased expression of MMPs within the CNS is also thought to promote tissue

degeneration (Pagenstecher et al., 1998). In an animal model of Parkinson’s disease, for

instance, MMP-3 in particular, has been shown to be a potent activator of microglia leading

to neurodegeneration (Kim et al., 2005). Since microgliosis and invasion of peripheral

macrophages into the CNS represents a primary pathology in GLD, we hypothesized a role

for MMP-3 in GLD.

Herein, we report that psychosine-induced expression of MMP-3 is responsible for

microglial activation and development of multi-nucleated globoid-like cells in primary

murine glial cultures. Elevated expression of MMP-3 in the CNS of twitcher mice, which

was not mitigated by bone marrow transplantation (BMT), the only therapeutically

beneficial treatment for GLD, suggests a role for MMP-3 in the pathology of GLD. Together

these data provide the first demonstration of MMP involvement in a leukodystrophy.
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MATERIALS AND METHODS

Mice

All protocols were performed in accordance with animal use and care protocol approved by

Institutional Animal Care and Use Committees (IACUC). For cell culture experiments, all

procedures using wild-type C57BL/6 and MMP-3 knockout (KO) neonates were performed

at the University of Connecticut Health Center. Bone marrow transplant experiments were

performed at the University of Illinois at Chicago.

Preparation of Primary Mixed Glial Cultures

Cultures were prepared from postnatal day (P) 0–3 wild-type C57BL/6 or MMP-3 KO

mouse pups. Briefly, forebrains were stripped of meninges, chopped into fine pieces, and

dissociated using a neural tissue dissociation kit (papain) according to the manufacturer’s

protocol (Miltenyi Biotec, Auburn, CA). The single cell suspension was then cultured in

T75 tissue culture flasks (Grenier Bio-One, Germany) in DMEM (Gibco, Carlsbad, CA)

supplemented with 10% fetal calf serum (FBS; Atlanta Biologicals, Lawrenceville, GA),

penicillin (100 U/mL: Sigma Aldrich, St. Louis, MO) and streptomycin (100mg/mL, Sigma

Aldrich). After 12 to 16 hr, all nonadherent cells were removed and fresh media was added

to the adherent cells. Mixed glial cultures were utilized experimentally when the confluent

astrocytic monolayer was established.

Purified Glial Cultures

Primary mixed glial cultures were established, as described above. For purified microglial

cultures, confluent mixed glial cultures were shaken using orbital shaker at 110 rpm at 37°C

3 to 4 hr to allow the loosely adhered microglia to detach from the astrocytic monolayer.

Media was supplied with 25 mM HEPES (Invitrogen, Grand Island, NY) and 25 mM

sodium bicarbonate (Invitrogen) to buffer pH changes in the absence of CO2. Following the

shaking, media containing detached microglia was collected and manually counted using a

hemacytometer. Cells were re-plated into six-well plates in mixed glial conditioned media,

and used experimentally as a purified microglial culture after 2 to 3 days of incubation at

37°C. Enriched astrocyte cultures were acquired by culturing the remaining adherent cells

following 3 to 4 hr shaking and collection of detached microglia, as described above. Fresh

media was added to these cultures and incubated for 3 to 5 days at 37°C before any

experimental manipulation.

Psychosine Treatment and Characterization of Globoid Cells in Culture

Mixed glial cell cultures were established from P0-P3 C57BL/6 or MMP-3 KO mice, as

described above. When confluent, culture media was removed and cells were washed once

in 1× PBS, then detached using a 0.25% Trypsin solution (Invitrogen). Cells were spun,

washed with 1× PBS, then re-suspended in culture media, counted and plated at a density of

5.0 × 104/mL on circular glass cover-slips (Fisher Scientific, Pittsburgh, PA) coated in 5 μg/

mL laminin (Sigma Aldrich). Six replicates were performed per treatment. Cells were

allowed to adhere for 4 to 5 days at 37°C with 5% CO2, and treated with either culture

media (untreated control); psychosine (10 μM, Sigma Aldrich) (Im et al., 2001); psychosine

+ the broad-spectrum MMP inhibitor, GM6001 (12.5 μM, Calbiochem, Billerica, MA);

psychosine + GM6001i (inactive GM6001 analogue: 12.5 μM, Calbiochem); or vehicle

control (0.13% of DMSO, Sigma Aldrich; and 0.02% ethanol, Sigma Aldrich). For study

using MMP-3 specific inhibitor, NNGH (0.1 μM, Enzo Life Sciences, Farmingdale, NY)

was used in the same paradigm of GM6001. Treatments were supplemented every 48 hr, at

the same concentrations, over 7 days of the experiment. We defined globoid cell by

immunocyto-chemistry (see below) as Iba-1+ with a rounded amoeboid-like morphology
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and multinucleated. Representative images were taken using an Olympus IX71 fluorescent

microscope and Eclipse imaging software (available at: empix.com). Numbers of globoid

cells were quantified by counting the number of Iba-1+ cells in four separate areas per

coverslip (n = 3 replicates totaling 12 images per treatment group were counted).

Immunocytochemistry

Cells were fixed on laminin-coated circular glass cover-slips in freshly prepared 4%

paraformaldehyde (PFA, Sigma Aldrich) for 10 min at room temperature for 15 min., then

blocked and permeabilized with 0.2% Triton X-100 (Sigma Aldrich) in PBS with 5%

normal goat serum (Invitrogen) for 1 hr. Fixed cells were incubated at 37°C using the

microglial marker Iba-1 (1:500; Wako, Richmond, VA), glial fibrillary acidic protein

(GFAP)-Cy3 (1:1,000; Sigma Aldrich) or GFAP (1:1,000; Dako, Carpinteria, CA), and

MMP-3 (Calbiochem; 1:500) primary antibodies in 5% normal goat serum for 1 hr.

Following incubation, cells were washed three times in PBS for 10 min each. Cover-slips

were then incubated at 37°C with 1:500 Alexa Fluor® 594 and/or 488 (Invitrogen) and

1:1,000 DAPI (Invitrogen) for 45 min followed by three washes in 1× PBS for 10 min each.

Finally, coverslips were mounted in Fluoromount-G™ (Southern-Biotech, Birmingham,

AL).

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Total RNA was isolated from cultured cells, as described previously (Moore et al., 2011),

and reverse transcribed into complementary DNA (cDNA) (iScript cDNA synthesis kit, Bio-

Rad, Hurcules, CA) according to the manufacturer’s protocol. Synthesized cDNA samples

were amplified using PCR primers specific to mmp-3 and TNF mRNA (Integrated DNA

Technologies, Coralville, IA), as employed previously (Chen et al., 2009); [MMP-3:

forward 5′-GGA AAT CAG TTC TGG GCT ATA CGA-3′, reverse, 5′-TAG AAA TGG

CAG CAT CGA TCT TC-3′; TNF: forward 5′-GAC CCT CAC ACT CAG ATC ATC TTC

T-3′, reverse 5′-CCT CCA CTT GGT GGT TTG CT-3′] and SsoFast™EvaGreen®

Supermix (Bio-Rad), according to the manufacturer’s protocol. Amplification of target

cDNA was analyzed by a Mastercycler® ep realplex (Eppendorf, Hauppauge, NY). Primers

for GAPDH were used to assess general expression level of housekeeping gene among

samples; GAPDH: forward 5′-ACC ACC ATG GAG AAG GC-3′, reverse, 5′-GGC ATG

GAC TGT GGT CAT GA-3′. For peripheral blood and macrophage sample, ribosomal unit

18S was targeted as a housekeeping gene (18S: forward: 5′-AGT TGG TGG AGC GAT

TTG-3′, reverse: 5′-TTG CTC AAT CTC GGG TG-3′). Relative expression of mRNA was

calculated using the comparative cycle threshold analysis (ΔΔCT), as previously described

(Livak and Schmittgen, 2001).

Microglial Phagocytosis Assay

Primary mixed glial cultures were prepared, as described above, from P0 to P3 wild-type

C57BL/6 mice. Cultures were plated at a density of 1 × 105 cells/mL on laminin-coated

glass coverslips and treated for 7 consecutive days with PBS, psychosine (10 μM), or

psychosine (10 μM) and GM6001 (12.5 μM). At 48 hr before fixation, FITC-labeled latex

beads (Cayman Chemical Company; Ann Arbor, MI) were added to all treatment groups.

Cells were then incubated at 37°C for the duration of the experiment and then fixed using

4% PFA in PBS. Immunocytochemistry was then performed for Iba-1 and numbers of

Iba-1+/FITC+ labeled cells were counted to determine the numbers of microglia that took up

the beads for each treatment group (n = 3/group; replicates of 9).
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Peripheral Blood Cell Assay

Peripheral blood was collected from wild-type mice by intracardial needle puncture and

treated for 4 hr (37°C, 5% CO2) with either psychosine (10 μM) or lipopolysaccharide (LPS;

100 μg/mL; Sigma Aldrich). To lyse the red blood cells, the treated samples were

immediately incubated on ice with ammonium chloride (1:9, v:v) for 10 min. Samples were

spun at 1,000g for 10 min, followed by aspiration of ammonium chloride. The pellet was

washed with 1 mL of RPMI (Gibco), spun at 1,000g for 5 min, and supernatant was

aspirated. The pellet was re-suspended in TRIzol (invitrogen) and total RNA from peripheral

blood white cells was isolated, as previously described (Moore et al., 2011).

Peripheral Macrophage Collection

Peripheral macrophages were collected from the peritoneal cavity of adult mice, as

described previously (Ray and Dittel, 2010) with slight modifications. Briefly, adult wild-

type C57BL/6 mice were anesthetized and 4 to 5 mL of ice cold PBS with 3% FBS was

injected intraperitoneally to each animal. Filled peritoneum was massaged well to detach the

tissue-adhered macrophages into the cavity, followed by collection of injected PBS through

25G needle inserted into the peritoneal cavity. Collected cell suspension was centrifuged at

1,500 rpm for 7 min, and collected cell pellet was resuspended in RPMI with 5% FBS. Cells

were plated in the plastic dish overnight (37°C, 5% CO2) to allow macrophages to adhere at

the bottom of dish. Media was then removed and adhered macrophages were plated at 5 ×

106 cells/mL. The purity of differentially adhered macrophages was enumerated by flow

cytometry (Supp. Info. Fig. 1). Plated macrophages were then treated with psychosine or

LPS in the same regimen as described in peripheral blood cells assay (see above).

Twitcher Mice

Twitcher mice (GALCtwi Mice) are a well-characterized murine model of GLD, which is

caused by a spontaneous mutation in the GALC gene. Mice were housed and bred at the

Sanford-Burnham Institute (La Jolla, CA) where tissues were collected from homozygous

GALCtwi/GALCtwi mice and wild-type littermates at different time points following birth

P0, 10, 20, 31, and 40, as previously described (Taylor et al., 2006). Twitcher mice for BMT

experiment were housed and bred at the University of Illinois at Chicago (Chicago, IL).

Immunohistochemistry

Twitcher mice and age-matched littermate control mice were transcardially perfused with

PBS and 4% PFA, and their brain was removed. Collected brains were immersed in 4% PFA

overnight and then in 30% sucrose solution. Brain tissue was paraffin-embedded and

sectioned 15 μm in thickness. Tissue sections mounted on slide glass were deparaffinized

and dehydrated by series of xylene and ethanol, antigen-retrieved by heated citric acid buffer

(0.01M, pH6.0), and blocked with 5% normal goat serum in PBS for 1 hr.

Immunohistochemistry was then performed using primary antibodies against GFAP

(1:1,000, Dako), Iba-1 (1:2,000, Wako), and MMP-3 (1:100, CalBioChem), diluted in PBS

with 2% normal goat serum and incubated tissues in antibodies overnight at 4°C, followed

by PBS wash. Immunoreactivity for each target was visualized by using fluorescent

secondary antibodies, including Alexa Fluor® 594 and 488 (1:500; Invitrogen), followed by

PBS wash. The tissues were then coversliped using FluoroMount G (SouthernBiotech).

Bone Marrow Transplantation in Twitcher Mice

Bone marrow cells were obtained from C57BL/6J CD45.1 (8–12 weeks) as previously

described (Galbiati et al., 2009). Briefly, tibiae and femora were flushed with 0.9% saline

and the cells filtered (44-μm strainer; BD, San Diego, CA). The cellular eluant was then

centrifuged at 1,500 rpm (5 min) and cell pellets incubated in lysis buffer to eliminate all red
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blood cells (10 min at 48°C; 155 mM ammonium chloride, 10 mM potassium bicarbonate,

0.1 mM EDTA, pH 8). Mononuclear cells were washed in saline and counted using a

hemocytometer and then resuspended (30 × 106 cells/20 μL saline) for intravenously

infusion. Cells were injected in newborn Twitcher pups (1–2 days after birth) through the

parietal vein, as previously described (Billingham and Brent, 1956; Sands and Barker,

1999). Transplanted mice were returned to their mothers without any other treatment.

Statistical Analyses

Data are presented as mean ± SEM. A one-way ANOVA with Tukey’s post hoc tests or

unpaired Student’s t-test was used to determine group differences. For all tests, P < 0.05 was

considered significant.

RESULTS

Age-Dependent Increase in the CNS Expression of MMP-3 in Twitcher Mice

Spontaneous mutations in GALC in C57/BL6 mice have been found to limit lifespan and

produce neuropathology resembling human GLD. These “twitcher” mice are now

established as an authentic model of GLD. To determine whether expression of MMP-3 was

altered during the lifespan of twitcher mice, total RNA was isolated from whole brains of

twitcher mice and wild-type littermates from time of birth (P0) through P40, at which >95%

mortality was observed among homozygous mutant mice. qRT-PCR evaluation of mmp-3

mRNA revealed a significant increase in expression in twitcher mice compared with wild-

type counterparts (Fig. 1A). This increase of MMP-3 expression coincided with the onset of

clinical disease in twitcher mice, which is approximately P20 (Fig. 1A). Additionally, the

increase of MMP-3 expression in twitcher mice showed a temporal correlation (Fig. 1A).

The increase in MMP-3 expression in twitcher mouse brain relative to wild-type age-

matched controls was 7.5-fold by P40. To identify the cellular source of increased MMP-3

in the twitcher mouse brain, we performed immunohistochemistry for MMP-3 on brain

tissue sections from P40 twitcher mice, a time point with the highest MMP-3 expression.

Immunoreactivity of MMP-3 in twitcher mouse brain at P40 was frequently co-localized

with GFAP+ astrocytes (Fig. 1B–D). Only a small portion of Iba-1+ microglia in twitcher

mouse brain was co-localized with MMP-3 immunostaining (data not shown). Although

neurons have also been implicated as a source of MMP-3 in other neurodegenerative disease

models (Kim et al., 2005), our data support glia as a prominent source of MMP-3 production

in GLD.

Psychosine Regulates MMP-3 Expression from Glia, but Not Peripheral Immune Cells

The increase of MMP-3 in twitcher mice and its correlation with disease progression

prompted us to examine if psychosine is a regulator of this response. To test this, mouse

primary mixed glial cultures were treated with psychosine (10 μM) at a dose previously

reported to activate a macrophage cell line (Im et al., 2001). qRT-PCR analysis of RNA

isolated from cultures treated with psychosine for 2, 4, or 20 hr determined that there was a

time-dependent increase of mmp-3 mRNA expression (Fig. 2, ANOVA, **P < 0.01, ***P <

0.001). In a second set of experiments, we tested whether the level of mmp-3 expression

induced by psychosine was concentration-dependent. Psychosine concentration less than 10

μM did not influence glial cells with respect to MMP-3 transcription (data not shown).

Additionally, analysis of increasing concentrations of psychosine (10–100 μM) did not

uncover a further enhancement of mmp-3 expression above that observed with 10 μM (data

not shown). At the highest concentration of psychosine tested (100 μM) we observed

significant cytotoxicity in the glial cultures (data not shown). Hence, we determined that

psychosine transcriptionally induced mmp-3 expression in primary cultured glia.
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In a previous study, we determined that MMP-3 is predominantly expressed by astrocytes in

response to inflammatory stimuli (Crocker et al., 2006). To determine whether psychosine-

induced mmp-3 expression in glial cultures was derived from astrocytes or microglia, or

both, we next examined the cellular source of increased mmp-3 mRNA expression. Mixed

glial cultures, enriched astrocyte cultures, or purified microglial cultures were treated with

psychosine (10 μM) for 20 hr, and the level of mmp-3 mRNA expression was analyzed

using qRT-PCR. In our mixed glial cultures, which we have previously characterized, are

comprised of approximately 95% astrocytes and 5% microglia at 25 days in vitro (Crocker

et al., 2006; Milner and Campbell, 2002), can be grown and then mechanically sorted to

enrich for astrocytes and separate purified microglial populations. Importantly, these culture

conditions are not conducive to oligodendrocyte progenitor cell growth or maturation.

Psychosine treatment of enriched astrocyte cultures significantly increased mmp-3 mRNA

expression compared to untreated enriched astrocyte cultures (P < 0.01, psycho-sine vs.

untreated in mixed glia; P < 0.05, psychosine vs. enriched astrocytes; Fig. 3A). However,

application of psychosine to purified microglial cultures did not significantly increase

mmp-3 expression when compared with either untreated purified microglia cultures or

untreated mixed glial cultures (t-test, P = 0.247; Fig. 3C). These results indicated that

astrocytes were the primary source of mmp-3 expression in our cultures.

Because macrophages infiltrate the CNS during GLD, and macrophages have been implied

in the formation of globoid cells in this disease, we next sought to determine whether

peripheral immune cells, including macrophages specifically, could be induced to express

MMP-3 in response to psychosine. Although psychosine treatment in primary purified

microglial cultures moderately induced MMP-3 expression, treatment of peripheral blood or

purified macrophages with equivalent concentrations of psychosine did not induce MMP-3

expression (Fig. 3B,D,F,H). qRT-PCR analysis of mmp-3 mRNA expression also revealed

that LPS did not induce mmp-3 mRNA expression in peripheral blood samples (Fig. 3E).

Since whole blood contains a myriad of cell types that may also regulate macrophage

responsiveness, and peripheral blood samples contain only a small population of

macrophages, we also isolated unstimulated peritoneal macrophages and challenged these

purified cells with either psychosine or LPS. Flow cytometry determined that the proportion

of macrophages in our preparations from peritoneal cavity were over 95% (Supp. Info. Fig.

1). Treatment of purified peritoneal macrophages for 4 hr with either psychosine or LPS

revealed that neither psychosine nor LPS induced mmp-3 expression in peritoneal

macrophages (Fig. 3G). However, analysis of tumore necrosis factor (TNF) expression in

these same culture preparations determined that TNF expression was robustly induced by

LPS (Fig. 3H; ANOVA, P < 0.05), suggesting that the peritoneal macrophages were healthy

and capable of responding to stimulation. These results indicate that microglia and

peripheral macrophage populations markedly differ in their responses to psychosine and

regulation of mmp-3 expression.

Psychosine Induces “Globoid”-Like Cells in Primary Glial Cultures

A hallmark pathology of GLD is the formation of globoid cells. Based on our finding that

psychosine regulated MMP-3, an extracellular activator of microglia (Kim and Hwang,

2011), and previous work by Im et al. reported the development of multinucleated cells

following psychosine treatment of BV2 and HEK293 cell lines (Im et al., 2001), we

hypothesized that psychosine may induce a globoid-like phenotype in primary cultured glia.

We next treated primary mixed glial cultures with 10 μM psychosine for 7 consecutive days.

Cultures were then analyzed by immunostaining for the microglial marker, Iba-1, the

astrocyte marker, GFAP, and nuclear counterstain with DAPI. Control, untreated mixed glial

cultures exhibited Iba-1+ cells with short-branched morphology that is typical of cultured

microglia (Fig. 4A). In contrast, Iba-1+ glia exposed to psychosine exhibited an amoeboid-

Ijichi et al. Page 7

Glia. Author manuscript; available in PMC 2013 October 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



shaped phenotype, which was frequently multinucleated (Fig. 4C). These enlarged

multinucleated cells resembled what would be referred to as “globoid” cells in the CNS

pathology of GLD specimens. Indeed, the number of polynucleated Iba-1+ cells in

psychosine-treated cultures was increased 5.5 fold compared to control conditions (P <

0.001; Fig. 4C,D).

Psychosine Does Not Induce Globoid-Like Cells in MMP-3KO Glia

To determine whether MMP-3 specifically was the mediator of globoid cell formation in

response to psychosine treatment, we prepared primary mixed glial cultures from MMP-3

knockout (KO) mice in addition to wild-type littermates, and applied psychosine (10 μM)

for 7 consecutive days, as outlined above. In MMP-3 KO cultures, psychosine did not

induce mmp-3 expression, as we expected (data not shown). Moreover, globoid cells were

not induced in MMP-3KO cultures by psychosine treatment (Fig. 5C,D), but were readily

and robustly produced in wild-type cultures (Fig. 4). Microglial morphology in psychosine-

treated MMP-3KO cultures was similar to untreated cultures (Fig. 5A,C). Thus, genetic

ablation of MMP-3 prevented psychosine-induced globoid cell formation in vitro,

suggesting that MMP-3 is required for psychosine-induced globoid cell formation.

Globoid Cell Formation in Primary Glial Cultures Is Blocked by Chemical Inhibition of
MMPs

To determine whether increased expression of MMP-3 in response to psychosine exposure

was directly related to the morphological transformation of microglia, we treated primary

mixed glial cells with the broad-spectrum MMP inhibitor, GM6001, in conjunction with

psychosine treatment for seven days. Microglial morphology was examined using

immunostaining with Iba-1 as a microglial marker. Psychosine treatment in mixed glial

culture induced the morphological change of Iba-1+ cells toward globoid-like cells (Fig.

6B,J). However, this morphological alteration in microglia was hampered when an MMP

inhibitor was concomitantly added in the treatment (Fig. 6C,J). Next, we sought to

determine whether morphological alterations in Iba-1+ microglia induced by psychosine

were also associated with functional changes in phagocytosis. To test this, we cultured

primary mixed glia, treated them with psychosine for seven days but applied fluorescent

latex beads to the cultures for the last 48 hr of the experiment. Immunostaining for Iba-1+

cells that also contained fluorescent beads was quantified as a functional index of

phagocytosis in response to psychosine (Fig. 6D–F,K). Psychosine induced a fourfold

increase in phagocytosis over basal levels observed in untreated, control cultures (ANOVA;

P < 0.0001). Treatment with the MMP inhibitor, GM6001, significantly reduced psychosine-

induced phagocytosis (Fig. 6F,K). These data indicate that psychosine-induced activation of

microglia in culture was mediated by MMPs.

Globoid Cell Formation in Primary Glial Cultures is Blocked by a Peptide Inhibitor of
MMP-3

Because GM6001 is a nonselective, broad-spectrum MMP inhibitor, we wanted to ascertain

whether selective inhibition of MMP-3 may also attenuate globoid cell formation in primary

cultures treated with psychosine. To test this, we used the small peptide NNGH (Ki = 130

nM for MMP-3), which exhibits greater specificity for MMP-3 than other MMPs. Co-

application of NNGH to psychosine-treated cultures resulted in a marked reduction in the

number of globoid cells compared with cultures treated with psychosine alone (Fig. 6G–I,L).

Thus, inhibition of MMPs including specific inhibition of MMP-3 attenuated the

transformation of primary microglia into the highly activated globoid-like cell type.
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Bone Marrow Transplantation Does Not Dampen Elevated MMP-3 Levels in Twitcher Mice

Currently, the only treatment option for GLD cases is bone marrow transplantation (BMT)

(Krivit et al., 1998). Recent clinical follow-up studies have determined that although BMT

for GLD can alleviate symptoms, it does not prevent disease progression and eventually

most patients succumb to ongoing progressive deterioration (Duffner et al., 2009). The

clinical benefit of BMT is also observed in twitcher mice (Luzi et al., 2009; Yeager et al.,

1984). Indeed, analysis of glial pathology in twitcher mice following BMT has reported

reduced microgliosis and enhanced numbers of foamy macrophages that correlated with

improved clinical outcome (Hoogerbrugge et al., 1988). We hypothesized that BMT may

dampen the elevated mmp-3 expression within the CNS in GLD and this may be a

contributing factor to the therapeutic benefit of BMT. To determine whether elevated

mmp-3 expression in the twitcher CNS was affected by BMT, we next examined mmp-3

mRNA expression in twitcher mice that received BMT in the early postnatal period. A

detailed characterization of these transplanted mice has been reported (Galbiati et al., 2009).

Consistent with our previous analyses, symptomatic twitcher mice exhibited higher levels of

mmp-3 mRNA than wild-type (control) mice (Fig. 7). However, expression of mmp-3

among twitcher mice that had received BMT, although exhibiting more inter-subject

variability (range: 1.5 to 21-fold over wild-type) did not differ from non-BMT treated

twitcher mice (Fig. 7). Hence, the sustained expression of mmp-3 in BMT-recipient twitcher

mice may reflect a persistent disease process within the CNS that is not ameliorated by

BMT.

DISCUSSION

In this study we have determined that psychosine regulates expression of MMP-3, which

mediates the activation and proliferation of microglia toward a multinucleated globoid cell

phenotype. Psychosine-induced increase in phagocytic activity and globoid cell formation

were prevented by inhibition of MMP-3. Elevated MMP-3 expression was also identified in

twitcher mice, an authentic animal model of GLD, and this elevation was not reversed by

BMT. Hence, elevated MMP-3 expression in GLD may represent an important mediator of

microglial activation in GLD.

The roles of microglia and macrophages in GLD are not currently well defined. Evidence for

beneficial and detrimental functions for both of these phagocytic populations in GLD and

twitcher mice have been provided in several previous studies by others (Kagitani-Shimono

et al., 2005; Kondo et al., 2011; Matsushima et al., 1994). We hypothesize that sustained

induction of MMP-3 by accumulated psychosine in the CNS of individuals with GLD

promotes microglial activation and globoid cell formation, but not macrophage activation,

which may promote myelin degeneration through the robust phagocytic activity of these

microglia-derived cells. Our in vitro experiments would indicate that macrophages and

microglia are functionally distinct cell types that respond in distinctly different ways to

psychosine exposure. These results support an ontogenic separation of these related yet

specialized phagocytic cell types (Ginhoux et al., 2010) and our findings provide a

potentially unique distinction between microglia and macrophages in this disease through

their differential propensity to be activated by psychosine.

While we hypothesize that the highly activated nature of globoid cells in vitro may reflect a

pathogenic form of microglia that contribute to neuropathology in GLD, it is also plausible

that highly activated phagocytes could represent an endogenous protective response to clear

dead or dying cells to foster remyelination (Neumann et al., 2009). For instance,

remyelination in a chemical lesion model of focal demyelination is impaired when

microglia/macrophages are inhibited (Kotter et al., 2005; Li et al., 2005). When interpreted

in the context of our results, the highly activated microglia in response to psychosine could

Ijichi et al. Page 9

Glia. Author manuscript; available in PMC 2013 October 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



represent a mode of myelin debris clearance that would allow for removal of growth

inhibiting molecules and promote oligodendrocyte progenitor cell proliferation and

differentiation (Neumann et al., 2009). Although these previous studies were not examined

in the context of the twitcher mouse brain, recent work by Kondo et al. describe a possible

protective function of microglia/macrophages in GLD (Kondo et al., 2011). Thus, it is

plausible that psychosine-induced MMP-3-mediated microglial activation could be a robust

but ultimately insufficient attempt to foster brain repair in the GLD CNS.

Our results may also indicate that globoid cells in GLD may be exclusively derived from

resident microglia and provides an explanation for why globoid cells are not observed in

association with demyelinating peripheral neuropathy in GLD (Siddiqi et al., 2006; Tanaka

et al., 1988). Globoid cell formation in the CNS of human and animal GLD is traditionally

believed as a secondary consequence followed by a primary oligodendrocyte death due to

the accumulation of psychosine in oligodendrocytes (Takahashi and Suzuki, 1984). Our data

demonstrate that microglia transformed toward a globoid cell-like morphology in response

to psychosine treatment in vitro, however, our glial culture systems used in this study did not

contain oligodendrocytes. Moreover, microglial activation and globoid cell formation are

effects of psychosine on microglia that can occur independently of oligodendrocytes in

culture. Thus, based on these data, microglial activation and globoid cell formation in GLD,

rather than being a secondary response to CNS demyelination, may instead be a primary

response to psychosine. In fact, it was previously reported that globoid cells were observed

prior to the onset of disease and/or demyelination (Martin et al., 1981).

Overall, this work indicates that psychosine initiates changes in many cell types; including,

microglia, astrocytes, and oligodendrocytes. In this context, our globoid cell assay using

primary glial culture may be a practical model to test and understanding the pathological

process of microglial activation by psychosine. For instance, identifying the proteolytic

target(s) of MMP-3 on microglia may provide a novel strategy to better understand the

specific actions of activated microglia and/or formation of globoid cells in GLD. While the

pathogenic contribution of microglia can only be inferred from previous work, the

contribution of MMP-3 toward GLD pathology was not directly addressed in this study.

Future studies will be required to examine the specific contribution of MMP-3 in GLD

neuropathology and elucidate whether this process impacts microglial activation,

inflammatory profiles and globoid cell formation in vivo.

The proteolytic actions of MMPs are regulated by the tissue inhibitors of metalloproteinases

(TIMPs) (Crocker et al., 2004). In a course of disease in twitcher mice, we examined the

expression of TIMP-1, a timp gene that is robustly expressed during CNS demyelination that

is also well-characterized endogenous inhibitor of MMP-3 (Gomis-Ruth et al., 1997). Our

qRT-PCR analysis determined that expression of TIMP-1 increased only modestly over the

same time frame relative to the robust increase in MMP-3 expression (data not shown).

Moreover, expression of MMP-2 and −9 in the CNS of twitcher mice did not differ from the

levels of expression in wild-type littermates throughout their postnatal development (data

not shown). Hence, in the CNS of twitcher mice there is a dysregulation of certain MMPs,

namely MMP-3, during the course of disease. Elevated expression of MMP-3 has been

reported in a variety of CNS white matter disorders including multiple sclerosis and

experimental models of spontaneous demyelination (D’Souza et al., 2002; Pagenstecher et

al., 1998; Toft-Hansen et al., 2004; Ulrich et al., 2006). On the basis of previous studies,

pathological actions of elevated MMP-3 expression in GLD could contribute to GLD

pathology in two ways. First, we have shown that MMP-3 is important for the phenotypic

activation of microglia (Kim et al., 2005), as we have also demonstrated in response to

psychosine. Secondly, previous studies have shown that many myelin proteins are

proteolytic targets of MMPs (Chandler et al., 1996; Milward et al., 2008), including MMP-3
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(Shiryaev et al., 2009). Hence, elevated MMP-3 production in the CNS of twitcher mice

may contribute to destabilization of CNS myelin and oligodendrocyte death as well.

Currently, the primary therapy for GLD patients is BMT. The effectiveness of this stem cell-

based therapy in GLD has been reported to be highly variable among human cases with

limited long-term benefit for some patients (Duffner et al., 2009; Hoogerbrugge et al., 1988;

Suzuki et al., 1988). Among twitcher mice, BMT increases lifespan and improves

neuropathology but these mice still die prematurely (Hoogerbrugge et al., 1988; Yagi et al.,

2005; Yeager et al., 1984). Previous discussions on the limited efficacy of the stem cell

transplantation in GLD have indicated that microglial activity in twitcher mice remains high,

even after neural stem cell transplantation (Pellegatta et al., 2006). Our data in this study

may shed light on this pathology, namely that elevated MMP-3 expression in the CNS of

twitcher mice was unaltered by BMT, although there is a possibility of delayed induction in

MMP-3 expression by BMT. Thus, sustained induction of MMP-3 may represent an

inherent limitation of BMT treatment for GLD. Abrogation of microglial activation, perhaps

through MMP-3-targeted strategies may be a mode for controlling microglial activation that

could enhance the therapeutic efficacy of BMT in GLD. Hence, persistent expression of

MMP-3 in the GLD brain may represent a limitation of long-term prognosis for this

treatment approach. In future, experiments designed to address the issue of the limited

therapeutic window for BMT (Krivit et al., 1998) could potentially include adjunct MMP

inhibiting therapy to address the excessive production of MMP-3 in the CNS compartment

in this disease. Nevertheless, whether as a potential therapeutic target for GLD treatment, or

as a source of basic understanding on MMP-3 regulation of microgliosis in GLD, additional

study is expected to provide new information on the innate inflammatory response in GLD,

how it may be regulated by MMP-3, as shown in this study, and potentially provide

additional insights into MMP-3 in other diseases as well.

Formation of multinucleated giant cells are pathological hallmarks of many neurological

diseases including amyotropic lateral sclerosis (ALS) (Fendrick et al., 2007), HIV

encephalitis (Budka, 1986), Alzheimer’s disease, acute disseminated encephalomyelitis,

giant cell angiitis [associated with vasculitis in the CNS (Ciappetta et al., 2010)], gliomas

and neuroepithelial tumors (Adamek et al., 2008) and other leukodystrophies as well

(Budka, 1986; Elleder, 1984). Among these other diseases in which giant multinucleated

microglia are found, elevated expression of MMP-3 has been reported in Alzheimer’s

disease (Yoshiyama et al., 2000). Although a pathological association between MMP-3 and

formation of giant cells in these diseases has not been previously reported, our study would

support this line of future investigation. Moreover, the mechanism by which multinucleated

microglial cells are formed in response to psychosine, and mediated by MMP-3, may have

an application toward the pathogenesis of these other neurodegenerative diseases. Future

studies will explore the actions of MMP-3 on microglial cytokinesis, for instance (Kanazawa

et al., 2000), in response to psychosine and other pathological stimuli that results in

formation of multinucleated giant cells. The importance in pathogenic contribution of these

multinucleated phagocytes toward neuropathology and disease progression will be required

to fully understand the mechanism of these disease-associated changes in microglial

phenotypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1.
Elevated astrocytic MMP-3 expression in twitcher mouse brain. (A) MMP-3 expression

level in the brain of wild-type (WT) and twitcher (TWI) mice at various ages was quantified

by qRT-PCR. (B–D) MMP-3 protein expression (red) was visualized by

immunohistochemistry from the brain section of P30 twitcher mouse. Note that MMP-3

immunoreactivity is co-localized (white arrows) with the astrocyte-specific marker, glial

fibrillary acidic protein (GFAP; green). Data represent mean ± SEM. N = 3/age/genotype,

scale bar = 50 μm. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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FIGURE 2.
Psychosine transcriptionally regulates MMP-3 expression in primary glial cultures. Primary

mixed glial cultures from wild-type mouse were treated with psychosine (10 μM) for 2, 4,

24 hr and MMP-3 mRNA expression level was quantified by qRT-PCR. Data represent

mean ± SEM. N = 3 to 4/treatment/time-point. **P < 0.01, ***P < 0.001.
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FIGURE 3.
Psychosine regulates MMP-3 expression differently in CNS microglia and peripheral blood

cells/macrophages. Mixed glial culture, purified microglia, whole blood white cells, and

peritoneal macrophages were treated with psychosine (10 μM) or LPS (10 μg/mL) for 4 hr,

and MMP-3 mRNA expression level was analyzed by qRT-PCR (A, C, E, G). Also, to

ensure the cellular responsiveness to stimulus, TNF mRNA expression level was also

quantified (B, D, F, H). Note that CNS cells with psychosine treatment had increased

MMP-3 expression (A and C), but not peripheral cells (E and G), although peripheral cells

had increased TNF expression in response to LPS (F and H). N = 3–4/treatment/cell type.

Data represent mean ± SEM. *P < 0.05, **P < 0.01.
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FIGURE 4.
Psychosine induces globoid cell formation in a primary mixed glial culture. (A–D) Addition

of pyschosine (10 μM) for 7 days significantly increases numbers of Iba-1+ (green)

multinucleated globoid cells compared with both controls [no treatment (No/T)] and vehicle

in a primary mixed glial culture. Data represent mean ± SEM. ***P < 0.001 relative to No/

T. Scale bar = 20 μm. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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FIGURE 5.
Psychosine-induced “globoid-like cell” formation in vitro requires MMP-3. Primary mixed

glial cultures were prepared from MMP-3 KO and WT littermates and then treated with

psychosine (10 μM) for 7 days. ICC was performed using Iba-1 antibody (green) and DAPI

(blue) and the number of multinucleated microglia were quantified. The numbers of Iba-1+

cells did not differ between untreated weight of KO cultures. The prevalence of globoid-like

cells observed in weight cultures treated with psychosine was elevated sixfold over vehicle

treatment (A–D) but were absent from the MMP-3 KO cultures (D). Data represent n = 8/

treatment; **P < 0.01, t-test versus WT. Scale bar = 20 μm. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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FIGURE 6.
Metalloproteinase inhibition impairs psychosine-induced globoid cell formation and

phagocytic activity of microglia. (A–C) Following a 7-day treatment with psychosine (10

μM), the presence of Iba-1+ globoid cells (green; nuclei-blue) were significantly increased

(A) compared with control (B), while this effect was reversed with the addition of a pan-

MMP inhibitor (MMPi; GM6001, 12.5 μM) (C, J). Panel B demonstrates the large

amoeboid shape of Iba-1+ cells treated with psychosine, which was reversed with the

MMPi. (D–F) Primary mixed glial cultures (Iba-1+ cells-red; FITC+ beads-green; nuclei-

blue) incubated for last 48 hr of 7 days psychosine treatment with latex FITC-labeled beads

(white arrows) demonstrates that psychosine treatment significantly increased the

phagocytic activity Iba-1+ cells, which was also significantly decreased by addition of the

MMPi (K). Primary mixed glial culture from wild-type mouse (G) was treated with

psychosine (10 μM) alone (H), or psychosine and NNGH (0.1 μM) concomitantly (I) for 7

days. Immunocytochemistry study revealed that psychosine induced Iba-1+ (green) globoid

cells containing multiple nuclei (DAPI, blue) (H), but failed to induce globoid cells when

NNGH was added together (I). Number of globoid cells was quantified (L). Data represent

mean ± SEM. ***P < 0.001, *P < 0.05. Scale bar top = 30 μm; middle = 20 μm; bottom =

18 μm. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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FIGURE 7.
Increased mmp-3 mRNA expression in twitcher mouse brain is not attenuated by bone

marrow transplantation. qRT-PCR was performed on cDNA derived from mRNA isolated

from whole brain homogenates from P40 to 50 WT, untreated twitcher, and bone marrow

transplanted (BMT)-twitcher mice. Data are presented as fold change of mmp-3 mRNA

relative to the expression of GAPDH within each sample (N = 3–4/time-point/genotype).

Data represent mean ± SEM.
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