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Nontuberculous mycobacterial (NTM) pulmonary infections are emerging as a global

health problem and pose a threat to susceptible individuals with structural or functional

lung conditions such as cystic fibrosis, chronic obstructive pulmonary disease and

bronchiectasis. Mycobacterium avium complex (MAC) and Mycobacterium abscessus

complex (MABSC) species account for 70–95% of the pulmonary NTM infections

worldwide. Treatment options for these pathogens are limited, involve lengthy multidrug

regimens of 12–18 months with parenteral and oral drugs, and their outcome is often

suboptimal. Development of new drugs and improved regimens to treat NTM infections

are thus greatly needed. In the last 2 years, the screening of compound libraries against

M. abscessus in culture has led to the discovery of a number of different chemotypes

that target MmpL3, an essential inner membrane transporter involved in the export of

the building blocks of the outer membrane of all mycobacteria known as the mycolic

acids. This perspective reflects on the therapeutic potential of MmpL3 inMycobacterium

tuberculosis and NTM and the possible reasons underlying the outstanding promiscuity

of this target. It further analyzes the physiological and structural factors that may account

for the apparent looser structure-activity relationship of some of these compound series

against M. tuberculosis compared to NTM.
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INTRODUCTION

The prevalence of pulmonary nontuberculous mycobacterial (NTM) infections caused by
Mycobacterium avium complex (MAC) and Mycobacterium abscessus complex (MABSC) species
is increasing worldwide and poses a particular threat to susceptible individuals with structural or
functional lung conditions such as cystic fibrosis (CF), chronic obstructive pulmonary disease,
and bronchiectasis (Park and Olivier, 2015; Parkins and Floto, 2015; Bryant et al., 2016; Floto
et al., 2016; Martiniano et al., 2016). Treatment options for NTM pulmonary infections involve
lengthy (12–18 months) combination regimens with antibiotics that lack bactericidal activity and
are associated with significant toxicity. For pulmonaryMAC, the recommended treatment includes
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a macrolide, rifamycin, and ethambutol to which intravenous
amikacin may be added. Treatment of pulmonary MABSC
typically consists of an oral macrolide in conjunction with
intravenous or inhaled amikacin, and one or more of the
following drugs: intravenous cefoxitin, imipenem, or tigecycline,
in addition to oral antibiotics (minocycline, clofazimine,
moxifloxacin, linezolid; Floto et al., 2016). The impermeability
of the cell envelopes of NTM to drugs and the high number of
efflux systems and antibiotic inactivationmechanismswith which
NTM are typically endowed confer upon these microorganisms
high intrinsic protection against antibiotics (Brown-Elliott et al.,
2012). There is clearly an urgent need for more active and better-
tolerated drugs to improve therapeutic outcome (Jarand et al.,
2011; Maurer et al., 2014; Park and Olivier, 2015; Martiniano
et al., 2016).

In last 3 years, the phenotypic screening of compound libraries
against NTM has yielded a number of hits with activity against
MABSC, MAC, or both complexes. Interestingly, several of
these compounds appear to kill NTM through the inhibition
of MmpL3, an essential mycolic acid transporter present in all
mycobacteria whose therapeutic potential in the treatment ofM.
tuberculosis infections was highlighted in a number of recent
studies (Sacksteder et al., 2012; Kondreddi et al., 2013; Lun et al.,
2013; Rao et al., 2013; Remuinan et al., 2013; Yokokawa et al.,
2013; Li et al., 2016, 2017; Poce et al., 2016, 2018; Stec et al.,
2016; Degiacomi et al., 2017). The availability of cidal inhibitors
against this new target, some of which have already demonstrated
activity in in vivo models of MABSC infection (Dupont et al.,
2016; De Groote et al., in revision; Pandya et al., in revision),
provides much-needed novel opportunities for the treatment of
pulmonary NTM infections.

This perspective reflects on the therapeutic potential and
promiscuity of MmpL3 in NTM, and discusses recent findings
from our laboratories toward understanding the basis for
the better activity and looser structure-activity relationship of
MmpL3 inhibitors againstM. tuberculosis compared to NTM.

THE PHENOTYPIC SCREENING OF
COMPOUND LIBRARIES AGAINST NTM
IDENTIFIES INHIBITORS OF MmpL3

In the last 3 years, the screening of compound libraries, including
libraries of TB actives, against MABSC and MAC, has yielded
a number of potent hits that appear to target the mycolic
acid transporter MmpL3. These include indole-2-carboxamides
(ICs) (Franz et al., 2017; Kozikowski et al., 2017; Low et al.,
2017), benzothiazole amides (De Groote et al., in revision),
and a piperidinol derivative (PIPD1) (Dupont et al., 2016; Low
et al., 2017). Earlier work on analogs of the M. tuberculosis
MmpL3 inhibitor BM212 had further highlighted the activity of
pyrole derivatives against a variety of NTM including M. avium,
M. gordonae, M. smegmatis, and M. marinum (Biava et al.,
1999, 2007; Biava, 2002). A subset of these hits and their MIC
againstM. tuberculosis,M. avium andMABSC isolates (including
M. abscessus subsp. abscessus, M. abscessus subsp. Massiliense,
and M. abscessus subsp. bolletti) is presented in Table 1 along

with that of other chemotypes reported to inhibit MmpL3
activity in M. tuberculosis (i.e., the 1,2-ethylene diamine SQ109,
the tetrahydropyrazolopyrimide carboxamide THPP1, and the
adamantyl urea AU1235) (Grzegorzewicz et al., 2012; La Rosa
et al., 2012; Tahlan et al., 2012; Remuinan et al., 2013).

ICs have previously been identified as a novel chemical
scaffold showing promise in the treatment of tuberculosis
(Kondreddi et al., 2013; Lun et al., 2013; Rao et al., 2013;
Stec et al., 2016). Based on their high anti-MABSC potency,
bactericidal activity on extracellularly- and intracellularly-grown
bacilli and promising safe pharmacological profile (Franz et al.,
2017; Kozikowski et al., 2017; Pandya et al., in revision),
two lead molecules were advanced for efficacy studies in a
mouse model of MABSC infection. Oral administration of the
lead compounds showed a statistically significant reduction
in bacterial load in the lungs, spleen and liver of MABSC-
infected mice compared to an untreated control group, with
one of the two compounds (compound # IC25; see Table 1)
showing similar efficacy to amikacin (Pandya et al., in revision).
The intrapulmonary delivery of a lead benzothiazole amide
compound also demonstrated in vivo efficacy in a mouse model
of chronic MABSC lung infection (De Groote et al., in revision),
whereas the piperidinol-based compound PIPD1 was reported
to restrict bacterial growth in a zebrafish model of MABSC
infection (Dupont et al., 2016). An interesting property of
MmpL3 inhibitors first revealed inM. tuberculosis is their ability
to synergize with a number of other antimycobacterial drugs or
drug candidates including rifampicin, bedaquiline, clofazimine,
and β-lactams (Li et al., 2017). Our preliminary studies with
IC25 (see Table 1) in MABSC similarly point to the existence
of a synergistic interaction between this MmpL3 inhibitor and
clofazimine in MABSC (Table S1).

Collectively, these results highlight the therapeutic potential
of MmpL3 inhibitors in the treatment of NTM infections and
provide a strong incentive to develop these compounds into new
generation antimycobacterial drugs as their inclusion in anti-
NTM drug regimens has the potential to lead to the faster and
more efficient clearance of NTM from infected tissues.

MmpL3: A PROMISCUOUS
MYCOBACTERIAL TARGET

The reason why so many chemical scaffolds kill M. tuberculosis
and NTM through the inhibition of MmpL3 remains
incompletely understood. MmpL3 belongs to the Resistance,
Nodulation and Division (RND) superfamily of transporters that
requires the transmembrane electrochemical proton gradient
for activity. The observation that the most common resistance
mutations identified in both M. tuberculosis and MABSC tend
to map to a transmembrane region of MmpL3 overlapping
with functional residues required for proton translocation or
proton-driven conformational changes in the transporter has led
to the hypothesis that inhibitors might target the proton relay
site of MmpL3 (Belardinelli et al., 2016). MmpL3 inhibitors are
typically lipophilic (logP ∼2.6–7.0) and many suffer from poor
aqueous solubility which likely favors their concentration in
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TABLE 1 | MICs of MmpL3 inhibitors against M. tuberculosis [Mtb], M. abscessus complex species (M. abscessus subsp. abscessus ATCC 19977 [Mabs];
M. abscessus subsp. massiliense CIP 108297 [Mmas]; M. abscessus subsp. bolletii ATCC 14472 [Mbol]), M. avium 104 [Mav], and M. smegmatis recombinant strains

expressing different mmpL3 orthologs.

Inhibitor Structure Mtb Msmg Mav Mabs Mmas Mbol Msmg1mmpL3

mmpL3smg mmpL3abs mmpL3tb

PIPD1 0.15a <1 125b 0.125 0.125 nd nd nd nd

AU1235 0.1–0.2 1.6–2.5 >32 0.5 1 0.5 2 2 0.3

BM212 6 8–12 2 1–2 1–2 nd 8–12 8 4–6.2

SQ109 0.6-0.8 6.2–12.4 4 >32 >32 nd 8–12 16 0.4–0.8

THPP1 0.4-0.8 >25 >16 >16 >16 nd >32 >32 0.8–2

NITD304 0.004 1 8 0.016 0.016 nd 1 0.12 0.06

NITD349 0.008 1 8 0.016 0.031 nd 0.25 0.25 0.06–0.12

IC5 0.2 1.6–3.2 >32 0.25 0.5 0.25 1.6–3.2 3.2 0.2

IC6 1.25 >20 >32 >32 >32 >32 >32 >32 1.25

IC9 0.39 >25 >32 >32 >32 32 32 >32 0.25–0.39

(Continued)
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TABLE 1 | Continued

Inhibitor Structure Mtb Msmg Mav Mabs Mmas Mbol Msmg1mmpL3

mmpL3smg mmpL3abs mmpL3tb

IC10 0.39 25 >32 >32 >32 32 25 >32 0.2

IC15 5 12.5 >32 >32 16 16 8–12.5 >32 3–4

IC16 0.05 0.8 8 0.12 0.06 0.12 3–4 4 0.06

IC20 0.02 >20 >32 >32 >32 >32 >32 >32 0.16

IC21 0.04 >20 >32 >32 > 32 >32 >32 >32 0.45

IC24 0.04 >20 >32 >32 >32 >32 >32 >32 0.16

IC25 0.02 0.3–0.6 0.25–

0.5

0.06 0.03 0.04 0.8–1 0.5 0.08

IC26 0.08 0.6 2 0.03 0.06 0.03 0.6–1 1 0.16–0.25

IC29 0.31 >20 >32 0.06 0.06 0.03 >32 1 0.62

(Continued)
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TABLE 1 | Continued

Inhibitor Structure Mtb Msmg Mav Mabs Mmas Mbol Msmg1mmpL3

mmpL3smg mmpL3abs mmpL3tb

IC30 0.16 nd >32 0.125 0.125 0.06 2 1 0.25–0.31

APRA – 1 nd 2 2 4 nd 2 4 2

BDQ – 0.5–1 nd 0.01 0.0625 nd nd <0.03 <0.03 <0.03

CFZ – 0.5–1 nd <0.125 0.125 nd nd 1 1 0.5

CLA – <0.125 0.125 0.5-1 0.25 nd 0.5 1 0.5

MICs (in µg/mL) were determined were determined in 96-well microtiter plates at 37◦C in 7H9-ADC-0.05% Tween 80 medium (M. smegmatis), 7H9-OADC-0.05% tyloxapol
supplemented with 0.2% casaminoacids, 48µg/ml pantothenate, and 50µg/ml L-leucine (M. tuberculosis mc26206), cation-adjusted Mueller-Hinton broth (M. abscessus complex) or
in cation-adjusted Mueller-Hinton broth supplemented with 5% OADC (M. avium) using the resazurin blue test (Martin et al., 2003) and by visually scanning for growth. The orthologs of
mmpL3 from M. abscessus (mmpL3abs), M. tuberculosis (mmpL3tb), and M. smegmatis (mmpL3smg) are expressed from the replicative plasmid pMVGH1 under control of the hsp60
promoter in the background of a M. smegmatis null mutant (Msmg1mmpL3) of which the entire mmpL3 ORF was deleted and replaced with a kanamycin-resistance cassette. Control
drugs: APRA, apramycin; BDQ, bedaquiline; CFZ, clofazimine; CLA, clarithromycin. nd, not determined. aMIC value against M. tuberculosis H37Rv ATCC 27294 (Low et al., 2017);
bThe precise M. avium strain used by Dupont et al. (2016) in the MIC determination of PIPD1 was not indicated and may be different from M. avium 104.

the inner membrane where MmpL3 is located. This property
and the extreme vulnerability of MmpL3 (Li et al., 2016) that
may allow inhibitors with relatively weak binding affinity to
the transporter to still inhibit enough of its activity to cause
growth arrest, could explain the bias of phenotypic screens
toward small hydrophobic inhibitors of MmpL3. The exquisite
vulnerability of MmpL3 may further mask potential secondary
targets of the inhibitors as illustrated by THPP derivatives that
were found to target another essential mycolic acid-related
protein inM. tuberculosis (Cox et al., 2016) and compounds such
as SQ109, BM212, and some THPPs that show activity against
non-replicating M. tuberculosis bacilli, a property typically not
shared by other MmpL3 inhibitors Li W. et al., 2014). The
fact that the hydrophobicity of ICs, THPPs, SQ109 analogs
and urea derivatives is a key driver of their efficacy provides
further support to the notion that the concentration of MmpL3
inhibitors in the phospholipid bilayer plays a key role in their
activity (Biava et al., 2005, 2007; Onajole et al., 2010, 2013; Brown
et al., 2011; Scherman et al., 2012; Kondreddi et al., 2013; North
et al., 2013; Li K. et al., 2014; Poce et al., 2016; Stec et al., 2016;
Franz et al., 2017; Kozikowski et al., 2017).

A second mechanism through which high rates of apparent
MmpL3 inhibitors may arise from phenotypic screens was
proposed after it was found that unspecific uncouplers such as
carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or the K+

ionophore, valinomycin, both abolished MmpL3 activity in M.
tuberculosis and M. smegmatis (Li W. et al., 2014). This finding
indicated that any compound with the ability to dissipate the
proton motive force may indirectly inhibit MmpL3 activity with
immediate consequences on mycobacterial growth and viability.
Accordingly, and most likely explaining the relatively broad
spectrum of activity of some of these compounds including
against bacteria devoid of MmpL3 homolog, inhibitors such as
the 1,2-ethylenediamine SQ109, the adamantyl urea AU1235 and
the 1,5-diarylpyrrole derivative BM212 were found to impact to

some degree the membrane potential, the electrochemical proton
gradient or both components of the proton motive force of
mycobacterial cells (Li K. et al., 2014; LiW. et al., 2014; Feng et al.,
2015; Foss et al., 2016). This unspecific activity, however, was later
disputed in the case of BM212 and this compound proposed to
directly inhibit MmpL3 on the basis of its demonstrated binding
to the purified MmpL3 protein from M. smegmatis (Xu et al.,
2017).

In conclusion, both direct and indirect mechanisms can
lead to MmpL3 inhibition in treated mycobacterial cells
and contribute to the promiscuity of the target. While not
mutually exclusive, a precise understanding of how these two
mechanism(s) play out for each inhibitor to eventually abolish
mycolic acid export will require a detailed analysis of how each
of them interacts with the transporter and affects the energy
metabolism of the bacterium.

NTM VS. M. TUBERCULOSIS EFFICACY

From the MIC data presented in Table 1 and previous studies
(Biava et al., 1999, 2007; Biava, 2002; Li K. et al., 2014;
Franz et al., 2017; Kozikowski et al., 2017; Low et al., 2017;
De Groote et al., in revision), it is obvious that the overall
activity of MmpL3 inhibitors against NTM, particularly MAC,
is less than that observed against M. tuberculosis. While the
structural diversity of the chemotypes found to inhibit MmpL3
is very broad, spanning from compounds such as BM212 and
THPP1, which are large (for MmpL3 inhibitors) multicyclic
compounds, to SQ109 which is an ethylene diamine originally
designed as an ethambutol analog, the majority of MmpL3
inhibitors reported to date have come from two other classes
that contain the same pharmacophore which are the ureas
(e.g., AU1235) and indole-2-carboxamides. The pharmacophore
for these classes of MmpL3 inhibitors are two hydrogen bond
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donors and one hydrogen bond acceptor in the center of the
molecule and one bulky lipophilic aliphatic ring (adamantyl,
cyclooctyl, cycloheptyl, or substituted cyclohexyl groups) and
one aromatic ring on either side of the core. For structure
activity relationships, generally, as lipophilicity is increased on
either the bulky aliphatic ring (typically through ring expansion
or addition of methylene or methyl groups) or aromatic ring
(typically through addition of halogens or methyl groups), anti-
NTM activity is improved.

Since a number of factors could account for the overall better
activity of MmpL3 inhibitors against M. tuberculosis than NTM,
including species-specific variations in the structure of MmpL3
orthologs, increased drug efflux/degradation/modification
in NTM relative to M. tuberculosis, or reduced compound
penetration in NTM, we first sought to compare the MIC
of the inhibitors presented in Table 1 against M. smegmatis
recombinant strains expressing different MmpL3 orthologs.
To this end, mmpL3 from M. tuberculosis, M. smegmatis and

M. abscessus subsp. abscessus were expressed from the same
expression plasmid in the background of a M. smegmatis
mutant whose endogenous mmpL3 gene was deleted by
allelic replacement (Msmg1mmpL3) (Belardinelli et al.,
2016). Expressing all orthologs from the same promoter
in the same M. smegmatis strain abolished any potential
differences in compound uptake, modification and efflux
allowing for a direct comparison of the effect of the inhibitors
against the three MmpL3 proteins. Importantly, all three
mmpL3 orthologs were expressed at comparable levels in
this recombinant system (Figure S1). The results of these
comparative MIC studies clearly indicated that the MICs
of the inhibitors against the different M. smegmatis strains
generally reflected their MICs against theMycobacterium species
from which the rescue mmpL3 ortholog originated (Table 1).
The structure of MmpL3 thus appears to be the main driver
of the susceptibility of each Mycobacterium species to these
inhibitors.

FIGURE 1 | Structural comparison of NTM and M. tuberculosis MmpL3 transporters. (A) Stereo model showing the transmembrane (TM) helices of the M.
tuberculosis MmpL3 subunit structure as predicted by I-TASSER. The TM helices are color-coded to improve visibility. From top to bottom, TMS-7 (orange), TMS-9

(gray), TMS-8 (violet purple), TMS-10 (pink), TMS-12 (light orange), TMS-11 (violet), TMS-5 (pale cyan), TMS-4 (marine), TMS-6 (green), TMS-2 (red), TMS-3 (wheat),

and TMS-1 (cyan). The TM helices encompass residues whose mutations resulted in significant reduction in transport activity, shown in green, and residues 251, 288,

640, 641, 710, and 715 whose mutation abolished transport activity, colored yellow (Belardinelli et al., 2016). The positions of frequently encountered resistance

mutations to one or more MmpL3 inhibitor series are shown as red and salmon spheres centered on the Cα atom of the native MmpL3 residue (Belardinelli et al.,

2016). These residues map to TM helices. Resistance mutations also producing a significant reduction in growth are shown in red and those that slightly attenuated

growth are colored salmon. (B) Stereo model as in (A) showing regions of the TM helices where the majority of residues are not conserved between MmpL3 orthologs

(dark gray). Most of the dissimilar residues represent semi-conservative and non-conservative mutations (see Figure S2). Several of these regions map vicinal to the

functional residues and mutations that induce resistance.
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MmpL3 MODELING

To investigate the structural basis for the different susceptibilities
of MmpL3 orthologs to various classes of inhibitors, the I-
TASSER server (Yang et al., 2015) was used for automated
full-length 3D structure prediction of MmpL3 transporters
from M. tuberculosis H37Rv, M. abscessus ATCC 19977, M.
smegmatis mc2155, and M. avium 104. The top predicted
structure for each MmpL3 transporter corresponded to a C-
score of >-1.5 suggesting a correct fold. All MmpL3 orthologs
resemble each other (root mean square differences based C-
alpha atoms < 0.4Å) and had as closest target the crystal
structure of the Burkholderia multivorans hopanoid transporter
HpnN (PDB 5khnB). Comparison of the predicted structures
with that of HpnN yielded a high TM-score >0.8 and low
RMSD <2.0 between residues that were structurally aligned
by TM-align (Zhang, 2008). The superposition of all three
NTM MmpL3 orthologs onto MmpL3 from M. tuberculosis
H37Rv shows very similar spatial overlap of the C-alpha
positions of essential residues identified in the reference MmpL3
transporter (Belardinelli et al., 2016) that can be seen in
Figure 1A. Each of the predicted structures contained 12 TM
helices.

We next aligned the amino acid sequences of the MmpL3
orthologs among each other using PSI/TM-Coffee (Chang et al.,
2012; Figure S2). Essential functional residues identified in M.
tuberculosis MmpL3 (namely, residues: 251, 288, 640, 641, 710,
and 715; boxed in green in Figure S2; Belardinelli et al., 2016)
are conserved and are all located in the central regions of the
12 TM helical bundle that is thought to be involved in proton
translocation.

We then searched for sequence dissimilarities among the TM
helices given the lipophilicity of the MmpL3 inhibitors. The
stereo model in Figure 1B shows regions of the transmembrane
helices in dark gray where the majority of amino acid
residues are not conserved between MmpL3 orthologs and
which span the central regions of the 12 TM helical bundle.
Most of the dissimilar residues represent semi-conservative
and non-conservative mutations that are shown as red boxes
on the sequence alignment shown in Figure S2. Several of
these regions map vicinal to the functional residues and
mutations that induce resistance. The shape differences in
the geometries of the hydrophobic and polar side chains
alters the packing of the 12 TM helices and is likely to
concomitantly modify their dynamical behavior important for
transport activity and inhibitor binding. Given that the inhibitors
are partitioned into the lipid bilayer, from a thermodynamic
perspective, their propensity to interact with the TM helices
will further depend on two factors: their ability to interact
preferentially with the hydrophobic side chains of the TM
helices and their ability to form polar interactions with either
backbone or polar side chains. It follows that both the
differential helical packing modifying the binding loci of the
inhibitors and the nature of the side chains of the TM helices
probably account for the ortholog-dependent activity of MmpL3
inhibitors.

FUTURE DIRECTIONS

There is an unmet medical need for the development of
new bactericidal agents to treat pulmonary NTM infections.
The novel classes of bactericidal MmpL3 inhibitors that have
been reported in the last few years, some of which have
demonstrated activity against M. tuberculosis and MABSC in
vivo, highlight the therapeutic potential of this transporter
in tuberculous and nontuberculous mycobacteria and provide
much needed translational opportunities for the treatment of
NTM infections. Future research is expected to gain further
insight into the structure of MmpL3 and its variations across
Mycobacterium species in order to leverage the emerging
structure-activity relationship information now available for
some of these compound series (Brown et al., 2011; Scherman
et al., 2012; North et al., 2013; Li K. et al., 2014; Poce et al.,
2016, 2018; Stec et al., 2016; Franz et al., 2017; Kozikowski
et al., 2017). Also, critical to the further development of
these inhibitors will be the availability of a simple, non-
radioactive, and relatively high-throughput assay to screen
optimized analogs with increased activity against MmpL3.
Currently available cell-free and whole cell-based assays (e.g.,
Grzegorzewicz et al., 2012; Li W. et al., 2014; Li et al., 2016; Xu
et al., 2017) indeed lack the simplicity of use and/or specificity
required to rapidly screen such analogs. The development of
such assays is currently the object of intense efforts in our
laboratories.
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