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MMRotate: A Rotated Object Detection Benchmark
using PyTorch
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ABSTRACT

We present an open-source toolbox, named MMRotate, which pro-

vides a coherent algorithm framework of training, inferring, and

evaluation for the popular rotated object detection algorithm based

on deep learning. MMRotate implements 18 state-of-the-art algo-

rithms and supports the three most frequently used angle defini-

tion methods. To facilitate future research and industrial applica-

tions of rotated object detection-related problems, we also provide

a large number of trained models and detailed benchmarks to give

insights into the performance of rotated object detection. MMRo-

tate is publicly released at https://github.com/open-mmlab/mmrotate.
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1 INTRODUCTION

In recent years, deep learning has achieved tremendous success in

fundamental computer vision applications such as image recogni-

tion [8], object detection [4, 16, 25, 26, 28] and image segmentation

[7, 19]. In light of this, deep learning has also been applied to ar-

eas such as faces detection [27], text detection [12, 13, 17, 20, 45]

and aerial images detection [32, 35, 38]. In these object detection

tasks, oriented bounding boxes (OBBs) are widely used instead of

horizontal bounding boxes (HBBs) because they can better align

the objects for more accurate identification. This kind of special

object detection is called rotated object detection, also known as
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arbitrary-oriented object detection. In addition to the three appli-

cations mentioned above, rotated object detection is also widely

used in 3D objects detection [44] and retail scenes detection [2, 23].

Different approaches utilize different angle definition methods,

optimization strategies (e.g., optimizers, learning rate schedules,

epoch numbers, and data augmentation pipelines), and CUDA op-

erators (e.g. IoU and NMS for OBBs). To encompass the diversity

of components used in various models, we have proposed the MM-

Rotate toolbox covering recent popular rotated object detection ap-

proaches in a unified framework. The toolbox now implements

18 rotated object detection methods, 10 CUDA speed-up opera-

tors, and 12 losses. Integrating various algorithms confers code

reusability and therefore dramatically simplifies the implementa-

tion of algorithms. Moreover, the unified framework allows differ-

ent approaches to be compared against each other fairly and that

their key effective components can be easily investigated. To the

best of our knowledge, MMRotate supports most angle definition

methods in various open source toolboxes, and it will facilitate fu-

ture research on rotated object detection.

MMRotate is hosted on GitHub under the Apache-2.0 License.

The repository contains the compressed archive file of software1

and documentation, including installation instructions, dataset prepa-

ration scripts, API documentation2, model zoo, tutorials and user

manual. MMRotate re-implements 18 state-of-the-art rotated ob-

ject detection algorithms and provides extensive benchmarks and

models trained on popular academic datasets. In addition to (dis-

tributed) training and testing scripts, It offers a rich set of utility

tools covering visualization and demonstration.

2 RELATED WORK

Text detection.Text detection aims to localize the bounding boxes

of text instances. Recent research focus has shifted to challenging

arbitrary-shaped text detection [7, 12, 14, 19, 20]. R2CNN [12] si-

multaneously predicts the axis-aligned and inclined boxes by adding

an inclined box branch and uses an inclined NMS to obtain the de-

tection results. While Mask R-CNN [7] can be used to detect texts,

it might fail to detect curved and dense texts due to the rectangle-

based ROI proposals. On the other hand, RRPN [20] proposes a

Rotation RPN to generate inclined proposals with text orientation

angle information and project arbitrary-oriented proposals to the

feature map with Rotation ROI pooling. TextSnake [19] describes

text instances with a series of ordered, overlapping disks.

Aerial image detection. Aerial image detection plays a vital

role in the military and attracts more and more attention in civil-

ian field [3, 33, 34, 37]. It aims to predict more accurate bounding

boxes and preserve the direction information of the object on aerial

images (including ship, plane, vehicles, bridge, etc.). Although ro-

tated object detection provides more accurate prediction results

than horizontal detection, it requires defining a new bounding box

representation. The most common is the \-based representation

(G,~,F, ℎ,\), and it adds an extra angle parameter based on the

horizontal box. Depending on the angle range, it can be divided

into OpenCV definition (�>2 , \ ∈ [−c/2, 0)) [32, 36, 38], long edge

90° definition (�;490, \ ∈ [−c/2, c/2)) [3, 6], and long edge 135°

1https://github.com/open-mmlab/mmrotate/archive/refs/heads/main.zip
2https://mmrotate.readthedocs.io/en/latest/

Table 1: Open source rotated object detection benchmarks.

Benchmark AerialDet JDet OBBDet AlphaRotate MMRotate

DL library PyTorch Jittor PyTorch TensorFlow PyTorch

Inference
PyTorch Jittor PyTorch TensorFlow

PyTorch

engine onnx runtime

OS Linux
Windows Windows

Linux
Windows

Linux Linux Linux

Algorithm 5 8 9 16 18

Dataset 1 4 5 11 4

Doc. - - - X X

Easy install - - - - X

Maintain - X X X X

definition (�;4135, \ ∈ [−c/4, 3c/4)) [5]. Recent works used two-

dimensional Gaussian distribution [37, 39] and point sets [22–24,

31] to represent objects, which have achieved excellent results. Fea-

ture alignment is another research direction of lifting rotated ob-

ject detection performance. R3Det [35] proposes a feature refine-

ment module to re-construct the feature map based on the refined

bounding box output from the previous stage. S2A-Net [5] pro-

poses an alignment convolution to alleviate the misalignment be-

tween axis-aligned convolutional features and arbitrary oriented

objects. Recently, ReDet [6] began to study a novel rotation-equivariant

RoI Align to produce rotation-equivariant features. Label Assign-

ment is also a research hotspot. DAL [22] reconsiders whether

IoU is a truly credible division basis and defines a new match-

ing degree. SLA [21] proposes a sparse label assignment strategy

to achieve training sample selection based on posterior IoU dis-

tribution. SASM [9] proposes two novel shape-adaptive strategies

which can dynamically select samples and measure the quality of

positive samples.

Open source toolbox. Several open source rotated object de-

tection toolboxes have been developed over the years to meet the

increasing demand from both academia and industry.

AerialDetection3 is the pioneer of deep learning-based open source

rotated object detection toolbox. It was publicly released in 2019,

and provides evaluation tools for DOTA data set [29]. It supports

five rotated object detection methods, e.g., Rotated RetinaNet [15],

Rotated Faster R-CNN [26] and RoI Trans [3]. However, it has not

been maintained anymore. OBBDetection4 [30] is another popu-

lar open source oriented object detection toolbox. It supports 9 ro-

tated object detection methods and provides a series of efficient

processing tools for huge remote sensing images. AerialDetection

and OBBDetection are both modified based on MMDetection5 [1],

which is a state-of-the-art open source object detection toolbox

based on PyTorch. Nevertheless, they cannot enjoy the latest tech-

nology provided by MMDetection, since they rely on a specific

old version of MMDetection. JDet6 is an open source aerial image

object detection toolbox based on a high-performance deep learn-

ing library [11]. It can be deployed on multiple platforms such as

Linux and Windows, and the 8 detectors it reproduces have faster

inference speed than PyTorch. TensorFlow-based rotated object de-

tection toolbox AlphaRotate7 [40] has been released recently. It

3https://github.com/dingjiansw101/AerialDetection
4https://github.com/jbwang1997/OBBDetection
5https://github.com/open-mmlab/mmdetection
6https://github.com/Jittor/JDet
7https://github.com/yangxue0827/RotationDetection
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Table 2: Accuracy comparison of rotated object detectors on DOTA v1.0. MS means multiple scale image split. RR means

random rotation. All models are inferred with one 2080Ti GPU.

Baseline Technique fp16 Box Def. Lr schd. Mem.(GB) Inf. time (fps) Aug. mAP

RetinaNet-H [15]

- - oc 1x 3.38 15.7 - 64.55

GWD [37] - oc 1x 3.39 15.5 - 69.55

KFIoU [41] - le90 1x 3.38 15.1 - 69.60

KFIoU [41] - oc 1x 3.39 15.6 - 69.76

KFIoU [41] - le135 1x 3.38 15.3 - 69.77

KLD [39] - oc 1x 3.39 15.6 - 69.94

RetinaNet-O [15]

- - le90 1x 3.38 16.9 - 68.42

- X le90 1x 2.36 22.4 - 68.79

CSL [33] X le90 1x 2.60 24.0 - 69.51

KLD [39] - le90 1x 3.35 16.9 - 70.22

- - le135 1x 3.38 17.2 - 69.79

ATSS [43] - le90 1x 3.12 18.2 - 70.64

ATSS [43] - le135 1x 3.19 18.8 - 72.29

- - le90 1x 3.78 17.5 MS+RR 76.50

RepPoints [42]

- - oc 1x 3.45 15.6 - 59.44

SASM [9] - oc 1x 3.53 15.7 - 66.45

G-Rep [10] - le135 1x 4.05 8.6 - 69.49

CFA [23] - le135 1x 3.45 16.1 - 69.63

CFA [23] - oc 40e 3.45 16.1 - 73.45

FCOS [28]

- - le90 1x 4.18 20.9 - 70.70

CSL [33] - le90 1x 4.23 20.2 - 71.76

KLD [39] - le90 1x 4.18 20.7 - 71.89

R3Det [35]

- - oc 1x 3.54 12.4 - 69.80

ATSS [43] - oc 1x 3.65 13.6 - 70.54

KLD [39] - oc 1x 3.54 12.4 - 71.83

KFIoU [41] - oc 1x 3.62 12.2 - 72.68

S2ANet [5]
- - le135 1x 3.14 15.5 - 73.91

- X le135 1x 2.17 17.4 - 74.19

Faster RCNN [26]

- - le90 1x 8.46 16.5 - 73.40

Gliding Vertex [31] - le90 1x 8.45 16.4 - 73.23

Oriented RCNN [30] X le90 1x 7.37 21.2 - 75.63

Oriented RCNN [30] - le90 1x 8.46 16.2 - 75.69

RoI Trans. [3] X le90 1x 7.56 19.3 - 75.75

ReDet [6] X le90 1x 7.71 13.3 - 75.99

RoI Trans. [3] - le90 1x 8.67 14.4 - 76.08

ReDet [6] - le90 1x 9.32 10.9 - 76.68

RoI Trans. [3] + Swin-T [18] - le90 1x 9.23 10.9 - 77.51

RoI Trans. [3] - le90 1x 8.96 14.4 MS+RR 79.66

ReDet [6] - le90 1x 9.63 10.9 MS+RR 79.87

RoI Trans. [3] + KLD [39] + Swin-T [18] - le90 1x 12.3 10.9 MS+RR 80.90

currently implements 18 rotated object detection methods, includ-

ing the algorithms that PyTorch and Jittor do not support, e.g.,

GWD [37], KLD [39], and R3Det [35]. Comprehensive comparisons

among these open source toolboxes are given in Table 1.

3 ROTATED OBJECT DETECTION STUDIES

Many important factors can affect the performance of deep learning-

based detectors. This section investigates the angle definitionmethod,

backbones, and loss of network architectures. We exchange the

above-mentioned components between different rotated object de-

tection approaches to measure the performance, memory usage,

and inference time.

Angle definition method. OpenCV definition, long edge 90°

definition, and long edge 135° definition are all supported by MM-

Rotate. All rotated object detection algorithms can easily switch

between these three angle definition methods by modifying the

configuration file. Meanwhile, we established an angle conversion

API to facilitate other angle definition methods.

Backbone. ResNet50 [8] are commonly used in object detec-

tion approaches. To improve the accuracy, we also introduce a

transformer-based backbone Swin transformer [18]. Table 2 com-

pares ResNet50 and Swin-T in terms of memory, inference time

and mAP by plugging them in RoI Trans. It has been shown that

Swin-T significantly outperforms ResNet50, although its inference

speed is 21% slower than that of ResNet50.
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Loss. GWD, KLD, and KFIoU propose different loss to train the

rotated object detector. Our experimental results in Table 2 show

that the KLD loss achieved the best mAP in the OpenCV definition

method when using RetinaNet as the baseline. However, when us-

ing the R3Det as the baseline, the KFIoU loss achieved the best

mAP in the OpenCV definition method.

Mixed precision training and Useful tools. All detectors in

MMRotate support mixed precision training. Our experimental re-

sults in Table 2 show that the model trained with fp16 has a similar

mAP as the original model. MMRotate also provides a range of effi-

cient and convenient tools (including visualization, confusion ma-

trix analysis, huge image inference), allowing researchers to focus

on the rotated object detection algorithm itself.

4 CONCLUSIONS

With the practical importance and academic emergence for visual

rotation detection, MMRotate is a deep learning benchmark for vi-

sual object rotation detection in PyTorch under the Apache-2.0 li-

cense. The architecture is designated for flexibility and ease of use

to facilitate the deployment of rotated object detection in diverse

domains, both in industrial applications and academic research.

We will continue to improve the entire optimized benchmark and

support representative detection methods in the future. We also

welcome the community to participate in the development.
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