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In recent years, the use of the last observation carried forward (LOCF) approach

in imputing missing data in clinical trials has been greatly criticized, and several

likelihood-based modeling approaches are proposed to analyze such incomplete data.

One of the proposed likelihood-based methods is the Mixed-Effect Model Repeated

Measure (MMRM) model. To compare the performance of LOCF and MMRM

approaches in analyzing incomplete data, two extensive simulation studies are

conducted, and the empirical bias and Type I error rates associated with estimators

and tests of treatment effects under three missing data paradigms are evaluated. The

simulation studies demonstrate that LOCF analysis can lead to substantial biases in

estimators of treatment effects and can greatly inflate Type I error rates of the

statistical tests, whereas MMRM analysis on the available data leads to estimators

with comparatively small bias, and controls Type I error rates at a nominal level

in the presence of missing completely at random (MCAR) or missing at random

(MAR) and some possibility of missing not at random (MNAR) data. In a sensitivity

analysis of 48 clinical trial datasets obtained from 25 New Drug Applications (NDA)

submissions of neurological and psychiatric drug products, MMRM analysis appears

to be a superior approach in controlling Type I error rates and minimizing biases, as

compared to LOCF ANCOVA analysis. In the exploratory analyses of the datasets,

no clear evidence of the presence of MNAR missingness is found.

Key Words: Ignorable missing data; Last observation carried forward; Missing at random; Missing
completely at random; Missing not at random.

1. INTRODUCTION

In longitudinal clinical trials of chronic therapies, patients are treated over
a period of time and evaluated periodically at a number of time points. That is,
for each patient a series of observations is available. In most clinical trials, the
treatment period and the number of scheduled visits for efficacy evaluation are
predetermined by design. For example, a trial might be designed where each patient
would be treated for four weeks with evaluations at baseline and at the end of each
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228 SIDDIQUI ET AL.

subsequent week. Hence, for each patient completing the entire treatment period,
five observations would be available.

Although patients are evaluated at a number of time points, it is a customary,
in many longitudinal trials, to define a single “primary end time point” at which
efficacy of an experimental drug would be evaluated, for instance, with respect
to placebo. Again, in most trials, the primary end time point is taken as the last
time point of the predetermined double-blind randomized treatment period. When
a patient drops out from the trial before completing the predetermined treatment
period, his or her observation will be missing at each subsequent visit. This type of
missing data is called monotonic missing data. In contrast, nonmonotonic missing
data are also seen in clinical trials due to some patients missing some visits. For
example, a patient may miss a visit, but at later visits the patient is available in
the trial. In clinical trials, the presence of such nonmonotonic missing data is very
minimal. In this manuscript, we focus on monotonic missing data due to patient
drop out and refer to this as “missing data” hereafter.

Missing data are commonly grouped into three missing data mechanisms
based on reasons why patients drop out. According to Rubin (1976) and Little
and Rubin (2002), data are considered missing completely at random (MCAR) if,
conditional upon the independent variables in the analytic model, missingness is
independent of both unobserved and observed outcomes of the variable being
analyzed; data are missing at random (MAR) if, conditional upon the indepen-
dent variables in the analytic model, missingness depends on the observed data of
the variable being analyzed but is independent of the unobserved outcomes of the
variable being analyzed; data are missing not at random (MNAR) if, conditional
upon the independent variables in the analytic model, the missingness depends on
the unobserved outcomes of the variable being analyzed.

Rubin (1976) and Little and Rubin (2002) also define two general classes of
missingness mechanisms with respect to likelihood-based analysis. A missingness
mechanism is called “ignorable” if a likelihood-based analysis provides valid
inferences of the model parameters even when the missingness mechanism is
ignored; otherwise, it is called “nonignorable” missingness mechanism. Laird (1988)
shows that MCAR and MAR are ignorable missingness, and likelihood-based
analyses that ignore the missing data mechanism remain valid. For nonignorable
missing data, however, likelihood-based analyses that ignore the missing data
mechanism potentially produce biased results.

An intuitive way to explain missingness mechanisms in longitudinal clinical
trials is to look at the reasons for dropouts. Heyting et al. (1992) give six common
reasons why patients withdraw from clinical longitudinal studies: (i) recovery,
(ii) lack of improvement, (iii) treatment-related side-effects, (iv) unpleasant study
procedures, (v) intercurrent health problems, and (vi) external factors unrelated
to the trial. An informal debate is often encountered in grouping the observed
possible drop-out reasons into the three missing data mechanisms defined by Rubin
(1976) and Little and Rubin (2002). So far, no consensus is achieved on classifying
the reasons for dropouts into the three defined missing data mechanisms or no
prospective potential strategies to do so. The lack of consensus might be due to
the fact that the three mechanisms are defined based on the outcome measures of
interest, and could thus change from one outcome measure to another outcome
measure in the same dataset. Consensus also depends on the independent variables
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MMRM VS. LOCF 229

in the model. Therefore, the statistical analysis of incomplete data is solely carried
out under the three missing data mechanisms as defined above. Another informal
debate of whether or not a particular missing data mechanism, or a mixture of the
three missing data mechanisms is present in a clinical trial dataset, often takes place.
Moreover, there is no statistical test available to test the presence of nonignorable
data. It may be possible to have a mixture of ignorable and nonignorable missing
data with certain proportions in the same dataset. However, most of the previous
research work on dealing with missing data focused on only one mechanism at a
time.

Although some statistical methods (e.g., pattern-mixture models, selection
models, etc.) are available to analyze longitudinal data under a nonignorable missing
data mechanism, in reality it is not feasible to use such methods in analyzing
clinical trial datasets for efficacy evaluation. In fact, there is no clear guidance as to
which of the nonignorable methods are preferred under what scenarios. A definitive
statistical method does not exist to analyze nonignorable missing data. Therefore,
likelihood-based ignorable analyses need to be included in clinical trial data analysis
instead of ad hoc methods. Thus, it is important to find out how robust the
statistical findings are from ignorable models in analyzing incomplete data that have
a mixture of the three missing data mechanisms through simulation studies. In real
data analysis, one can explore the impact of deviations from the ignorable missing
data assumption on the conclusions based on a sensitivity analysis using models
under nonignorable missing data assumption. Several researchers, including Diggle
and Kenward (1994) and Rotnitzky et al. (1998), propose different parametric and
semiparametric models under a nonignorable missing data framework.

Fitzmaurice et al. (2004) present a brief review of the most often used
statistical approaches to handle missing data in longitudinal analysis. Among the
approaches, the last value carried forward (LVCF) is widely used for imputing
missing data in longitudinal clinical trials, and it is commonly referred to as “last
observation carried forward” (LOCF) approach. The LOCF approach is simple,
but it makes two strong assumptions that: (i) missing data due to dropouts follow
MCAR and (ii) the responses following a patient dropping out remain constant
at the last observed value prior to drop out. Both of the assumptions are often
unrealistic in clinical trials. Several researchers, including Fitzmaurice et al. (2004),
Carpenter et al. (2004), Molenberghs et al. (2004), and Cook et al. (2004) have
criticized the use of LOCF approach in imputing missing data due to drop out in
clinical trials. Molenberghs et al. (2004) point out that LOCF endpoint analysis
typically produces bias, of which the direction and magnitude depend on the true
but unknown treatment effects, and the approach is not valid even under MCAR
data mechanism. Recently, Shao and Zhong (2003) proposed a LOCF one-way
ANCOVA test by averaging the means of efficacy measures of the last observations
of all the possible subpopulations, each consisting of patients who dropped out
at the same visit time. They claim the test is asymptotically valid where only two
treatments are compared and two treatment groups have the same number of
patients, regardless of whether the dropout is informative or not. The hypothesis
they are testing is not the study endpoint hypothesis of interest in the drug approval
process. Several researchers including Carpenter et al. (2004) and Mallinckrodt et al.
(2003) have also noted the shortcomings of the hypothesis in clinical terms.
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230 SIDDIQUI ET AL.

Several authors, including Laird and Ware (1982), propose likelihood-based
mixed-effects models to analyze incomplete data from longitudinal clinical trials.
Siddiqui and Ali (1998) perform a direct comparison of the likelihood-based
mixed-effect regression model analysis with the LOCF analysis on data from a
real psychiatric clinical trial. Under an ignorable missing mechanism assumption,
likelihood-based models provide likelihood functions for the observed data (i.e.,
without modeling the dropout process) from which valid inferences on treatment
effects and other parameters can be obtained. No explicit imputation of the missing
data is required. In general, when dropouts are ignorable, the parameters of
dropout and outcome processes are assumed to be distinct, and hence likelihood-
based methods can be used on the marginal distribution of the observed data
for statistical inferences. One such mixed model is named Mixed-effects Model
Repeated Measures (MMRM) analysis by Mallinckrodt et al. (2001). The MMRM
analysis is a particular form of a mixed model analysis and is fitted within the
ignorable likelihood paradigm. Under a MMRM model the ML estimates can be
obtained by maximizing f�Y O

i �Xi�, where f�Y O
i �Xi� denotes the ordinary marginal

distribution of the particular subset of Yi determined by YO
i , and the missing data are

predicted by the observed data via the model for the conditional mean, E�YM
i � YO

i �.
A presence of nonignorable missing data in clinical trials is difficult to rule out

and is unverifiable with any empirical data. Therefore, when ignorable likelihood-
based methods are considered for primary analysis purposes, it is important to
explore the impact of the ignorable missing data assumption on the conclusions
based on sensitivity analyses using MNAR models. A parametric model of the
type of Diggle and Kenward (1994), or a semiparametric approach such as in
Rotnitzky et al. (1998), might be used as MNAR models for sensitivity analyses.
Molenberghs and Kenward (2007) give a detailed discussion on the importance of
sensitivity analyses of incomplete clinical trial datasets within the MNAR modeling
framework.

Little (1995) describes the MNAR models in terms of two broad model
classes: selection model and pattern-mixture (PM) model. Several authors, including
Little (1995), Hogan and Laird (1997), and Michiels et al. (2002), discuss the
differences between the selection models and PM models. The basic difference is that
selection models depend on distributional assumptions of the missing data that are
unverifiable with the observed data (Little, 1995; Little and Rubin, 2002), whereas
PM models can be specified without any requirement of missing data mechanism
to be ignorable. As an alternative to selection models, a general class of random-
effect PM models formulated by Little (1993, 1994, 1995) is often used to analyze
incomplete clinical trial data. In the PM models, subjects are divided into groups
based on the dropout patterns (e.g., early dropouts, late dropouts, and completers).
Then these groups are used to examine the effect of the dropout pattern on the
outcome measure of interest. The overall estimate is obtained by averaging the
estimates across the dropout patterns. The random-effects PM model is often used
in sensitivity analysis to evaluate the robustness of the findings obtained from
likelihood-based methods under MAR missingness.

MMRM analyses test the endpoint hypothesis or hypothesis specified at each
time point; however, random-effects PM models analyses test either the slope
difference (rate of change over time) of treatments groups or an overall treatment
mean difference within the study period. That is, there is no straightforward

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
y
e
t
h
 
R
e
s
e
a
r
c
h
]
 
A
t
:
 
1
8
:
3
4
 
1
2
 
M
a
y
 
2
0
0
9



MMRM VS. LOCF 231

way to compare the findings obtained from the two approaches. However, it is
straightforward to compare the findings obtained from Mixed-Effects Regression
(MRM) analysis as proposed by Laird and Ware (1982) and random-effects PM
model analysis. A comparison between the two methods might help us to assess any
specific reasons for missingness, including the presence of a particular missing data
mechanism in the datasets.

Several researchers, including Mallinckrodt et al. (2001), David and
Mallinckrodt (2001), Liu and Gould (2002), Lane (2008), and Barnes et al. (2008),
have published simulation study results to compare the performance of LOCF
analysis with likelihood-based analysis in evaluating treatment efficacy at the study
endpoint under a particular missing data mechanism. There is a little evidence of
considering a mixture of the three missing data mechanisms in these simulation
studies. Therefore, a logical extension of the previous simulation studies is to
evaluate performance of the two approaches under a mixture of the three missing
data mechanisms. There is also a little evidence of doing sensitivity analyses using
the two approaches in the real clinical trial datasets. Therefore, the objective
of this paper is to report the results of extensive simulation studies to compare
the Type I error rates and biases committed in using the LOCF ANCOVA and
MMRM approaches to analyze longitudinal incomplete data under different
missing data mechanisms, including a mixture of three missing data mechanisms.
In our simulation studies, possible scenarios of treatment efficacy as learned
from different clinical trials of neurological and psychiatric drug products are
included. In addition, a sensitivity analysis (i.e., comparing parameter estimates and
estimated standard errors) is conducted using the above statistical approaches on 48
clinical trial datasets (obtained from 25 NDAs) submitted to the FDA’s Division
of Neurological and Psychiatric drug products. A brief review of the statistical
approaches as stated above is as follows.

2. METHODS

2.1. Last Observation Carried Forward (LOCF) ANCOVA
Endpoint Analysis

Let yik denote change from baseline (yi0) of outcome measurement at the
kth time point for the ith subject. Assume that there are i = 1� � � � � N subjects,
and k = 1� � � � � K (end of study visit) repeated observations per subject. Assume
that xi denotes a dummy coded covariate for subject i, for example, a treatment
condition with xi = 0 for control group and xi = 1 for the treatment group. Further,
assume that if yiK (end point measurement) is missing, then yiK = yik (where
k = 1� � � � � K − 1). That is, if endpoint measurement is missing, it will be filled in
by the previous observed measurement. Consider the following regression model for
yiK

yiK = �0 + �1yi0 + �2xi + �ik� (1)

where �0 is the intercept, �1 is the effect of baseline measurement (yi0), and �2

is the treatment condition difference at time K. Residuals �iks are assumed to be
independently distributed from a univariate normal distribution. The analysis based
on equation (1) is called LOCF ANCOVA analysis.
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232 SIDDIQUI ET AL.

2.2. MMRM Analysis

The MMRM analysis is a special form of the general Mixed-Effects
Regression Model analysis, and hence the MRM model specification is stated first,
and then the distinction between the two models is made. A MRM model satisfies
followings:

Yi = Xi� + Zivi + �i� (2)

where

Yi = the ni × 1 vector of responses for subject i
Xi = a known ni × p design matrix
� = a p× 1 vector of unknown population parameters
Zi = a known ni × r design matrix
vi = a r × 1 vector of unknown subject effects (random effects) distributed as
N�0�

∑
v� and

�i = a ni × 1 vector of random residuals distributed independently as N�0�
∑

�i�

vi and �i are independent.
From equation (2), it can be derived that Yi are distributed as independent

normal, with mean Xi�, and variance–covariance matrix Zi

∑
v Z

′
i +

∑
�i.

The vector Yi and the matrices Xi and Zi carry the subscript i, which means
that no assumption of complete data (across time points) on the response or
covariate measurements is being made. However, it is assumed that for a given
time point a subject has complete data on the response variable and all model
covariates. The model residuals are assumed, conditional on the random effects, to
be uncorrelated and normally distributed. In that case, the simplifying assumption
that

∑
�i = �2Ini×ni is made.

In the above MRM model specification, a saturated treatment group by
measurement time (i.e., visit) model for the mean, combined with an unstructured
within-subject error covariance, can be included. Such an inclusion in a MRM
model leads to a multivariate normal model. In analyzing continuous outcome
measures, Mallinckrodt et al. (2001) refer to this model as MMRM analysis.
That is, in the MMRM model the Time is considered as a factor variable and
Treatment ∗ Time effects is considered as an unstructured interaction effect, instead
of considering Treatment ∗ Time effect as the slope (rate of change) difference of
treatment groups over the study time period. The advantage of considering the
effect of Treatment ∗ Time as unstructured is that it provides the direct estimates and
statistical test of least square mean (LSMEAN) differences of the treatment groups
at the study endpoint, as well as at each scheduled study time point with respect
to the primary efficacy measure. Since patients in clinical trials are often evaluated
at a fixed number (relatively small) of time points, the MMRM modeling approach
facilitates analyzing clinical trial data, considering Time as a factor variable in the
model.

The MMRM analysis includes a random effect as part of the within-subject
error covariance structure by a repeated statement in the model specification. An
“unstructured” covariance is often used to model the within-subject errors in the
analysis. The advantage of using an “unstructured” (UN) covariance is that no
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MMRM VS. LOCF 233

assumptions are made about the within-subject variability. The UN covariance
structure is the most “liberal” in the sense that it allows every term in the matrix to
be different. Although a misspecification of wrong covariance structure in MMRM
analysis inflates Type I error and alters power, but a specification of unstructured
(UN) covariance structure in MMRM analysis, regardless of the true variance–
covariance structure, is reasonable and provides better control of Type I error rate
and power than LOCF analysis (Mallinckrodt et al., 2004).

3. SIMULATION STUDY

In our simulation studies, 5,000 datasets are generated under multivariate
normal assumption with a given mean vector and an unstructured covariance
matrix. Two arms (Treatment = 1 and Placebo = 0) are considered in the
simulation. In each arm, 200 subjects are included. Seven time points (Baseline and
six postbaseline visit time points) are included in the study design.

Two simulation studies are conducted. In the first simulation (Simulation
Study 1), each of the three missing data mechanisms is implemented alone. In
the second simulation (Simulation Study 2), a mixture of the three mechanisms
is implemented. In both simulation studies, differential dropout rates between two
groups, as stated in Table 1, are included in creating incomplete data.

Under the null hypothesis (i.e., no difference between the two groups at the
study endpoint), two scenarios are considered in the simulations. In scenario 1,
the null hypothesis is true at each time point (Fig. 1), and in scenario 2, the
null hypothesis is true only at the study endpoint (Fig. 2). Under the alternative
hypothesis (i.e., there is a difference between the two groups at the study endpoint),
another two scenarios are considered. In scenario 3, the treatment efficacy begins
from the early randomized period (Fig. 3), and in scenario 4, the efficacy begins at
the later time point of the randomized period (Fig. 4).

In the simulation studies, two sets of unstructured covariance matrices are
considered. In one matrix, the observations within each subject are highly correlated,
and in another matrix, the observations within each subject are not highly correlated
(i.e., moderately correlated).

Simulation Study 1 Under the three missing data mechanisms (MCAR,
MAR, MNAR), three incomplete datasets are generated from a full (i.e., no missing)
simulated dataset. In generating the incomplete datasets from a full dataset, the
following strategies are adopted. For the MCAR mechanism, certain percentages
(given in Table 1) of missing data are generated randomly at each visit and all
subsequent visits. Similarly, for the MAR mechanism, missing data at visit i and the

Table 1 Cumulative dropout scenario in creating incomplete dataset

Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 Visit6
Baseline (%) (%) (%) (%) (%)

Placebo — — 10 20 25 27 30
Treatment — — 5 10 20 35 50
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234 SIDDIQUI ET AL.

Figure 1 Equal mean score profiles.

Figure 2 Equal mean scores at study end point.
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MMRM VS. LOCF 235

Figure 3 Different mean scores at each post visit.

Figure 4 Different mean scores at study endpoint.
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236 SIDDIQUI ET AL.

subsequent visits are assumed to be dependent on the values of outcome measure at
visit i− 1. For the MNAR mechanism, if the value of the outcome measure is higher
at visit i, then the subject will have missing data at ith visit and the subsequent visits.

Simulation Study 2 In generating incomplete datasets having a mixture of
the three missing data in the same data set, each incomplete dataset includes 33% of
the total missing data at each visit from each of the three missing data mechanisms.
For example, in the placebo group, a total of 10% of subjects (as stated in Table 1)
will have missing scores from visit 2 and onwards. Among the 10% subjects, 33%
subjects’ scores will be missing due to each of the three missing data mechanisms.

4. RESULTS

Simulation Study 1 Table 2 lists the findings from Simulation Study 1
(5,000 datasets) under the null and alternative hypotheses in the presence of the
three missing data mechanisms and strong covariance structure. When the null
hypothesis is true at each time point (i.e., Fig. 1), both the LOCF ANCOVA
endpoint analysis and the MMRM analysis are able to reestimate the true treatment
difference at the study endpoint with a negligible bias and control Type I error rate
at a nominal level (i.e., close to 5%) in presence of MCAR or MAR mechanisms.
However, when the null hypothesis is true only at the study endpoint (i.e., Fig. 2),
the MMRM analysis is able to reestimate the true treatment difference and control
Type I error rate close to a nominal level in the presence of MCAR or MAR
mechanisms, but the LOCF ANCOVA analysis fails to reestimate the true treatment
difference and it also inflates Type I error rates. Under the MNAR mechanism, both
the MMRM and LOCF ANCOVA fail to reestimate the true treatment difference
and inflate the Type I error rate severely. The above findings are also true when a
moderate covariance structure is assumed in generating the datasets.

Table 2 Simulation study 1 results

Simulated data§ analyses

Under H0 – Fig. 1 Under H0 – Fig. 2 Under Under
Mean % Reject Mean % Reject HA – Fig. 3 HA – Fig. 4

Method est.$ H0 est.$ H0 Bias.$�¶ Bias.$�¶

Full data ANCOVA −0�001 5.04 −0�003 5.00 −0�001 −0�003
Incomplete MMRM −0�002 5.02 −0�001 5.05 −0�001 −0�001
data (MCAR) LOCF −0�063 5.29 −1�025 62.28 0.009 0.528

ANCOVA
Incomplete MMRM −0�004 5.20 −0�011 5.20 −0�016 −0�011
data (MAR) LOCF −0�070 7.86 −1�150 75.18 −0�019 .610

ANCOVA
Incomplete MMRM −0�218 10.84 −0�198 11.88 −0�216 −0�198
data (MNAR) LOCF −0�175 9.20 −1�242 63.84 −0�088 0.518

ANCOVA

§Under each scenario of treatment efficacy, separate data set was simulated.
$Mean of the estimated least square mean differences at the study endpoint of the 5000 datasets.
¶The true difference at the endpoint was 	Treatment − 	placebo = 2.
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MMRM VS. LOCF 237

When the alternative hypothesis is true at the study endpoint and the efficacy
of a drug starts to show from the early time point (i.e., Fig. 3), both the LOCF
ANCOVA endpoint analysis and the MMRM analysis are able to reestimate the
true treatment difference at the study endpoint, with a negligible bias in the presence
of MCAR or MAR mechanisms. However, when the alternative hypothesis is true
at the study endpoint and the efficacy of a drug starts to show at the late time point
(i.e., Fig. 4), the MMRM analysis is able to reestimate the true treatment difference
at the study endpoint with a negligible bias in the presence of MCAR or MAR
mechanisms, but the LOCF ANCOVA analysis fails to reestimate the true treatment
difference. Under the MNAR mechanism, both the MMRM and LOCF ANCOVA
analyses fail to reestimate the true treatment differences in both cases. The above
findings are also true in the presence of a moderate covariance structure.

Simulation Study 2 Table 3 presents the findings of simulation study 2,
when the null hypothesis holds in the presence of a mixture of the three missing

Table 3 Simulation study 2 results

Simulated data§ analyses

Under H0 – Fig. 1 Under H0 – Fig. 2
% of Under Under
Dropout Mean % Reject Mean % Reject HA – Fig. 3 HA – Fig. 4
patients Method est.$ H0 est.$ H0 Bias.$�¶ Bias.$�¶

Full data ANCOVA −0.001 4.97 −0.001 5.00 −0.001 −0.001
Treat (10%) MMRM −0.007 5.40 −0.008 5.13 −0.007 0.001
Placebo (5%) LOCF 0.040 5.36 −0.210 17.13 0.071 0.328

ANCOVA
Treat (15%) MMRM 0.003 5.58 0.002 5.50 0.001 −0.008
Placebo (5%) LOCF 0.100 7.76 −0.275 25.77 0.146 0.193

ANCOVA
Treat (20%) MMRM −0.014 5.98 −0.016 5.80 −0.014 −0.016
Placebo (10%) LOCF 0.081 7.22 0.420 50.43 0.142 0.384

ANCOVA
Treat (25%) MMRM −0.002 6.12 −0.003 5.83 −0.002 −0.019
Placebo (10%) LOCF 0.140 11.08 −0.486 63.07 0.216 0.578

ANCOVA
Treat (30%) MMRM −0.216 6.26 −0.019 5.90 −0.019 −0.003
Placebo (15%) LOCF −0.163 9.32 −0.628 84.47 0.213 0.520

ANCOVA
Treat (35%) MMRM −0.216 6.24 −0.002 5.60 −0.004 −0.004
Placebo (15%) LOCF −0.163 14.82 −0.692 90.74 0.288 0.714

ANCOVA
Treat (40%) MMRM −0.216 6.90 −0.019 6.50 −0.019 −0.019
Placebo (20%) LOCF −0.163 13.42 −0.835 99.37 0.285 0.773

ANCOVA
Treat (45%) MMRM −0.216 7.33 −0.037 6.33 −0.037 −0.030
Placebo (25%) LOCF −0.163 14.00 −0.979 99.87 0.282 0.831

ANCOVA

§Under each scenario of treatment efficacy, separate data set was simulated.
$Mean of the estimated least square mean differences at the study endpoint of the 5000 datasets.
¶The true difference at the endpoint was 	Treatment −	placebo = 2.
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data mechanisms (i.e., consider 1/3 of the total missing data from each mechanism)
in a dataset and a strong covariance matrix. The findings indicate that in the
presence of a mixture of the three missing data with differential dropout rates
between the two treatment groups in a dataset, the MMRM approach is able
to reestimate the true treatment difference consistently with a negligible bias and
control Type I error rate, at a nominal level when the null hypothesis is true at
each time point or null hypothesis is true only at the study endpoint. The LOCF
ANCOVA endpoint analysis fails to reestimate the true treatment difference and
inflates the Type I error rate in the presence of a small percentage of dropouts.
The findings of this simulation indicate that in presence of a mixture of the three
missing data mechanisms in a dataset, the MMRM analysis appears to be a superior
statistical method, even in the presence of relatively higher dropout rates, compared
to the LOCF ANCOVA endpoint analysis to evaluate the treatment efficacy at the
study endpoint.

Under alternative hypotheses (i.e., Figs. 3 and 4), the MMRM analysis is able
to reestimate the true treatment difference at the study endpoint with a negligible
bias in the presence of a mixture of MCAR, MAR, and MNAR mechanisms. The
LOCF ANCOVA analysis fails to reestimate the true treatment difference in the
presence of even a small percentage of dropouts. The above findings are also true
in the presence of both the strong and moderate covariance structures.

5. ANALYSIS OF CASE STUDY

A total of 25 NDA datasets submitted to the division of neurological and
psychiatric drug products are reanalyzed to compare the efficacy decisions at the
study endpoint based on MMRM and LOCF ANCOVA endpoint analysis. Among
the 25 NDA datasets, there are 48 acute phase III double blind randomized trials.
There are 108 test comparisons (e.g., Treatment vs. Placebo, and Active Control vs.
Placebo comparisons). The study duration at double-blind phase ranges from 6–14
weeks. The number of randomized patients ranges from 100–150 per group. Within
each study, the primary hypothesis is to evaluate treatment efficacy at the study
endpoint.

The endpoint least square mean (LSMEAN) difference between a study
drug vs. placebo in the MMRM analysis appears to be similar (on average)
to the corresponding LSMEAN difference estimated in the LOCF ANCOVA
endpoint analysis. The estimated standard error of the LSMEAN difference in the
MMRM approach appears to be relatively larger compared to the corresponding
standard error estimated in the LOCF ANCOVA analysis. Figure 5 plots the T -
values of the 108 test comparisons obtained from the two approaches. Both the
MMRM and LOCF ANCOVA analyses provide consistent (i.e., similar statistical
inference) conclusions of 94% (i.e., 101/108 tests) comparisons with respect to
significance or insignificance of the tests. Out of the seven inconsistent comparisons,
in five comparisons the LOCF analysis provides statistically significant conclusions,
whereas the MMRM analysis provides statistically insignificant conclusions. In
general, the T -values obtained from the LOCF ANCOVA analyses look to be
consistently larger in the majority of comparisons than the corresponding values
obtained from the MMRM analyses.
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Figure 5 Plot of the T -values of 108 test comparisons of LOCF ANCOVA and MMRM analyses.

The overall means of the estimated LSMEAN differences and standard errors
of the 108 test comparisons are −4�04 and 1.52 for the LOCF ANCOVA analysis,
and −4�06 and 1.74 for the MMRM analysis. The corresponding T -values are −2�66
and −2�33. The individual test comparisons, as well as the overall test comparisons,
confirm that both the MMRM and LOCF ANCOVA analyses estimate similar
LSM EAN difference, but the LOCF ANCOVA analysis underestimates standard
errors of the LSMEAN differences. Carpenter et al. (2004) also finds that the
estimated standard error of the LSMEAN difference in LOCF ANCOVA analysis
is wrong (usually underestimated).

6. SENSITIVITY ANALYSIS

Since the possibility of the presence of a nonignorable dropout mechanism
in a real clinical trial incomplete dataset is difficult to role out, it is important to
evaluate the robustness of the findings of a nonignorable likelihood-based random-
effects PM model analysis, with the findings of an ignorable likelihood-based MRM
analysis. Next, the impacts of deviation from nonignorable missing data assumption
to ignorable missing data assumption are evaluated based on the real clinical trial
incomplete datasets.

We reanalyzed 48 clinical study datasets of neurological and psychiatric
drug products to evaluate the performance of the likelihood-based MRM and
random-effects PM modeling approaches. In the random-effects PM model analysis
of each study data, the subjects are divided into three groups based on their
dropout patterns during the study duration (i.e., early dropouts, late dropouts, and
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Figure 6 Plot of the T -values (slope comparisons) MRM vs. PM model analyses.

completers). About 80% of the efficacy conclusions of the study results remain the
same (i.e., consistent with respect to the significance of the tests at 5% level) across
the methods under ignorable and nonignorable missingness mechanisms (Fig. 6). In
the remaining 20% of the study datasets where discrepancies in efficacy conclusions
are found, the reasons for discrepancy are explained by the observed data (shown
in Table 5 and Fig. 8), and hence there is no clear indication of the presence of
nonignorable missing data in neurological and psychiatric clinical trials. Several
researchers, including Little and Rubin (2002), Verbeke and Molenberghs (2000),
and Mallinckrodt et al. (2001, 2003), have concluded that the missing data in clinical
trials are mostly MAR. Moreover, Molenberghs et al. (2004) and Shen et al. (2006)
find that even if MNAR data exist, it has a small, unimportant impact on treatment
contrasts in MAR analysis. The findings based on the 48 study datasets also provide
an additional support for the use of likelihood-based ignorable models in analyzing
longitudinal, incomplete clinical trial datasets of neurological and psychiatric drug
products.

Next, we present two real clinical trial data examples in Table 4 to
demonstrate at what circumstances the MRM and random-effects PM models

Table 4 Statistical findings of two psychiatric trial data sets

Slope diff. LSMEAN diff. T -value of slope diff. T -value of LSMEAN diff.

TRT vs. PL MRM PM MMRM LOCF MRM PM MMRM LOCF

Study 1 −1.15 −1.38 −16.56 −11.25 4.13 3.14 2.99 3.77
Study 2 −0.39 0.05 −3.41 −3.57 2.15 0.12 2.92 3.03
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provide similar and dissimilar statistical inferences. In addition, the endpoint
LSMEAN comparisons results of the MMRM and LOCF analyses of the two data
examples are also reported in the same table.

In study 1, the slope-based analyses (i.e., MRM and PM), as well as
the endpoint analyses (i.e., MMRM and LOCF) provide the similar statistical
conclusions regarding efficacy of the study drug as compared to the placebo,
with respect to the change from the baseline of the primary efficacy measure
HAMD total score. However, in study 2, the MRM and PM estimate slopes
−0�39 (T -value = 2�15) and 0.05 (T -value = 0�12), respectively, for the change from
the baseline of the primary efficacy measure HAMD total score. The endpoint
LSMEAN differences of the change score at the study endpoint obtained from
the MMRM and LOCF ANCOVA analyses are −3�41 (T -value = 2�92) and −3�57
(T -value = 3�03), respectively. That is, based on findings of the MRM, MMRM, and
LOCF ANCOVA analyses, the study drug is significantly efficacious compared to
placebo; whereas based on the PM analysis it is not efficacious compared to placebo.
To understand the reasons for similarity and discrepancy in the conclusions based
on the MAR and MNAR models in studies 1 and 2, further exploratory analyses
of the dropout patterns and observed mean change scores of the available patients
have been done as follows.

Table 5 lists the distributions of dropouts due to different reasons [due to
adverse events (AEs), lack of efficacy (LOE), and other reasons]. Within each of the
two studies, there were no systematic patterns of dropouts due to different reasons
across the early vs. late dropout groups. That is, with respect to dropouts due to
different reasons and time to dropout the two studies are comparable.

Figures 7 and 8 list the plots of observed mean change scores in the HAMD
total score of the available patients at each visit by treatment groups, as well as the
means scores by dropout patterns and treatment groups. In study 1, the observed
mean change score profiles of the two treatment groups are separated at the study
endpoint and indicate the presence of treatment efficacy for the completers. With
respect to the dropout status, the observed mean score profiles of the early dropout
patients and completers display the presence of treatment efficacy of the study drug.
Based on the analyses of both the MAR and MNAR models, the study drug is
statistically significantly efficacious compared to placebo.

Table 5 Distribution of the dropout patients by reasons for dropouts

Due to Due to Due to
Tot drop Drop Dropout AE LOE other§

Study # Group N (%) time N N (%) N (%) N (%)

Study 1 PL (N = 138) 51 (37) Early 22 4 (18) 3 (13) 15 (68)
Late 29 3 (10) 17 (58) 9 (31)

TRT (N = 133) 45 (34) Early 28 13 (46) 3 (10) 12 (42)
Late 17 4 (23) − 13 (76)

Study 2 PL (N = 119) 28 (24) Early 14 − 4 (28) 10 (71)
Late 14 2 (14) 6 (42) 6 (42)

TRT (N = 118) 23 (19) Early 11 3 (27) 6 (54) 2 (18)
Late 12 1 (8) 5 (41) 6 (50)

§Other includes unsatisfactory compliance, consent withdrawn, unrelated to therapy etc.
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242 SIDDIQUI ET AL.

Figure 7 Observed mean profiles by treatment groups and dropout patterns (study 1).

In study 2, the plots of observed mean scores of the two treatment groups
(Fig. 8) also suggest the presence of treatment efficacy at the study endpoint for
the completers. However, among the late dropout group, the mean change score
from baseline score for the study drug group is less, compared to the mean change
score for the placebo group. Although the completers (about 80% of the randomized
patients) suggest that the study drug is efficacious compared to placebo, the
statistical analysis based on the MNAR model (i.e., PM model) demonstrates that
the study drug is not, statistically, significantly different from placebo. However,
the LOCF ANCOVA analysis and MAR model analyses (MRM and MMRM
analyses) consistently demonstrate the efficacy of the study drug. The insignificant
efficacy finding in the random-effects PM model is demonstrated by the late dropout
patients (only 11% of the randomized patients). In the sensitivity analyses of the

Figure 8 Observed mean profiles by treatment groups and dropout patterns (study 2).
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remaining datasets, where discrepancy in the efficacy conclusion is found across
the MRM and random-effects PM model results, the reasons for discrepancy are
very similar to the reasons as observed in the study 2. That is, a particular group
of patients (either early dropout or late dropout groups) that has the opposite
direction of efficacy over time, compared to the other groups of patients, can easily
mislead the statistical conclusion based on the random-effects PM model analysis.
The misleading findings from the random-effects PM analysis might be due to the
fact that the defined patterns by the time of their dropout might not be useful.
Therefore, the random-effects PM model analysis needs to be used with due caution
in analyzing incomplete clinical trial datasets.

7. DISCUSSION AND CONCLUSION

In this paper, an attempt is made to understand the impact of missing data
due to dropouts in evaluating the efficacy of study drugs at the study endpoints of
clinical trials. Extensive simulation studies under the three missing data mechanisms,
as well as under a mixture of these three mechanisms, are carried out to evaluate
the relative merits of using MMRM analysis vs. LOCF ANCOVA analysis. In
addition, 48 clinical trial datasets (from 25 NDAs submitted to the division
of neurological and psychiatric drug products) are reanalyzed using the LOCF
ANCOVA model, MAR likelihood-based methods, and MNAR model models to
evaluate the consistency of the final conclusions on efficacy of study drugs at the
study endpoints.

Our simulation studies suggest that MMRM analysis controls Type I error
rate at a nominal level in the presence of MCAR or MAR (i.e., ignorable) missing
data mechanisms when the null hypothesis is true at each time point or true only at
the study endpoint. LOCF ANCOVA analysis, however, inflates Type I error rates
when the null hypothesis is true only at the study endpoint. The simulation study
also indicates that in the presence of the MNAR (i.e., nonignorable) mechanism,
both the LOCF ANCOVA and MMRM analyses inflate Type I error rates.
However, in the presence of a mixture (having ≤1/3 MNAR) of the three missing
mechanisms in the same dataset, MMRM analysis is superior in controlling Type I
error rate, as compared to LOCF ANCOVA analysis. In general, the simulation
studies suggest that MMRM analysis is a better approach in controlling Type I
error rates and minimizing biases in treatment differences, as compared to the
LOCF ANCOVA approach.

The simulation studies covered in this paper also reveal that assuming
unstructured (UN) covariance to explain the within subject covariance in MMRM
analysis works reasonably well in protecting Type 1 error rates, and the MMRM
model converges within a few iterations in Proc Mixed procedure (using the REML
method). The findings of 48 clinical trial data analyses also support that the within-
subject covariance follows the UN structure. Therefore, using the UN covariance
in the MMRM model to analyze clinical trial data is a reasonable choice for this
purpose. A further sensitivity analysis might be important to assess the robustness
of the efficacy results under various covariance structures in analyzing clinical trial
datasets.

The findings of 48 clinical trial datasets of neurological and psychiatric drug
products indicate that both the LOCF ANCOVA and MMRM analyses estimate a
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244 SIDDIQUI ET AL.

similar treatment difference at the study endpoint. However, the MMRM analysis
estimates a larger standard error of the treatment difference, as compared to the
corresponding estimate in LOCF ANCOVA analysis; hence, the MMRM approach
appears to be a superior approach in evaluating the efficacy of a study drug.

A comparison of the MRM model with the random-effects PM model in
reanalyzing the NDA datasets reveals that similar statistical inference regarding the
efficacy of a drug at the study endpoint is provided by the two models in a majority
of datasets. However, in the comparisons where the two models provide inconsistent
statistical conclusions, one of the possible reasons found in the exploratory analysis
is that one of the dropout groups (either the early dropout or late dropout groups)
has a reverse efficacy effect between the study drug vs. placebo, as compared to the
efficacy effect of the study drug for the completers. In such a situation, an average of
treatment differences across the groups in the random-effects PM modeling becomes
smaller and insignificant. Therefore, random-effects PM models can give biased
results if not used with care.

It is often stated that the missing data due to adverse events are nonignorable.
Our exploratory data analyses of the neurological and psychiatric clinical datasets
reveal that there is a bivariate positive relationship between the number of adverse
events and the last observed score of the primary efficacy measure of the dropout
patients. The patients who dropped out due to adverse events often had higher
scores (i.e., worsening of the disease) of efficacy measures at the last available visit.
Since the dropout status of these patients can be explained by their observed score,
likelihood-based MMRM analysis appears to be a reasonable statistical approach
in such circumstances.

Since the possibility of a nonignorable missingness mechanism in longitudinal
clinical trial data cannot be ruled out, it is important to consider some exploratory
analyses to understand the missingness mechanism of the dropout patients, as well
as some statistical methods that will minimize the impact of missingness on the final
findings. Sensitivity analyses using the available statistical methods under various
missingness assumptions should be performed routinely to assess the robustness
of the findings. These analyses should be planned for in protocol when patient
dropouts are expected. Since the statistical finding might be uninterpretable in
the presence of high dropout rates, the dropout rates in a trial need be under
consideration in interpreting the efficacy findings.

Finally, no universally best statistical method is available for the analysis of
longitudinal incomplete clinical trial data. The likelihood-based mixed-effects model
repeated measure analysis (i.e., MMRM analysis) under the ignorable missing data
framework appears to be a robust approach in estimating the true treatment difference
and in controlling Type I error rates. Hence, MMRM analysis is a sensible analytic
choice in evaluating the efficacy of a drug, along with a sensitivity analysis framework
to assess the robustness of results under various missingness assumptions.
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