
MMPTCP: A Multipath Transport Protocol for Data

Centers

Morteza Kheirkhah, Ian Wakeman, George Parisis

School of Engineering and Informatics

University of Sussex, UK

Email: {m.kheirkhah, ianw, g.parisis}@sussex.ac.uk

Abstract—Modern data centres provide large aggregate net-
work capacity and multiple paths among servers. Traffic is very
diverse; most of the data is produced by long, bandwidth hungry
flows but the large majority of flows, which commonly come with
strict deadlines regarding their completion time, are short. It
has been shown that TCP is not efficient for any of these types
of traffic in modern data centres. More recent protocols such
MultiPath TCP (MPTCP) are very efficient for long flows, but
are ill-suited for short flows.

In this paper, we present Maximum MultiPath TCP
(MMPTCP), a novel transport protocol which, compared to
TCP and MPTCP, reduces short flows’ completion times, while
providing excellent goodput to long flows. To do so, MMPTCP
runs in two phases; initially, it randomly scatters packets in the
network under a single congestion window exploiting all available
paths. This is beneficial to latency-sensitive flows. After a specific
amount of data is sent, MMPTCP switches to a regular MultiPath
TCP mode. MMPTCP is incrementally deployable in existing
data centres as it does not require any modifications outside the
transport layer and behaves well when competing with legacy
TCP and MPTCP flows. Our extensive experimental evaluation
in simulated FatTree topologies shows that all design objectives
for MMPTCP are met.

I. INTRODUCTION

Modern data centre network architectures [1]–[3] provide

very high aggregate bandwidth and dense interconnectivity in

the network by incorporating multiple paths among servers.

They support a large number of network services which

produce very diverse intra-data centre traffic matrices. The

majority of the data is produced by long flows, which are

bandwidth-hungry. Short flows commonly come with strict

deadlines regarding their completion time. According to [2],

“99% of flows are smaller than 100 MB, however, more than

90% of bytes are in flows between 100 MB and 1 GB”. If

short flows cannot deliver all their data before their deadlines,

some results may be discarded, decreasing the overall quality

of the main computation or forcing some tasks to be restarted,

wasting CPU and network resources. Deadlines are typically

missed due to encountering transient and/or persistent con-

gestion in their paths. Short flows result in very bursty and

unpredictable traffic patterns, which in turn means that data

centres are susceptible to severe transient congestion in any

link in the network.

To utilise the available multiple paths through the network,

Equal-Cost Multi-Path (ECMP) routing [4] is deployed to

route flows across the multiple paths. However, even with

ECMP in place, TCP is ill-suited for both long and short flows

within the data centre. Under high load, long flows collide

with high probability and, as a result, network utilisation

significantly drops and only 10% of the flows achieve their

expected throughput [5]. TCP is also inefficient for short

flows, especially when competing with long flows. Queue

build-ups, buffer pressure and TCP Incast combined with

the shared-memory nature of data centre switches results in

short TCP flows often missing their deadlines mainly due to

retransmission timeouts (RTOs) [6].

Several transport protocols have been recently proposed to

deal with these challenges. DCTCP [6], D2TCP, [7] and D3

[8] all aim at reducing flow completion times for latency-

sensitive flows. However, they require modifications in the

network and/or deadline-awareness at the application layer.

Such information may not be known a priori (i.e. at connection

time). Worse, these protocols are not designed to co-exist

with other transport protocols, and thus have a problematic

deployment path.

Multipath transport protocols, such as MultiPath TCP

(MPTCP) [9], transfer data using multiple subflows and rely

on ECMP to distribute the subflows to several network paths.

As shown in [5], MPTCP achieves high goodput and improves

the overall network utilisation. This is also illustrated in Figure

1(a)1, where MPTCP with eight subflows almost doubles the

application goodput when compared with TCP (i.e. MPTCP

with a single subflow in Figure 1(a)). However, MPTCP

handles short flows inefficiently. The congestion window of a

subflow may be very small over its lifetime. As a result, even

a single lost packet can force an entire connection to wait

for an RTO to be triggered because this lost packet cannot

be recovered through fast retransmission. This is clearly illus-

trated in Figure 1(b), where the mean short flow completion

time increases as more subflows are used (better shown in the

embedded Figure). Note that the number of connections that

experience one or more RTOs significantly increases as well,

hence the increase in the standard deviation. Even a single

RTO may result in flow deadline violation.

Central flow scheduling approaches, such as Hedera [11],

only deal with long flows. Hedera detects long TCP flows

at the edge switches and its central controller schedules

these to optimise bandwidth allocation. Short flows are not

1For these simulations we used our custom implementation of MPTCP in
ns-3 [10].

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12
M

ea
n

 G
o
o
d

p
u

t
(M

b
p

s)

subflows

(a) Goodput

 0

 100

 200

 300

 400

 500

 600

 700

1 2 3 4 5 6 7 8 9

M
il

li
se

co
n

d
s

subflows

Standard Deviation
Mean Completion Time

 80

 100

 120

 140

1 2 3 4 5 6 7 8 9

m
s

(b) Flow Completion Time

Fig. 1. Goodput for long flows (1(a)) and completion time for short flows (1(b)) in a full-bisection and 4:1 over-subscribed FatTree topology consisting of
128 and 512 servers, respectively. One third of the servers run long (background) flows. The rest run short flows (70KBs each) which are scheduled according
to a Poisson process). All flows are scheduled based on a permutation traffic matrix.

considered at all, therefore their completion times suffer from

the aforementioned TCP pathologies.

Supporting and running multiple transport protocols in a

data centre can be problematic. Fairness among different

protocols is difficult to achieve; most protocols for latency-

sensitive flows are not compatible with TCP or MPTCP [6],

[7]. Running multiple transport protocols is also a burden for

application developers who would have to decide upon the

most suitable transport protocol. Both application requirements

and data centre topologies evolve over time and so a transport

protocol that performs well over disparate topologies and

traffic matrices is a necessity.

In this paper, we present MMPTCP, a multipath transport

protocol that aims at:

1) high throughput for large flows;

2) low latency for short flows;

3) tolerance to sudden and high bursts of traffic;

4) minimal changes to the network architecture

5) fair co-existence with other transport protocols.

MMPTCP achieves its objectives by transporting data in two

phases. Initially, it randomly scatters packets in the network

under a single congestion window exploiting all available

paths. This is beneficial to latency-sensitive flows, which

typically have bursty traffic patterns. After a specific amount

of data is sent, MMPTCP switches to a regular MultiPath

TCP mode, efficiently handling long flows through separate

congestion windows for each subflow.

The remainder of this paper is as follows: in section II,

we present the design of the proposed transport protocol and

its influences from Packet Scatter [12] and MPTCP [5]. We

also describe the problems associated with scattering packets

in the network and packet reordering, when multiple paths are

used, and discuss our proposed solution. Section III presents

our extensive evaluation of MMPTCP in simulated data centre

topologies. Simulations are based on our MMPTCP imple-

mentation in Network Simulator-3 (ns-3). Section IV explores

potential future improvements of MMPTCP with respect to

the congestion control algorithm used during the first phase

of our protocol, multi-homed data centre topologies and QoS

features that are available in modern data centres.

II. DESIGN

In this section, we briefly discuss Packet Scatter (PS) and

MPTCP protocols before describing MMPTCP, which has

been designed based on these two protocols. We also discuss

spurious retransmissions due to packet reordering, which are a

key challenge for MMPTCP, and describe our solution which

is embedded in the proposed protocol.

A. Packet Scatter

Data transport through scattering (spraying) packets in the

data centre has been briefly explored in [5] and discussed in

more details in [12]. The key idea behind Packet Scatter (PS) is

that ECMP network switches choose one of the valid output

ports on a per-packet instead of on a per-flow basis, as in

Valiant Load Balancing [13]. Traffic can thus be distributed

as evenly as possible among all paths between two endpoints.

The corollary of packets within a flow taking multiple paths is

that packet reordering becomes more likely and so the protocol

must use more robust Fast Retransmit algorithms to deal with

out-of-order packets.

It has been argued that if traffic load is equal among

servers and a data centre has a uniform network topology,

such as FatTree [1] or VL2 [2], then PS achieves perfect load

balancing in the network core and eliminates congestion from

that layer [5]. However, although traffic that is switched on a

per-packet basis does not create hotspots at the network core,

traffic that is distributed through ECMP on a per-flow basis

(e.g. TCP or MPTCP flows) may still end up sharing links

and causing congestion. Network hardware failures or traffic,

which typically consists of regular TCP flows flowing from the

Internet to the data centres, may also cause such congestion

[5]. Since PS flows share a single congestion window, if

a packet is dropped, then the congestion window shrinks

across all paths that the PS flow is using, drastically reducing

throughput. The longer the flow, the more likely that the flow

will encounter congestion, and so PS can have a diminished

performance for long lasting flows.

B. MultiPath TCP

MultiPath TCP is an extension of TCP that transfers data

through multiple paths simultaneously. It actively senses net-

work congestion for all its subflows and shifts traffic from

more to less congested paths. Unlike TCP, MPTCP deals

with network congestion gracefully by putting fewer packets

to the congested subflows. The main requirement to achieve

such behaviour is to retain a congestion window for each

subflow and link each of them together. This is the main reason

why MPTCP (with at least eight subflows) doubles the mean

goodput of long flows, compared to regular TCP, as illustrated

in Figure 1(a).

MPTCP reacts to congestion very quickly. It can remove

traffic from congested links within a few RTTs (unlike Hed-

era [11]), therefore dealing efficiently with the traffic con-

centration problem. MPTCP is an appealing approach for

data centres characterised by an extremely dynamic nature.

However, because it has multiple congestion windows, it is

very susceptible to timeouts when a flow only contains a few

packets. Packet drops from each congestion window may cause

an entire MPTCP connection to hold for a retransmit timer to

be triggered. As illustrated in Figure I, increasing the number

of subflows is beneficial to the goodput of long flows, but it

is harmful to flow completion of short flows.

The question that is raised is whether it is possible to adjust

the number of MPTCP subflows based on the size of the

flow. It has been argued that some applications can provide

high-level information, such as flow size [8], to the transport

layer. If such information was available, one could decide how

many subflows it might be effective to use. For example, in

the case of short flows, it is better to have a single subflow.

Unfortunately, the majority of applications do not expose their

flow sizes to the end-hosts, (i.e. the network stack is unaware

of this high-level application information). MPTCP cannot

have any indication about how many subflows to open for a

flow; if a predefined number of subflows is used for all types

of flows then MPTCP is likely to significantly damage the

flow completion time of short flows.

C. MMPTCP: Combining PS with MPTCP

Before delving into the mechanics of MMPTCP, we briefly

enumerate its main design principles and objectives:

1) Enforcing handling of short flows through scattering

packets in the network, preventing MPTCP’s short flow

inefficiencies.

2) Enforcing handling of long flows through standard

MPTCP.

3) Decreasing the burstiness of data centre networks, which

mainly originates from short flows, by diffusing packets

throughout the network effectively preventing transient

congestion in the network core.

The core idea behind MMPTCP is that, initially, data is

transferred by scattering packets in the network until the

amount of transmitted data reaches a certain threshold. To

do so, we employ source port randomisation at the source

host and standard ECMP at network switches. A token2 is

2A token is a locally unique identifier assigned to a MMPTCP connection
upon establishment.

added to each packet of the initial subflow as a connection

identifier so that a randomised packet can be forwarded to

the corresponding MMPTCP connection correctly. Note that

the standard connection identification through the 5-tuple is

no longer valid during the initial phase of data transmission

because of the source port randomisation. Data transport

is governed by a single congestion window throughout the

duration of the first phase, whose aim is to take advantage of

all available network paths and quickly complete short flows.

When the switching threshold is reached, MMPTCP

switches to standard MPTCP with multiple subflows to benefit

from MPTCP’s efficiency in dealing with long flows. The

initial subflow is only allowed to scatter packets in the network

during the first phase; after switching to MPTCP, no more

packets are put in the initial subflow, which is deactivated

(but not closed3) when its window gets emptied. To ensure

continuity of data transmission, after the switching threshold is

reached, the initial subflow becomes deactivated only when at

least one new MPTCP subflow is established. In other words,

after switching to MPTCP no more data is placed on the

initial subflow, which is ignored by the MPTCP congestion

controller. During the second phase, data transmission is

governed by MPTCP’s congestion control mechanism.

In the initial handshake of MPTCP, SACK may also be

activated if DSACK is used as a part of the packet reordering

strategy (see Section II-D). MPTCP works with SACK, so

there is no problem in having SACK activated over the lifetime

of an MMPTCP connection. On the other hand, DSACK would

only be used in the initial phase to detect and mitigate spurious

retransmissions due to out-of-order packets.

D. MMPTCP and Packet Reordering

A TCP sender receives a duplicate acknowledgement (dupli-

cate ACK) when a packet gets dropped, delayed or reordered.

It enters the Fast Retransmit phase upon the arrival of the

third duplicate ACK for a missing packet (when the duplicate

ACK threshold parameter is set to three). It retransmits the

perceived lost packet and halves its congestion window as a

reaction to the congestion signal. However, the Fast Retransmit

mechanism may still be falsely triggered when a reordered

packet reaches the receiver after it has sent a third duplicate

ACK. This condition may lead to spurious retransmissions of

reordered packets even if no loss has occurred. In other words,

the sender interprets the reordered packet as lost. As a result,

the sender falsely triggers the Fast Retransmit mechanism

and halves its congestion window, which, in turn, leads to

performance degradation.

Although this condition is very unlikely to occur with

TCP/MPTCP flows in data centres, it is common when scat-

tering packets in the network, since RTTs on different network

paths may vary over time due to queuing delays. MMPTCP

must therefore handle packet reordering during its first phase

in order to be able to meet its objectives with respect to

completion times of short flows.

3The initial subflow is the only subflow presented to the application and if
it was closed, the connection would lose its identity.

Setting the right dupthresh value is not trivial; if dupthresh

is too low, spurious retransmissions become the norm. If it

is too high, the sender may react to congestion through a

retransmission timeout instead of the Fast Retransmit mecha-

nism; obviously this would be a very undesirable situation as

even a single timeout may lead a flow to miss its deadline.

Our experimental evaluation in Section III-D confirms these

observations.

There are three key aspects in making TCP more robust

to packet-reordering: preventing, detecting and mitigating

spurious retransmissions due to out-of-order packets.

One well-known solution for detecting and mitigating spu-

rious retransmissions is DSACK [14], which is an extension

of SACK TCP [15]. SACK TCP can deal with multiple packet

drops much faster than other versions of TCP (e.g. NewReno

[16]). This is particularly beneficial for latency-sensitive flows.

When a spurious retransmission is detected by DSACK, the

state of the congestion window can be simply reversed to the

state when a loss is detected.

One possible approach for preventing spurious retransmis-

sions is to dynamically adjust the dupthresh parameter based

on information that can be retrieved from DSACK, SACKs,

ACKs, RTOs and Fast Retransmits. RR-TCP [17] follows a

similar approach. RR-TCP attempts to adjust the dupthresh

value dynamically by understanding the maximum distance in

packets by which a segments is displaced, based on feedback

from the network.

Our novel approach for preventing out-of-order packets

is to set the value of dupthresh based on topology-specific

information. For example, FatTree’s IP addressing scheme

can be exploited to calculate the number of available paths

between a sender and a receiver. Other data centre topologies,

such as VL2, incorporate centralised components which can

provide similar information. The sender can thus choose an

appropriate value for the dupthresh based on this information.

For example, if a source sends its traffic via the core layer,

then the dupthresh should be much higher, compared to when

traffic crosses only a TOR switch.

In this paper we use the FatTree addressing scheme as the

basis for setting dupthresh. Each source host infers the layer(s)

of the network topology that its traffic would cross when

transmitting data to a specific destination host, by examining

the source and destination IP addresses. For example, when

a connection needs to be established between nodes with IP

addresses 10.0.1.1 and 10.0.1.2 then it can be inferred that

both hosts are located within the same ToR switch; therefore

the dupthresh value should not be changed from the default

value of three. Traffic crossing the aggregate or core layers

would require higher dupthresh values. In Section III-D, our

evaluation confirms that our approach significantly decreases

spurious retransmissions.

The knowledge of the end-host’s location is essential but not

sufficient to assign an appropriate value for the dupthresh; each

end-host also needs to know the size of the network topology.

For example, a network topology with 4 core switches requires

a different value of dupthresh compared to a network topology

with 8 core switches. Additionally, network switches may also

support ECMP with a limited number of paths in each IP

subnet (e.g. up to 16 equal-cost paths), therefore knowing these

information is also important for deciding a precise value for

duplicate ACK threshold.

III. EVALUATION

A. MMPTCP vs MPTCP

In Figure I we showed that although MPTCP performs

well with long flows, it hurts completion time of short flows.

The main reason for that is related to MPTCP’s congestion

control. In short, the congestion control algorithm does not

completely remove traffic from the most congested paths. It

removes traffic from congested paths exponentially and then

places a small amount of new data on these paths until the

network conditions are improved. If the amount of data on a

subflow is very small then even experiencing a single packet

drop may lead to the loss of the TCP ACK clock (i.e. no data

packet can be sent since no ACK is received). In other words,

a single packet drop from a subflow holds the entire MPTCP

connection until that packet is recovered.

Keeping some traffic on subflows that experience congestion

is a better approach than removing almost all of the traffic

from those subflows when a flow is large [18]. For example,

the Fully Coupled congestion control algorithm resets its

congestion window to two segments in such a case [19], [20].

That is, MPTCP subflows can maintain their ACK clocks, and

hence experience fewer timeouts, compared to Fully Coupled.

However, neither approach is well-suited to short flows. To

expand the above discussion, we have run a simulation in a 4:1

oversubscribed FatTree topology consisting of 512 servers for

MPTCP with eight subflows and MMPTCP. One third of the

servers run long (background) flows. The rest run short flows

(70KBs each), which are scheduled by a central scheduler ac-

cording to a Poisson arrival (λ = 256). All flows are scheduled

based on a Permutation traffic matrix [5], [11]. The MMPTCP

switching threshold is 100KBs. The results are depicted in

Table I. The average short flow completion time for MPTCP

Transport

Protocol

Short Flow

Finish Time

(mean/stdev)

Large Flow

Goodput

(mean/stdev)

Core Layer

Utilisation

(mean)

Core Layer

Loss Rate

(mean)

MPTCP 126/±425 ms 62.1/±19.7 Mbps 75.5 % 0.0077 %

MMPTCP 116/±101 ms 61.9/±20.0 Mbps 74.9 % 0.0076 %
TABLE I

MPTCP WITH EIGHT SUBFLOWS VS MMPTCP

is 126ms and the respective standard deviation is 425ms for

99103 completed short flows.4 The high standard deviation

indicates that there are some cases in which MPTCP performs

far worse than the average. The average flow completion time

for MMPTCP is 116ms and the respective standard deviation

is 101ms for a total of 100980 completed short flows. This is

a significant improvement (especially the standard deviation)

which means that MMPTCP short flows maintain their ACK

clock better than MPTCP with eight subflows when they

4We observed a high standard deviation in all runs of this simulation.

 0

 2

 4

 6

 8

 10

92K 96K 100K

C
o
m

p
le

ti
o
n

 T
im

e
(s

ec
)

Flow Id

(a) MPTCP with eight subflows

 0

 2

 4

 6

 8

 10

92K 96K 100K

C
o
m

p
le

ti
o
n

 T
im

e
(s

ec
)

Flow Id

(b) MMPTCP

 0

 2

 4

 6

R
e
tr

a
n

s
m

it
s

 0

 5

 10

 15

 20

92K 96K 100K

T
im

e
o
u

ts

Rank of Flow

(c) MPTCP with eight subflows

 0

 2

 4

 6

R
e
tr

a
n

s
m

it
s

 0

 5

 10

 15

 20

92K 96K 100K

T
im

e
o
u

ts

Rank of Flow

(d) MMPTCP

Fig. 2. MPTCP with eight subflows vs MMPTCP. Short flow completion times (2(a) and 2(b)) and timeouts and fast retransmissions (2(c) and 2(d)).

experience loss events. The reason is that MMPTCP holds

a single congestion window at initial phase of data delivery.

We also looked at the flow completion times, total fast

retransmissions and timeouts of each individual short flow.

Figures 2(c) and 2(d) illustrate the number of timeouts and

fast retransmits for MPTCP and MMPTCP, respectively. It

is clear that MPTCP suffers from excessive timeouts. Note

that a few short flows experienced more than 20 timeouts and

around ∼4K short flows experienced more than two timeouts

during their lifetime. MMPTCP clearly outperforms MPTCP:

it decreases the maximum timeouts and fast retransmissions

from 25 to 4 and 6 to 2 respectively. The majority of

short flows (more than 100K) experienced fewer than two

timeouts (∼95K flows with no timeout). Figure 2(a) and 2(b)

depict short flow completion times for MPTCP and MMPTCP,

respectively. It is expected that with MPTCP a lot more short

flows have very high completion times due to a larger number

of timeouts compared to MMPTCP.

So far, we have shown that, unlike MPTCP, MMPTCP

does not produce a heavy tail regarding short flow completion

times, while it achieves high overall network utilisation and

exceptional goodput for long flows. MMPTCP can therefore

be deployed in existing data centres and used with all existing

applications without relying on application information regard-

ing flow sizes and potential deadlines. This is particularly

important for data centre application designers who prefer not

to consider underlying networking protocols when developing

their applications.

B. MMPTCP vs TCP and PS

In this section we compare the performance of MMPTCP,

TCP and PS using the same simulation setup as presented in

subsection III-A. The results are depicted in Table II. TCP

achieves the worst overall core utilisation and highest mean

core loss rate. However, its mean flow completion time is lower

than MMPTCP and MPTCP. PS achieves the lowest average

short flow completion time and overall core loss rate with a

high average goodput for large flows.

TCP performs badly with respect to network resources’

utilisation because it transports data through a single path,

therefore being unable to find and shift its traffic to the least

congested paths. TCP gets trapped in a congested path and

damages itself and other competing flows at bottleneck links

along the path. This is the main reason that TCP achieves

Transport

Protocol

Short Flow

Finish Time

(mean/stdev)

Large Flow

Goodput

(mean/stdev)

Core Layer

Utilisation

(mean)

Core Layer

Loss Rate

(mean)

PS 36.9/±38 ms 58.6/±18.2 Mbps 75.1 % 0.0001 %

TCP 64.3/±118 ms 38.5/±19.8 Mbps 44.7 % 0.0259 %

MMPTCP 116/±101 ms 61.9/±20.0 Mbps 74.9 % 0.0076 %

MPTCP 126/±425 ms 62.1/±19.7 Mbps 75.5 % 0.0077 %
TABLE II

SIMULATIONS WITH λ = 256

lower short flow completion times compared to MPTCP or

MMPTCP, since a lot of unused capacity in the network is

used by a majority of short TCP flows to complete their

data deliveries in a short time frame. In other words, the

inability of large TCP flows to utilise network resources

provides headroom for short TCP flows to be completed faster.

PS performs well in this experiment because it prevents the

creation of any congestion in the core and aggregation layers

by scattering packets of all flows in the network.

After this analysis, one might question the benefits of

running MPTCP and/or TCP in today’s data centres if PS can

perform that well (as shown above). An important question

here is why PS did not achieve the highest average goodput

for large flows even though we observed very low loss rate in

the network core. As it has been discussed in Section II-A,

PS supports a single congestion window and, as a result,

when a loss is detected, the rate of data transmission is

halved. Unlike MPTCP, PS has no way to shift traffic to

the least congested paths [5]. Therefore, it is expected that

if PS coexists with other transport protocols, such as TCP

and/or MPTCP, its performance will be significantly degraded.

To examine this argument, we rerun the simulations above

with λ = 2560 instead of 256. This simulation setup not

only explains how the congestion control of each transport

protocol behaves under highly dynamic traffic patterns but

also explains how the congestion is actually produced by each

transport protocol in the network. Furthermore, we designed

a simulation, referred to as PS::TCP, which uses TCP for

running short flows and PS for running long flows. PS::TCP

helps to evaluate the performance of PS when it competes with

non-PS flows such as TCP. The results are presented in Table

III. PS::TCP achieves the lowest mean flow completion time,

which entails the degradation of almost 10Mbps in the overall

goodput and 15% less in the mean core utilisation. It also

increases the mean core loss rate by 14 times compared to PS.

TCP performs the worst in almost all comparisons except the

Transport

Protocol

Short Flow

Finish Time

(mean/stdev)

Large Flow

Goodput

(mean/stdev)

Core Layer

Utilisation

(mean)

Core Layer

Loss Rate

(mean)

PS 40.5/±44.3 ms 52.9/±16.7 Mbps 76.8 % 0.0001 %

PS::TCP 29.7/±31.1 ms 42.5/±11.3 Mbps 61.9 % 0.0014 %

TCP 66.5/±150 ms 34.2/±18.1 Mbps 48.8 % 0.0576 %

MMPTCP 111/±127 ms 55.9/±18.7 Mbps 76.7 % 0.0105 %

MPTCP 148/±502 ms 55.0/±18.2 Mbps 75.9 % 0.0100 %
TABLE III

SIMULATIONS WITH λ = 2560

mean flow completion time. TCP also achieves the highest loss

rates in the network core among all transport protocols. As it

is expected, MMPTCP achieves a lower mean flow completion

time and standard deviation compared to MPTCP with eight

subflows. It also achieves the same overall network utilisation

with MPTCP.

Analysis. The main reason that PS::TCP achieves a better

overall flow completion time than PS is that large flows in

PS::TCP are more susceptible to random packet drops, and

hence they reduce their rates more frequently. When a buffer

filled up their packets most likely are in the tail of the queue

since large flows randomly spread their packets via all possible

paths. The consequence of such rate reductions is to decrease

some traffic throughout the network (from all queues). This

helps many short flows to complete their data delivery without

experiencing any collision and with less queuing delay.

The above experiment justifies that PS is very sensitive to

network congestion and when it is used for handling large

flows it hurts their connection throughputs, and consequently

the overall network utilisation.

C. Effects of Hotspot

The main goal of this study is to understand how each

transport protocol reacts when hotspots exist in the network.

These hotspots may occur for several reasons in modern data

centres, including: (1) contention between traffic flowing from

the Internet to data centres, (2) hardware failures or cable

faults, (3) uneven load in some servers. In order to model

hotspots in the core layer, we modified the drop tail queue size

of hotspot links from 100 to 10 packets.5 To select links under

the hotspot, we select all the links of some randomly selected

core switches. In this way, we can monitor the hotspot areas

by simply monitoring each core switch under the hotspot.

Simulations in this section were conducted in various num-

ber of hotspot core switches, ranging from 20% to 60% of

total core switches (we refer to the percentage of cores under

hotspot as ‘hotspot degree’). The network topology used is a

4:1 oversubscribed FatTree topology. The traffic matrix used

is Permutation and the value of λ is 2560.

It is expected that by increasing the hotspot degree, the

overall network utilisation will decrease, the overall short flow

completion time and mean loss rate will increase with all

transport protocols. We aim to see how each transport protocol

follows this trend.

5To select a size for the drop tail queue, we examined various queue sizes,
ranging from 10 to 50 packets, and it turned out that 10 packets can best show
the distinctions between the behaviour of the different transport protocols.

Figure 3(c) shows the mean goodput achieved by large flows

of each transport protocol under various hotspot degree. It is

noticeable that TCP and PS::TCP almost achieve the worst and

MMPTCP achieves the best overall goodput for large flows.

This is another highlighted experiment to show the weakness

of PS and the strength of MMPTCP in handling congestion.

Figure 3(b) shows that as the hotspot core switches in-

creases, MMPTCP behaves consistently and achieves the

highest mean core utilisation at all hotspot degrees.

At the hotspot degree of 60, the TCP short flows achieves

the mean flow completion time of 80.5ms with a standard

deviation of 214ms.6 This implies that hotspots in TCP mostly

exert influence on short TCP flows because large TCP flows

have already shown their inability to use network resources

efficiently, even without any hotspot link, due to ECMP hash

collisions. Figure 3(a) illustrates the mean core loss rate

achieved by each transport protocol. MMPTCP achieves the

lowest mean loss rate at all hotspot degrees. By increasing the

percentage of hotspot cores, the mean loss rate of PS::TCP

and TCP increases significantly as both simulation setups use

TCP for running short flows. The completely opposite result

is achieved with MMPTCP and PS because both simulations

use the PS protocol for handling short flows.

The intuition following this experiment is that the burstiness

of data centre traffic, which arises from short TCP flows,

is smoothed by using MMPTCP. In other words, the TCP

protocol for handling short flows not only increases congestion

but also fails to handle it gracefully. However, MMPTCP not

only prevents possible congestion by scattering packets in the

network, but also handles it effectively by shifting traffic away

from congested areas, after switching to MPTCP. This is the

main reason that MMPTCP achieves the lowest loss rate at

various hotspot levels compared to other simulation setups.

Even PS is not capable of dealing with hotspots effectively

since it cannot detect them. These observations are highlighted

in Figure 3(a).

D. MMPTCP and Duplicate ACK Threshold

In this section, we review the adjustment of the dupthresh

value during the initial phase of MMPTCP. We then examine

our novel solution for preventing spurious retransmissions due

to packet reordering, as described in subsection II-D.

To explore the effect of packet reordering in our model

of data centre, we conducted a series of simulations with a

varying dupthresh value ranging from 3 to 23. Simulations

were conducted in a FatTree topology with 128 servers running

short and large MMPTCP flows. 33% (42) of servers send

background flows and the remaining 67% (86) of servers send

short flows (λ = 256). The result is shown in Figure 4. It is

clear that the default duplicate ACK threshold of three achieves

the worst average flow completion time (158ms). However,

by increasing the value of that, the average flow completion

time decreases significantly to a dupthresh of eight. Thereafter

6TCP achieves the highest standard deviation compared to other transport
protocols. Due to a lack of space, we removed these information, but we
confirmed them.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 20 40 60M
ea

n
 C

o
re

 L
o
ss

 R
a
te

 (
%

)

Hotspot Degree (%)

PS
PS::TCP

MMPTCP
MPTCP

TCP

(a)

 0

 25

 50

 75

 100

0 20 40 60M
ea

n
 C

o
re

 U
ti

li
sa

ti
o
n

 (
%

)

Hotspot Degree (%)

PS
PS::TCP

MMPTCP
MPTCP

TCP

(b)

 0

 25

 50

 75

 100

0 20 40 60

M
ea

n
 G

o
o
d

p
u

t
(M

b
p

s)

Hotspot Degree (%)

PS
PS::TCP

MMPTCP
MPTCP

TCP

(c)

 0

 60

 120

 180

 240

0 20 40 60

M
ea

n
 F

in
is

h
 T

im
e

(m
s)

Hotspot Degree (%)

PS
PS::TCP

MMPTCP
MPTCP

TCP

(d)

Fig. 3. All simulation setups under varied hotspot core switches. MMPTCP achieves the lowest mean core loss rate, the highest mean large flow goodput
and the highest mean core utilisation at all hotspot degrees.

 0

 4

 8

 12

R
e
tr

a
n

s
m

it
s

 0

 1

 2

 3

 4

20K 40K 60K 80K 100K

T
im

e
o

u
ts

Rank of Flow

(a) dupthresh of 3

 0

 1

 2

 3
R

e
tr

a
n

s
m

it
s

 0

 1

 2

 3

 4

80K 84K 88K 92K 96K 100K

T
im

e
o

u
ts

Rank of Flow

(b) dupthresh of 23

 0

 1

 2

 3

R
e
tr

a
n

s
m

it
s

 0

 1

 2

 3

 4

80K 84K 88K 92K 96K 100K

T
im

e
o

u
ts

Rank of Flow

(c) dupthresh of 9

 0

 1

 2

 3

R
e
tr

a
n

s
m

it
s

 0

 1

 2

 3

 4

80K 84K 88K 92K 96K 100K

T
im

e
o

u
ts

Rank of Flow

(d) Auto dupthresh

Fig. 5. Timeouts and fast retransmissions for each individual short flow in various dupthresh values and our solution (auto dupthresh).

 90

 100

 110

 120

 130

 140

 150

 160

3 5 7 9 11 13 15 17 19 21 23

M
il

li
se

co
n

d
s

DupAck Threshold Value

Mean Completion Time
Stdev

Fig. 4. Duplicate ACK threshold value effect on short flow completion time

the result remains unchanged with a little fluctuation in the

standard deviation. To get a better grasp of the problems,

we look at the number of fast retransmissions and timeouts

experienced by each short flow. Figures 5 shows the result for

a dupthresh of 3, 23, 9 and auto (our solution). At one extreme,

which is related to a dupthresh of three, we observed the

highest fast retransmission hits and lowest timeout hits (5(a)).

At another extreme, which is related to a dupthresh of 23,

we observed no fast retransmission hits and high timeout hits

(5(b)). The best performance is observed when the threshold is

set to nine (5(c)). The majority of flows were completed with

no fast retransmission (∼81K) or with only one (∼19K); a few

flows experienced two fast retransmissions. The results of this

experiment do not lead to any concrete value for the dupthresh

since they are only valid for this particular network setup. By

altering the network topology, e.g. its size or traffic matrices,

the performance of selected dupthresh value might become

unsatisfactory. Another issue with selecting a single value for

the dupthresh is that most of the traffic may be localised in

ToR switches in which they do need to have a dupthresh larger

than the default value of three.

Figure 5(d) shows the result of simulating an auto dupthresh

with the same simulation setup as Figure 4. Auto dupthresh

significantly decreases the number of spurious retransmission

due to packet reordering by adjusting the value of dupthresh

based on topology-specific information. This can be observed

by comparing the line one at retransmit plots in Figure 5(c)

and 5(d). However, by comparing the line one at timeout plots

one can observe that the auto dupthresh slightly increases the

number of timeouts compared to dupthresh of 9.7

Increasing or adjusting the dupthresh value is a tricky task

as the TCP New Reno sender could lose its ACK clock,

especially when the value of the dupthresh is larger than

the congestion window. If any packet gets dropped in such

scenarios, TCP needs to wait for a retransmission timer to

be triggered. For example, in the above simulations 85% of

network flows traverse the network core due to the Permutation

traffic matrix. This implies that with auto dupthresh solution

a majority of short flows set their dupthresh value to 19. If

any segment gets dropped at the first five RTTs, either at the

beginning of data transmission or after any timeout event,

the corresponding subflow should wait until its retransmit

timer is triggered. Therefore, the large dupthresh value is the

main reason that auto dupthresh achieves a slightly higher

timeout hits compared to dupthresh of 9. In order to improve

the performance of auto dupthresh and hence MMPTCP in

such scenarios, we propose to use the TCP Limited Transmit

mechanism in the initial phase of MMPTCP.

E. MMPTCP and Limited Transmit

Limited Transmit (LT) is an enhancement to TCP loss

recovery and attempts to prevent RTOs, especially when the

7We used this solution for all simulations conducted with MMPTCP and
PS in this paper.

congestion window size is very small [17], [21]. LT allows

a TCP sender to transmit new segments only upon arrival of

the first two duplicate ACKs on a segment, i.e. before the fast

retransmission is triggered.

We modified this algorithm so that a TCP sender allows

new segments to be sent before fast retransmission is triggered

regardless of the dupthresh value. For example, if dupthresh is

19 then a TCP sender allows to send 18 new segments before

triggering the fast retransmission. In this way, a sender can

prevent timeouts when a packet gets dropped and congestion

window is smaller than dupthresh. We have integrated this new

algorithm into the initial phase of MMPTCP.

To evaluate the performance of MMPTCP with LT, we

designed a new version of MMPTCP with activated LT,

referred as MMPTCPLT. We then compared it with MMPTCP

in a 2:1 oversubscribed FatTree topology with 256 servers

running the Permutation traffic matrix (λ = 256). 53% (135)

of servers send background flows and the remaining 47% (121)

of servers send short flows. The first short flow schedules

500ms after simulation starts in order to let large flows become

stable. Table IV depicts the results. MMPTCPLT significantly

improves mean flow completion time and standard deviation of

short flows without damaging overall network utilisation. We

Transport

Protocol

Short Flow

Finish Time

(mean/stdev)

Large Flow

Goodput

(mean/stdev)

Core Layer

Utilisation

(mean)

Core Layer

Loss Rate

(mean)

MMPTCP 98.9/±74.8 ms 72.9/±17.3 Mbps 72 % 0.0053 %

MMPTCPLT 89.1/±67.2 ms 72.9/±18.0 Mbps 72 % 0.0051 %
TABLE IV

MMPTCP COMPARED TO MMPTCPLT

also look at the total fast retransmissions and timeouts in each

individual short flow in Figure 6. As expected, MMPTCPLT

slightly increases the number of fast retransmission in favour

of decreasing the number of timeouts compared to MMPTCP.

In fact, MMPTCPLT protects short flows from losing their

ACK clocks when a high dupthresh value is used (e.g. 19).

Therefore, the completion times of a majority of short flows

is decreased with MMPTCPLT.

It is argued that LT is an essential mechanism for preventing

TCP from losing its ACK clock, especially when dupthresh is

adjusted automatically and is large [17]. However, LT becomes

more aggressive as the dupthresh value increases. This may

be less critical for MMPTCP because its short flows use all

possible paths in data delivery. However, even with MMPTCP,

if there is a hotspot in the access layer then this aggressiveness

becomes important and may hurt other competing flows in

such a case. Further research is required in order to understand

how LT should be used when dupthresh is very large.

F. MMPTCP and Switching Threshold

In this section, we investigate the effects of the MMPTCP

switching point on the completion time of short flows when the

size of short flows is lower or higher than a switching point.

In doing so we conducted a range of simulations with varying

short flow sizes over various switching points. Table V shows

the results. It is clear that changing the switching threshold

 0

 1

 2

 3

R
e
tr

a
n

s
m

it
s

 0

 1

 2

 3

 4

94K 96K 98K 100K

T
im

e
o
u

ts

Rank of Flow

(a) MMPTCP

 0

 1

 2

 3

R
e
tr

a
n

s
m

it
s

 0

 1

 2

 3

 4

94K 96K 98K 100K

T
im

e
o
u

ts

Rank of Flow

(b) MMPTCPLT

Fig. 6. Timeouts and fast retransmissions (MMPTCP against MMPTCPLT)

Short Flow

Size

(KB)

Switching

Threshold

(KB)

Short Flow

Finish Time

(mean/stdev)

Large Flow

Goodput

(mean/stdev)

Core Layer

Utilization

(mean)

Core Layer

Loss Rate

(mean)

70 100 98.9/±74.8 ms 72.9/±17.3 Mbps 72.9 % 0.0053 %

70 300 98.4/±79.0 ms 72.7/±18.5 Mbps 71.7 % 0.0043 %

70 500 97.7/±74.8 ms 72.8/±18.2 Mbps 71.9 % 0.0041 %

70 1000 98.5/±75.1 ms 72.6/±18.1 Mbps 71.7 % 0.0037 %

600 100 324.8/±198.0 ms 67.9/±16.2 Mbps 74.4 % 0.0080 %

600 300 321.8/±194.7 ms 67.6/±17.4 Mbps 74.2 % 0.0068 %

600 500 312.5/±196.7 ms 67.8/±17.0 Mbps 74.4 % 0.0064 %

600 1000 325.3/±195.8 ms 67.7/±17.0 Mbps 74.3 % 0.0062 %

TABLE V
MMPTCP SWITCHING THRESHOLD SENSITIVITY

does not exert any negative effect on the completion time

of short flows since the results for a flow size (e.g. 70KBs)

with different switching thresholds are extremely consistent.

Due to lack of space, we have only shown two different

flow sizes in Table V. But we have experimented with flow

sizes ranging from 50KBs to 1MB over varying switching

thresholds ranging from 100KBs to 10MBs. We observed

very consistent results in all of our simulations. This is a

very important outcome because it is very likely that some

short flows in a data center have larger sizes than a switching

threshold.

IV. DISCUSSION

During our evaluation, we realised that employing TCP

congestion control during the initial phase of MMPTCP is an

overkill approach. Because the congestion window operates

over multiple paths, when a congestion signal originated from

a random link at the network core, it is overkill to react

to that congestion signal by halving the sending rate, since

there is no congestion on any of the other paths. However,

if a congestion signal comes from a bottleneck link at the

access layer, then the reaction of TCP congestion control is

correct. The research question here is how can we distinguish

these two signals and react appropriately. Our hypothesis is

that reacting to congestion proportionally to the extent of

congestion will allow detection of these two signals. We thus

believe that employing the DCTCP-link congestion control

could be a viable solution for distinguishing these two signals.

If a congestion signal comes from random links at the network

core then the proportion of congestion signals, during one

RTT, is very low so DCTCP does not reduce its sending

rate. However, if it is from a bottleneck link at the access

layer, DCTCP reacts similarly to TCP. Further investigation is

required to determine best practices, parameter adjustments,

and so on.

MMPTCP is capable of utilising multi-homed network

topologies. Unlike MPTCP, MMPTCP is capable of delivering

all network flows via all available network interface devices.

This feature potentially allows the TCP Incast problem to

be addressed by adding more interface devices to end-hosts.

We plan to conduct further research on the performance of

MMPTCP over multi-homed topologies, such as Dual-Homed

FatTree (DHFT) [5].

In this paper, we evaluated MMPTCP with TCP NewReno,

which is a widely deployed TCP version. However, TCP

NewReno is not an ideal solution when packet reordering

is the norm. We explored a solution for preventing packet

reordering by increasing dupthresh in order to postpone the

triggering of the fast retransmission mechanism. However,

any solutions that attempt to increase the value of dupthresh

may increase timeouts when a packet gets dropped while the

congestion window is smaller than dupthresh. To address this,

we activated TCP limited transmit during the initial phase

of MMPTCP. We believe increasing dupthresh and coupling

it with limited transmit is the right approach for preventing

spurious retransmissions in modern data centres, but further

research is required into the degree to which limited transmit

should react to duplicate ACKs. We also plan to investigate

how DSACK will improve the performance of MMPTCP, as

it can help to detect and mitigate spurious retransmissions.

Advanced QoS features have become increasingly available

in data centre switches [22]. Our hypothesis is that if packets

of the initial phase of MMPTCP are marked high priority and

routed through different queues, then MMPTCP effectively

helps latency-sensitive short flows to meet their deadline. The

packets of short flows are thereby routed from a different

queue to the large flows so that the chance of random packet

drop significantly decreases, especially at the network core.

V. CONCLUSION

In this paper, we first conducted an in-depth study of

MPTCP for short flows. We observed that MPTCP is ill-suited

to handle them. A fraction of short flows complete their flows

with a long delay because they incur excessive timeouts. We

then proposed MMPTCP as a means to address this problem.

Our extensive experimental evaluation in simulated FatTree

topologies showed that MMPTCP is practical and decreases

flow completion time for short flows while retaining high

goodput for large flows over MPTCP with a fixed number of

subflows. We also observed that MMPTCP not only reacted to

congestion gracefully but also prevented it to a great extent,

thereby significantly decreasing the overall loss rate of all links

in the network.

One of MMPTCP’s challenges is to prevent, detect and react

to spurious retransmission due to packet ordering during its

initial phase of delivery. In this paper, we proposed a novel

approach for preventing out-of-order packets which is to set

the value of dupthresh based on topology-specific information.

Our solution is based on the FatTree IP addressing scheme

as it allows us to locate end-hosts according to their IP

address. That is, the dupthresh is adjusted according to the

destination IP address of a flow at connection establishment.

Our investigation showed that adjusting dupthresh in this way

significantly prevents spurious retransmission. Our approach

is also practical in other data center topologies such as VL2.

We conclude that MMPTCP is rapidly deployable in ex-

isting data centres as it coexists with other transport proto-

cols and only requires existing data centre technologies such

as ECMP. It can handle all network flows without high-

level information from application layers (e.g. flow sizes and

deadlines). It decreases the bursty nature of data centres by

leveraging parallel paths for delivering short flows.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” in Proc. of SIGCOMM 2008.

[2] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in Proc. of SIGCOMM 2011.

[3] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “BCube: a high performance, server-centric network architecture
for modular data centers,” in Proc. of SIGCOMM 2009.

[4] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” RFC
3782, 2004.

[5] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, and M. Wischik,
D.and Handley, “Improving Datacenter Performance and Robustness
with Multipath TCP,” in Proc. of SIGCOMM 2011.

[6] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),” in Proc.

of SIGCOMM 2010.
[7] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware Datacenter

TCP (D2TCP),” in Proc. of SIGCOMM 2010.
[8] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better Never

than Late: Meeting Deadlines in Datacenter Networks,” in Proc. of

SIGCOMM 2011.
[9] A. Ford, C. Raiciu, M. Handley, S. Barré, and J. Iyengar, “TCP

Extension for Multipath Operation with Multiple Addresses,” RFC 6824,
2013.

[10] M. Kheirkhah, I. Wakeman, and G. Parisis, “Multipath-TCP in ns-3,” in
Proc. of WNS3 2014.

[11] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks,” in Proc.

of NSDI’10.
[12] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the Impact of

Packet Spraying in Data Center Networks,” in Proc. of IEEE INFOCOM

2013.
[13] L. Valiant, “A Scheme for Fast Parallel Communication,” SIAM journal

on computing, vol. 11, no. 2, pp. 350–361, 1982.
[14] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An Extension to

the Selective Acknowledgement (SACK) Option for TCP,” RFC 2883,
2000.

[15] J. Mahdavi, M. Mathis, S. Floyd, and A. Romanow, “TCP selective
acknowledgment options,” no. 2018, 1996.

[16] S. Floyd and T. Henderson, “The NewReno Modification to TCP’s Fast
Recovery Algorithm,” RFC 6582, 2002.

[17] M. Zhang, B. Karp, S. Floyd, and L. Peterson, “RR-TCP: A Reordering-
Robust TCP with DSACK,” in Proc. of ICNP 2003.

[18] D. Wischik, C. Raiciu, and M. Handley, “Balancing Resource Pooling
and Equipoise in Multipath Transport,” in Proc. of SIGCOMM 2010.

[19] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley, “Multi-
path TCP: a joint congestion control and routing scheme to exploit path
diversity in theInternet,” IEEE/ACM Trans, vol. 14, no. 6, 2006.

[20] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
Implementation and Evaluation of Congestion Control for Multipath
TCP,” in Proc. of USENIX NSDI 2010.

[21] M. Allman, H. Balakrishnan, and S. Floyd, “Enhancing TCP’s Loss
Recovery Using Limited Transmit,” RFC 3042, 2001.

[22] D. Zats, T. Das, P. Mohan, and R. Katz, “DeTail: Reducing the
Flow Completion Time Tail in Datacenter Networks,” in Proc. ACM

SIGCOMM 2012.

