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Abstract—We investigate a stochastic signal-processing frame-
work for signals with sparse derivatives, where the samples of a
Lévy process are corrupted by noise. The proposed signal model
covers the well-known Brownian motion and piecewise-constant
Poisson process; moreover, the Lévy family also contains other
interesting members exhibiting heavy-tail statistics that fulfill the
requirements of compressibility. We characterize the maximum-
a-posteriori probability (MAP) and minimum mean-square error
(MMSE) estimators for such signals. Interestingly, some of the
MAP estimators for the Lévy model coincide with popular signal-
denoising algorithms (e.g., total-variation (TV) regularization).
We propose a novel non-iterative implementation of the MMSE
estimator based on the belief-propagation algorithm performed
in the Fourier domain. Our algorithm takes advantage of the fact
that the joint statistics of general Lévy processes are much easier
to describe by their characteristic function, as the probability
densities do not always admit closed-form expressions. We
then use our new estimator as a benchmark to compare the
performance of existing algorithms for the optimal recovery of
gradient-sparse signals.

Index Terms—Lévy process, stochastic modeling, sparse-signal
estimation, non linear reconstruction, total-variation estimation,
belief propagation (BP), message passing.

I. INTRODUCTION

ESTIMATION of signals from incomplete or distorted

measurements is a fundamental problem in signal pro-

cessing. It inevitably arises during any realistic measurement

process relying on some physical acquisition device.

Consider the problem of estimating a signal x 2 R
n from

a noisy vector y = x + n 2 R
n where the components of

n are independent and distributed with a known probability

distribution. If we suppose that the components of the vector

x are also independent, then the estimation problem becomes

separable and reduces to n scalar estimation problems. In

practice, however, due to correlations between the components

of x, simple pointwise techniques are suboptimal and more

refined methods often perform significantly better. In this

paper, we consider the problem of estimating signals with

sparse derivatives. We take continuous-domain perspective and

propose Lévy processes [1]–[4] as a natural approach to model

such signals. The fundamental defining property of Lévy

process is that it has independent and stationary increments.

Therefore, the application of a finite-difference operator on

samples of a Lévy process decouples it into a sequence of

independent random variables. Interestingly, the class of Lévy

processes is in one-to-one correspondence with the class of

infinitely divisible distributions. Such distributions typically
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exhibit a heavy-tail behavior that has recently been proven

to fulfill the requirements of compressibility [5]. Therefore,

Lévy processes can be considered as the archetype of sparse

stochastic signals [3].

A. Contributions

Many recent algorithms for the recovery of sparse signals

can be interpreted as maximum-a-posteriori (MAP) estimators

relying on some specific priors. From this Bayesian perspec-

tive, state-of-the-art methods based on gradient regularizers,

such as total-variation (TV) [6] minimization, implicitly as-

sume the signals to be sampled instances of Lévy processes [7,

Section II]. In this paper, we investigate the minimum-mean-

squared error (MMSE) estimator for Lévy processes. The per-

formance of the estimator can be interpreted as a lower-bound

on the MSE for the problem of recovery of gradient-sparse

signals. Unfortunately, due to high-dimensional integration,

MMSE estimators are computationally intractable for general

signals. By considering the Lévy signal model, we propose a

novel method for computing MMSE estimator based on the

belief-propagation (BP) algorithm on cycle-free factor graphs

[8]–[10].

The main contributions of this work are as follows:

• Bayesian formulation of the signal recovery problem

under the Lévy hypothesis for a general “signal+noise”

measurement model. With this formulation, we are able to

derive an equivalence between MAP estimators for Lévy

processes and some existing algorithms for the recovery

of sparse signals.

• Characterization of the MSE optimal solution and the

determination of performance bounds. We show that the

MMSE estimator can be computed directly with the BP

algorithm. The algorithm also obtains the marginals of

the posterior distribution, which allows us to estimate

the MSE of the reconstruction and provide confidence

intervals.

• Development of a novel frequency-domain message-

passing algorithm specifically tailored to the MMSE

estimation of Lévy processes. Some of the sparsest priors

considered here do not have closed-form probability

density functions. Indeed, they are represented in terms

of their characteristic function obtained by the Lévy-

Khintchine theorem [1], [2]. The frequency-domain algo-

rithm allows us to use the characteristic function directly

without any numerical inversion.

• Experimental evaluation and comparison with standard

solutions such as LMMSE, `1-minimization, and `p-

relaxation [11]. In particular, the availability of MMSE

allows us to benchmark these estimators on signals with

desired properties such as sparsity.
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Fig. 1. Signal model considered in this work. The continuous-domain
Lévy process x(t) is sampled, and the resulting vector z ∈ R

m is passed
through a separable measurement channel py|z(y|z) to yield y ∈ R

m. We
investigate the estimation of interpolated vectors x ∈ R

n, n ≥ m, from noisy
measurements y.

B. Outline

The paper is organized as follows: In Section II, we in-

troduce our signal and measurement model. In particular, we

review the theory of Lévy processes and their connection to

sparse estimation. In Section III, we characterize the Bayesian

MAP and MMSE estimators. In Section IV, we illustrate the

connections between the MAP estimator for Lévy processes

and standard variational approaches. In Section V, we provide

closed-form formulae for evaluating the MMSE under the

assumption of AWGN. In Section VI, we present the belief

propagation algorithm as an efficient way to compute the

MMSE estimator. We then introduce a new frequency-domain

algorithm particularly well suited for Lévy processes. In

Section VII, we provide numerical experiments demonstrating

the applications of the method.

C. Notations

Throughout the paper, we typeset matrices in an uppercase

boldface, vectors in a lowercase boldface, and scalars in

italic typeface. Random and deterministic quantities are not

distinguished typographically. We use px and py|x to indicate

probability distribution functions (pdf), and p̂x and p̂y|x to

denote the corresponding characteristic functions. The pdf of

a Gaussian random variable x ⇠ N (µ,�2) will often be

denoted as G(x � µ;�2). The symbol
d
= indicates equality

in distribution so that, for any two random variables, we have

that x
d
= y if Prob (x  a) = Prob (y  a) for all a 2 R.

II. SIGNAL AND MEASUREMENT MODEL

In this section, we describe the signal model summarized

in Figure 1. We first give a powerful, yet simple continuous-

domain stochastic formulation of the signal. The one-to-

one mapping between our model and the extended family

of infinitely divisible distributions is discussed. We finally

describe the measurement model and provide examples of

typical measurement channels.

A. Lévy Processes

Stochastic processes are often used to model random signals

with the Brownian motion and the Poisson process being

two most common examples. Lévy processes—often seen

as analogues of random walks in continuous time—extend

those two processes to a larger family of distributions. They

represent a fundamental and well-studied class of stochastic

processes [1], [2]. Let {x(t) : t � 0} be a continuous-time

stochastic process. It is called a Lévy process if

1) x(0) = 0 almost surely;

2) for each n 2 N and 0  t1 < t2 < · · · < tn < 1 the

random variables {x(tk+1)� x(tk) : 1  k  n� 1} are

independent;

3) for each 0  t1 < t2 < 1, the random variable x(t2)�
x(t1) is equal in distribution to x(t2 � t1);

4) for all ✏ > 0 and for all t1 � 0

lim
t2!t1

Prob (|x(t2)� x(t1)| > ✏) = 0.

Together, Properties 2) and 3) are commonly referred to as the

stationary-independent-increments property, while Property 4)

is called the stochastic continuity.

One of the most powerful results concerning Lévy processes

is that they are in one-to-one correspondence with the class

of infinitely divisible probability distributions. The random

variable x is said to be infinitely divisible if, for any positive

n 2 N, there exist i.i.d. random variables y(1), . . . , y(n) such

that

x
d
= y(1) + · · ·+ y(n).

In other words, it must be possible to express the pdf px as

the n-th convolution power of py . In fact, it is easy to show

that the pdf of the increment ut = x(t + s) � x(s) of length

t of any Lévy process is infinitely divisible

ut
d
=x(t)

d
=u

(1)
t/n + · · ·+ u

(n)
t/n,

where each

u
(k)
t/n = x

✓
kt

n

◆
� x

✓
(k � 1)t

n

◆
.

The increments u
(k)
t/n are of length t/n and are i.i.d. by the

stationary-independent-increments property. Conversely, it has

also been proved that there is a Lévy process for each infinitely

divisible probability distribution [1].

The fundamental Lévy-Khintchine formula provides the

characteristic function of all infinitely divisible distributions:

pu is an infinitely divisible probability distribution if and only

if its characteristic function can be written as

p̂u(!) =E
⇥
ej!u

⇤

=exp
⇣
ja! � 1

2b!
2

+

Z

R\{0}

�
ej!z � 1� jz! |z|<1(z)

�
v(z)dz

⌘
,

where a 2 R, b � 0, and where |z|<1 is an indicator function.

The function v � 0 is the Lévy density satisfying
Z

R\{0}

min
�
1, z2

�
v(z)dz < 1.

The representation of p̂u by a triplet (a, b, v(·)) is unique.

In this paper, we limit our attention to even-symmetric Lévy

densities v(z) = v(�z), which results in the simplified Lévy-

Khintchine formula

p̂u(!) = exp
⇣
ja!� 1

2b!
2+

Z

R\{0}

�
ej!z � 1

�
v(z)dz

⌘
. (1)
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Fig. 2. Sample paths of Lévy processes discussed in this paper.

B. Examples of Lévy Processes

We now give examples of a few Lévy processes that are

particularly interesting for us. Sample paths of these processes

are summarized in Figure 2. Without loss of generality, we

assume an increment u = x(s) � x(s � 1) for some fixed

s � 0.

1) Brownian Motion: By setting a = 0 and choosing the

Lévy density v(z) = 0, we obtain the familiar Brownian mo-

tion that has stationary independent increments characterized

by

p̂u(!) = e�
1
2 b!

2

, (2)

with b � 0. This implies that the increments of the resulting

Lévy process are Gaussian random variables with mean 0 and

variance b, which corresponds to u ⇠ N (0, b). We illustrate

in Figure 2(a) a single realization of a Brownian motion.

2) Compound Poisson Process: Let {zk : k 2 N} be a

sequence of i.i.d. random variables with distribution pz and

let n(t) ⇠ Poisson(�) be a Poisson process of intensity � >
0 that does not depend on any zk. The compound Poisson

process y is then defined as

y(t) =

n(t)X

k=1

zk,

for each t � 0. This is a Lévy process obtained by setting the

parameter triplet to (0, 0, v(z) = �pz(z)), which results in the

characterization of increments

p̂u(!) = e�(p̂z(!)�1), (3)

where p̂z is the Fourier transform of pz . On finite inter-

vals, the sample paths of the process are piecewise-constant

(Figure 2(b)), while the size of the jumps is determined by

pz [2]. Compound Poisson processes are piecewise-constant

signals for which TV-like estimation algorithms are well

suited [12]. The parameter � controls the sparsity of the signal;

it represents the rate of discontinuities. Compound Poisson

processes are of special importance in Lévy-Itō decomposition

of Lévy processes. The latter decomposition expresses any

Lévy process as the sum of three processes, two of which are

Brownian motion and Compound Poisson. More details are

provided in Appendix A.

3) Laplace Increment Process: The Lévy process with

Laplace-distributed increment u is obtained by setting the

parameter triplet to
�
0, 0, v(z) = e��|z|/|z|

�
, which results in

p̂u(!) =
�2

�2 + !2
, (4)

where � > 0 is the scale parameter of the Laplace distribution.

To obtain the characteristic function (4), we remark that

log (p̂u(!)) =

Z

R\{0}

�
ej!z � 1

� e��|z|

|z|
dz

= 2

Z
1

0

(cos (!z)� 1)
e��z

z
dz.

Then, by differentiation with respect to ! and integrating

back using the condition p̂u(0) = 1, we obtain (4). The

corresponding pdf is

pu(u) =
�

2
e��|u|. (5)

An interesting observation is that the Bayesian MAP inter-

pretation of the TV regularization method with a first-order

finite-differences operator inherently assumes the underlying

signal to be a Lévy process with Laplace increments. We give

in Figure 2(c) an illustration of such process.

4) Lévy Flight Process: Stable random variables are such

that a linear combination of two independent such random

variables results in a third stable random variable [1]. In the

symmetric case, they are often referred to as symmetric ↵-

stable random variables and written as u ⇠ S↵S, where

0 < ↵ < 2 is the stability parameter. It is possible to

generate a Lévy process with ↵-stable increments by setting�
0, 0, v(z) = c↵/|z|

1+↵
�
, which results in

p̂u(!) = e�⇢|!|α , (6)

with ⇢ > 0 and 0 < ↵ < 2. It has been recently shown

that such heavy-tail distributions result in highly compressible

sequences [5]. A sample signal generated from a Cauchy

increment Lévy flight, which corresponds to the ↵-stable

process with ↵ = 1, is illustrated in Figure 2(d).

C. Innovation Modeling

Recently, an alternative system-theoretic formulation of

Lévy processes was proposed in the context of the general

theory of sparse stochastic processes [3], [4]. The authors

specify the Lévy process {x(t) : t � 0} as the solution of

the stochastic differential equation

d

dt
x(t) = w(t), (7)

where the differentiation is interpreted in the weak sense of

distributions. The process w is a non-Gaussian white noise

referred to as continuous-time innovation process. According
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to the formalism developed in [3], the Lévy process is then

generated by integrating the white noise according to

x(t) =

Z t

0

w(t0)dt0, (8)

which provides a convenient linear-system interpretation. The

delicate aspect is that the integrator is not BIBO stable and

the white noise does not admit a classical interpretation as a

function. The result confirms that, for all positive k 2 N, the

quantities

uk = x(k)� x(k � 1) = Ddx(k)

=

Z k

k�1

w(t)dt = hrect
�
·� k + 1

2

�
, w(·)i

(9)

are i.i.d. random variables that can be seen as discrete innova-

tions. The symbol h·, ·i denotes an inner product between two

functions, Dd is the finite-difference operator, and rect is the

rectangular function. The fundamental observation is that the

increment is obtained by applying the discrete version of the

derivative to x(t), in an attempt to emulate (7) using discrete

means only.

D. Measurement Model

Consider the measurement model illustrated in Figure 1. The

vector z 2 R
m contains uniformly sampled values of x(t)

zi = x(iTs), i 2 [1 . . .m], (10)

where Ts > 0 is the sampling interval. The components of y

are generated by a separable measurement channel given by

the conditional probability distribution

py|z(y | z) =
mY

i=1

py|z(yi | zi). (11)

The measurement channel models distortions affecting the

signal during the acquisition process. This paper addresses

the computation of the estimator bx of the vector x 2 R
n

containing the samples of the original signal x on some

uniform grid

xk = x(kTe), k 2 [1 . . . n], (12)

where Te > 0 is the interpolation interval. We wish to mini-

mize the squared-error of the reconstruction in the situations

when Ts = msTe for some positive ms 2 N. This implies

that in general n � m. The special case n = m reduces

the problem to signal denoising. In the sequel, we assume

Ts(m � 1) = Te(n � 1) and set Te = 1 to simplify the ex-

pressions. In particular, this implies that for any ms = Ts/Te

we have zi = xms(i�1)+1 for all i 2 [1 . . .m].
The generality of measurement channel allows us to han-

dle both signal-dependent and independent distortions. Some

common noise models encountered in practice are

1) Additive White Gaussian Noise (AWGN): The mea-

surements in the popular AWGN noise model are given by

y = z + n, where n 2 R
m is a signal independent-Gaussian

vector with i.i.d components ni = yi � zi ⇠ N (0,�2). The

transitional probability distribution then reduces to

py|z(y | z) = G(y � z;�2). (13)

2) Scalar Quantization: Another common source of signal

distortion is the analog-to-digital converter (ADC). When the

conversion corresponds to a simple mapping of the analog

voltage input to some uncoded digital output, it can be

modeled as standard AWGN followed by a lossy mapping

Q : R ! C. The nonlinear function Q is often called a

K-level scalar quantizer [13]. It maps the K-partitions of

the real line
�
Q�1(ci) : i = 1, . . . ,K

 
✓ R into the set of

discrete output levels C = {ci : i = 1, . . . ,K}. This channel

is signal-dependent. It is described in terms of the transitional

probability distribution

py|z(y | z) =

Z

Q−1(y)

G(z0 � z;�2)dz0, (14)

where Q�1(y) = {z 2 R : Q(z) = y} denotes a single parti-

tion.

III. BAYESIAN FORMULATION

We now specify explicitly the class of problems we wish to

solve and identify corresponding statistical estimators. Con-

sider the vector u 2 R
n obtained by applying the finite-

difference matrix D to x in (12). Then, from the stationary

independent increments property of Lévy processes the com-

ponents

uk = [Dx]k = xk � xk�1, (15)

of the vector u are realizations of i.i.d. random variables

characterized by the simplified Lévy-Khintchine formula (1).

Note that, from the definition of the Lévy process we have

x0 = 0. We construct the conditional probability distribution

for the signal x given the measurements y as

px|y (x |y) / py|x (y |x) px (x)

/
mY

i=1

py|z(yi | zi)
nY

k=1

pu ([Dx]k),
(16)

where we use / to denote identity after normalization to

unity. The distribution of the whitened elements pu is, in

principle, obtained by taking the inverse Fourier transform

pu(u) = F�1 {p̂u}(u); however, it does not necessarily admit

a closed-form formula. The posterior distribution (16) of the

signal provides a complete statistical characterization of the

problem. In particular, the MAP and MMSE estimators of x

are specified by

bxMAP = argmax
x2Rn

�
px|y (x |y)

 
(17)

bxMMSE = E [x |y]. (18)

Finding efficient methods to evaluate (17) and (18) is a

common challenge encountered in signal processing.

IV. MAP ESTIMATION

An estimation based on the minimization of some cost func-

tional is a popular way of obtaining the MAP estimator bxMAP.

The availability of efficient numerical methods for convex and

nonconvex optimization partially explain the success of such
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methods [12], [14]–[16]. The MAP estimator in (17) can be

reformulated as

bxMAP = argmax
x2Rn

�
px|y (x |y)

 

= argmin
x2Rn

�
� log

�
px|y (x |y)

� 

= argmin
x2Rn

{D (x,y) +R (x)},

(19a)

where

D (x,y) = �
mX

i=1

log
�
py|z(yi | zi)

�
, (19b)

R (x) = �
nX

k=1

log (pu ([Dx]k)). (19c)

The term D(·) is the data term and R(·) the regularization

term.

In the AWGN, model the MAP estimation reduces to the

popular regularized least-squares minimization problem

bxMAP = argmin
x2Rn

1
2 ky � zk2 + �2

nX

k=1

�u([Dx]k), (20)

where z 2 R
m is given in (10) and �u(x) = � log (pu(x)) is

the potential function.

The estimator in (20) clearly illustrates the connections

between the standard variational methods and our stochastic

model. In particular, in the framework of the Lévy process,

the Brownian motion yields the classical Tikhonov regularizer.

The Lévy process with Laplace increments provides the `1-

based TV regularizer. Finally, the Lévy flight process results

in a log-based regularizer that is linked to the limit case of

the `p relaxation as p tends to zero [11]. Such regularizers

have been shown to be effective in several problems of the

recovery of sparse signals [12], [15]. In [17] the authors

have proposed an efficient method for solving the regularized-

least-squares-based MAP denoising of Lévy processes. We

also point out that the MAP estimation of compound-Poisson

processes yields a trivial solution due to a point mass at zero.

V. MMSE ESTIMATION IN AWGN

In this section, we present some theoretical results related

to MMSE denoising. For detailed derivation of the results, we

refer the reader to Appendix B. Consider AWGN denoising

problem

y = z+ n with z = x, (21)

where each noise component ni ⇠ N (0,�2). Then, for any

distribution on x, it is possible to characterize the MMSE

estimator as

bxMMSE = y + �2
r log py(y), (22)

where r denotes the gradient and py is the pdf of the noisy

vector y [18], [19]. Note that py is given by the convolution

py = px ⇤ pn, where px is the prior and pn is the pdf of the

AWGN. Then, MMSE of the estimation problem is given by

MMSE(n) =
1

n
E
⇥
kx� bxMMSEk2

⇤

= �2 +
�4

n

Z
py(y)∆ log py(y)dy,

(23)

. . .

. . .

1 2 3 4 n

Fig. 3. Factor-graph representation of the posterior distribution (16) with
ms = 2. In the graph, square factor nodes represent the probability densities
and circled variable nodes represent the unknowns. Functions µl

2
and µr

2

represent beliefs at the variable node 2.

where ∆ is the Laplacian with respect to y.

Although elegant, Equations (22) and (23) are not tractable

for arbitrary distributions on x. In the special case of Brownian

motion, where the increments are Gaussian random variables,

the MMSE estimator reduces to the well-known Wiener filter,

which is commonly referred to as linear minimum mean-

square error (LMMSE) estimator. As described in Appendix B,

by using the Central Limit theorem argument in the Karhunen-

Loève Transform (KLT) domain, it is possible to obtain the

following asymptotic description of the MMSE

lim
n!1

MMSE(n) =
�2

q
1 + 4 �2

�2
u

. (24)

In general, (24) is not equivalent to the MMSE for non-

Gaussian increments; however it still corresponds to the per-

formance of LMMSE estimator.

VI. MESSAGE PASSING ESTIMATION

A. Exact Formulation

In this section, we specify the MMSE estimator bxMMSE

in (18) for the signals under the Lévy-process model. Unfor-

tunately, due to the high-dimensionality of the integral, this

estimation is intractable in the direct form. However, several

computational methods exist for computing this integral. We

adopt the sum-product belief-propagation (BP) [8] method,

which efficiently approximates the computationally intractable

direct marginalization of the posterior (16). The BP-based

message-passing methods have successfully been used in

numerous inference problems in statistical physics, computer

vision, channel coding, and signal processing [8]–[10], [20]–

[25].

In order to apply the BP, we construct the bipartite factor-

graph G = (V, F,E), structured according to the posterior

distribution in (16). We illustrate in Figure 3 an example of

a factor-graph for ms = 2. The graph consists of two sets of

nodes, the variable nodes V = {1, . . . , n} (circles), the factor

nodes F = {1, . . . , n + m} (squares), and a set of edges E
linking variables to the factors they participate in. To introduce

the BP algorithm, we define the functions µl
i and µr

i , which

denote the messages exchanged along the edges of the graph.

These messages—often referred to as beliefs—are in fact pdfs

representing the desirable state of the variable node i. We also

define for all i 2 [1 . . . n] and j = 1+(i�1)/ms the function

⌘i(x) =

(
py|z(yj |x), when j 2 N

1, otherwise.
(25)
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Whenever the component xi has a corresponding measure-

ment, the function ⌘i is equivalent to the channel pdf. Other-

wise, ⌘i is equivalent to the constant function.

Given the measurements y 2 R
m and the functions ⌘i and

pu, the steps of the BP estimation are:

1) Initialization: Set

µl
1(x) = pu(x), (26a)

µr
n(x) = 1. (26b)

2) Message Updates: For i = 1, . . . , n� 1, compute

µl
i+1(x) /

Z

R

pu(x� z)⌘i(z)µ
l
i(z)dz, (27a)

µr
n�i(x) /

Z

R

pu(z � x)⌘j(z)µ
r
j(z)dz, (27b)

where j = n� i+1. The symbol / denotes identity after

normalization to unity. Since the pdf pu is symmetric, the

expressions can be rewritten in terms of the convolutions

µl
i+1 / pu ⇤ ⌘iµl

i and µr
n�i / pu ⇤ ⌘jµr

j .

3) Result: For i = 1, . . . , n, compute

[bxMMSE]i =

Z

R

xpxi|y (x |y) dx, (28a)

where the marginal pdf is obtained by

pxi|y (x |y) / µl
i(x)µ

r
i (x)⌘i(x). (28b)

The proposed update rules recursively marginalize the poste-

rior distribution, reducing intractable high-dimensional inte-

gration into 2n convolutions. It is well-known that BP gives

exact marginal probabilities for all the nodes in any singly

connected graph. Consequently, for our problem the solution

of the algorithm coincides with bxMMSE.

B. Fourier-Domain Alternative

The BP algorithm presented in Section VI-A assumes

availability of a closed-form expression for the pdf pu. Unfor-

tunately this form is often unavailable, since the distribution

is defined by its characteristic function p̂u obtained by the

Lévy-Khintchine formula (1). When the general shape of the

pdf is unknown, a naı̈ve numerical evaluation of the inverse

Fourier-transform of the characteristic function can lead to

unexpected results. As an example, consider the compound

Poisson process. The characteristic function (3), describing

the distribution of the increments, does not generally admit

a closed-form expression of its inverse Fourier transform.

Moreover, it results in a pdf containing a probability mass

(a Dirac delta function) at zero, which needs to be taken into

account explicitly for a correct numerical inversion.

Fortunately, the BP algorithm presented above can readily

be performed in the frequency domain. The message-update

equations are obtained by the convolution property of the

Fourier transform, which amounts to switching the role of

multiplications and convolutions in (27) and (28b). The final

estimation step is also simplified by applying the moment

property Z

R

xnf(x)dx = jn
dn

d!n
f̂(!)

����
!=0

, (29)

where f̂(!) =
R
R
f(x)e�j!xdx is the Fourier transform of f .

1) Initialization: Set

µ̂l
1(!) = p̂u(!), (30a)

µ̂r
n(!) = �(!), (30b)

where � is the Dirac delta function.

2) Message updates: For i = 1, . . . , n� 1, compute

µ̂l
i+1(!) / p̂u(!) · (⌘̂i ⇤ µ̂l

i)(!), (31a)

µ̂r
n�i(!) / p̂u(!) · (⌘̂j ⇤ µ̂r

j)(!), (31b)

where j = n� i+1. The symbol / denotes identity after

normalization by the zero frequency component. Note

that, functions ⌘̂i represent the Fourier transform of (25).

3) Result: For i = 1, . . . , n, compute

[bxMMSE]i = j
d

d!
p̂xi|y (! |y)

����
!=0

, (32a)

where the characteristic function p̂xi|y (! |y) of the

marginalized posterior is obtained by

p̂xi|y (! |y) /
�
µ̂l
i ⇤ µ̂r

i ⇤ ⌘̂i
�
(!). (32b)

Note that (32a) and (32b) can be evaluated with a single

integral. This is achieved by reusing convolutions in (31) and

evaluating the derivative only at zero.

C. Implementation

In principle, the BP equations presented above yield the

exact MMSE estimator for our problem. However, due to

the existence of continuous-time integrals in the updates,

they cannot be implemented in the given form. To obtain a

realizable solution, we need to choose some practical discrete

parameterization for the messages exchanged in the algorithm.

The simplest and the most generic approach is to sample the

functions and represent them on a uniform grid with finitely

many samples. In our implementation, we fix the support

set of the functions to [�N�,✏�, N�,✏�]Z. ✏ > 0 controls the

truncation. We keep only samples such that f(x) � ✏, thus, the

total number of samples for representing the function depends

on both the truncation parameter ✏ and on the sampling

step � > 0. It is given by M�,✏ = 2N�,✏ + 1. The proper

parameter values depend on the distribution to represent and

on the measurements y. Then, both time- and frequency-

domain versions can be obtained by approximating continuous

integrals by standard quadrature rules. In our implementation,

we use Riemann sum to approximate the integrals.

VII. EXPERIMENTAL RESULTS

In this section, we present several experiments with the goal

of comparing various signal-estimation methods. The perfor-

mance of the estimator is judged based on MSE reduction

given by

MSE = 10 log10

✓
1

n
kx� bxk2

◆
, (33)

where x, bx 2 R
n.

We concentrate on the four Lévy processes discussed in

Section II-B and set the parameters of these processes as
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Fig. 4. AWGN denoising of (a) Brownian motion, (b) compound Poisson, (c) Lévy process with Laplace increments, (d) Lévy flight processes. We compare
LMMSE, TV regularization, Log regularization, and MMSE. (a) Since linear estimation is optimal for Gaussian signals, both LMMSE and MMSE yield
identical results. (b) The excellent performance of TV regularization is confirmed for piecewise-constant signals. (c) TV regularization results in a MAP
estimator, which leads to a suboptimal MSE performance. (d) Log regularization amounts to the MAP estimator. For such processes, linear estimators
over-smooth the edges resulting in poor performance.

• Brownian Motion: The increments are generated from

a standard Gaussian distribution with uk = [Dx]k ⇠
N (0, 1).

• Compound-Poisson Process: We concentrate on sparse

signals and set the mass probability to P (uk = 0) =
e�� = 0.9. The size of the jumps follow the standard

Gaussian distribution.

• Laplace Increment Process: The increments are generated

from the Laplace distribution of scale � = 1.

• Lévy Flight: We set the distribution of the increments to

be Cauchy (↵ = 1) with scale parameter ⇢ = 1.

A. AWGN Denoising

In the first set of experiments, we consider the denoising of

Lévy processes in AWGN. We compare the performance of

several popular estimation methods over a range of noise levels

�2. In Figures 4(a)–(d), we perform 1000 random realization

of the denoising problem for each value of �2 and plot the

average MSE reduction after estimation. The signal length is

set to n = m = 200. The proposed message-passing estimator

is compared with the regularized least-squares estimators

bx = argmin
x2Rn

1
2 ky � xk2 + ⌧

nX

k=1

�u([Dx]k), (34)

where D is the finite-difference matrix and ⌧ > 0 is the regu-

larization parameter optimized for the best MSE performance.

The curve labeled LMMSE corresponds to the MSE optimal

linear estimator, which can be obtained by setting the potential

function �u (x) = x2 [26]. The TV method corresponds to

the potential function �u (x) = |x| and can be efficiently

implemented by using the FISTA algorithm described in [16].

The Log estimator corresponds to the potential function

�u (x) = log
�
x2 + ✏

�
, where the parameter ✏ > 0 controls the

sparsity of the signal. Log-based regularizers have been shown

to outperform traditional `1-based regularizers in various ap-

plications [12], [15]. In our experiments, we fix ✏ = 1, which

corresponds to the MAP estimator for the Lévy flight process

with Cauchy increments. Efficient implementation of the Log-

based denoising was obtained by using the algorithm [17].

It is well known that the LMMSE estimator is linear and

optimal for Brownian motion. In Figure 4(a), it is precisely

matched by the message-passing MMSE estimator. Moreover,
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TABLE I
MMSE PREDICTION.

Prior Noise (�2) Oracle MSE Predicted MSE

Gaussian 0.1 −10.74 dB −10.73± 5.4× 10−5 dB

1 −3.54 dB −3.49± 5.9× 10−5 dB

10 1.85 dB 1.95± 6.5× 10−5 dB

Cauchy 0.1 −10.37 dB −10.34± 0.03 dB
1 −1.54 dB −1.53± 0.11 dB

10 6.15 dB 6.22± 0.21 dB

we have observed that—even for n = 200—the asymptotic

prediction (24) closely matches the simulation results (within

0.06 dB). Since the curve for the asymptotic prediction is

hidden under LMMSE and MMSE, we have omitted it from

Figure 4(a). The worst performance is observed for TV

regularization, which yields piecewise-constant solutions by

removing small variations of the signal. The performance

of the Log-based method is significantly better; it preserves

important details by allowing small variations of the signal.

In Figure 4(b), we observe excellent MSE performance of

TV for compound Poisson processes over many noise levels.

It is well known that TV estimators yield a piecewise-constant

solution, which makes it ideally matched for such signals. In

this experiment, we have also measured the average running

times for all the algorithms. For example, for �2 = 1 the

average estimation times for LMMSE, TV, Log, and MMSE

were 0.03, 0.05, 0.01, and 0.29 seconds, respectively. The

theoretical implications of the compound Poisson process is

extensively discussed in [7].

In Figure 4(c), we observe a surprisingly poor performance

of TV, which corresponds to the MAP estimator for Lévy pro-

cesses with Laplace increments. This highlights the fact that,

in some situations, a MAP estimator can result in suboptimal

MSE performance.

In Figure 4(d), we observe that LMMSE performs poorly

for a Lévy flight process. It fails to preserve signal edges,

which results in a suboptimal MSE performance for all noise

levels. Both TV and Log methods are known to be edge-

preserving. In fact, they obtain solutions close to the MMSE

estimator (within 0.2 dB for Log). For such signals, Log-based

regularizers yield the MAP estimator.

The message passing algorithm considered in this paper

computes the marginals of the posterior distribution. The

algorithm yields the MMSE estimator by finding the mean

of the marginalized distribution. But the posterior distribution

actually provides much more information. For example, the

algorithm can predict the MSE of the reconstruction by

computing the variance of the posterior

Var [xk |y] = E
⇥
x2
k |y

⇤
� ([bxMMSE]k)

2,

where [bxMMSE]k is given in (32). The second moment can be

evaluated by using the moment property (29).

The capability to predict the MSE of the reconstruction

is useful to complement the solution of the estimator with

a confidence interval. In Table I, the MSE predicted by the

algorithm is presented for Gaussian and Cauchy increment

processes. For comparison, we also provide the oracle MSE
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Fig. 5. Ten-fold interpolation of Lévy processes from AWGN measurements.
From top to bottom: (a) Brownian motion; (b) compound Poisson process; (c)
Lévy process with Laplace increments; (d) Lévy flight process. Surprisingly,
for all priors the optimal estimator appears to be a piecewise linear function.

obtained by comparing the true signal x with bx. The average

predicted MSE is obtained from 1000 random realizations of

the problem. The table also provides the standard deviation

of the predicted MSE values around the mean. This illustrates

the accuracy of the predicted MSE values across noise levels.

B. Signal Interpolation

In Figure 5, we illustrate the interpolation of Lévy processes

from noisy measurements. We assume AWGN of variance

�2 = 1 and set the interpolation rate to ms = Ts/Te = 10.

Given 10 noisy measurements, this results in 91 estimated

values. In the topmost graph, the signal is a Brownian motion

with increments of unit variance. The second graph illustrates

the interpolation of a compound Poisson process. The third

graph illustrates the interpolation of a Lévy process with

Laplace increments. Finally, the bottom-most graph illustrates

the interpolation of a Lévy flight. An interesting observation

is that the MSE optimal interpolator seems to yield piecewise

linear results independently of the process considered. In fact,

it is known that, for the Brownian motion, piecewise-linear

interpolation is optimal [27]. Note that this does not imply

that the estimator is itself linear—in general, it is not.

In Table II, we compare the MSE performance of message-

passing estimators with linear estimators for the interpolation

problem with ms = 2. Each value in the table is obtained by

averaging over 1000 problem instances. Note that the Lévy



KAMILOV et al.: MMSE ESTIMATION OF SPARSE LÉVY PROCESSES 9

TABLE II
INTERPOLATION OF LÉVY PROCESSES: MSE FOR DIFFERENT NOISE

LEVELS.

Prior Noise (�2) LMMSE MMSE

Gaussian 0.1 dB −4.9315 dB −4.9315 dB
1 dB −1.3866 dB −1.3866 dB

10 dB 3.4221 dB 3.4221 dB

Compound Poisson 0.1 dB −11.3233 dB −12.7016 dB
1 dB −6.3651 dB −6.8164 dB

10 dB −1.5267 dB −1.6012 dB

Laplace 0.1 dB −2.4691 dB −2.4724 dB
1 dB 0.2644 dB 0.2279 dB

10 dB 4.9509 dB 4.9406 dB
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Fig. 6. Estimation of the compound Poisson process from quantized
measurements. We compare the standard LMMSE against MMSE, thereby
illustrating the suboptimality of standard linear reconstructions.

flight process was omitted from the table. For the interpolation

problem, the average estimation MSE for this process is not

defined and can only be characterized conditioned on a given

y.

C. Estimation from Quantized Samples

We next consider the highly non linear problem of estimat-

ing Lévy processes from quantized measurements (14). We

generate the compound Poisson process of length n = 200.

An AWGN of variance 0.1 is added to the signal prior to

quantization. The quantizer is uniform with granular region of

length 2kyk1. It is centered at the origin.

In Figure 6, we compare the MSE performance of the

message-passing estimator with the standard LMMSE estima-

tor. The parameter ⌧ of the linear estimator was optimized for

the best MSE performance. In this figure, we plot the mean of

the MSE from 1000 problem instances for several quantization

levels K. For such non linear measurement channels, the

message-passing estimator yields significant improvements

in the reconstruction performance over the standard linear

estimator.

VIII. CONCLUSION

We have presented an in-depth investigation of the Lévy-

process framework for modeling signals with sparse deriva-

tives. We have also characterized the corresponding statistical

estimators. Lévy processes are fundamental members of a

recently proposed continuous-domain stochastic framework

for modeling sparse signals. We have presented a simple

message-passing algorithm for the MMSE estimation of Lévy

processes from noisy measurements. The proposed algorithm

can handle a large class of priors, including those that do not

have closed-form pdfs. Moreover, it can incorporate a large

class of noise distributions, provided that the noise components

are independent among themselves. The algorithm has also the

ability to handle signal-dependent noise. Due to the tree-like

structure of the underlying factor graph, when the messages

are continuous-time functions the message-passing algorithm

obtains the MMSE estimator of the signal. This motivates its

application as a benchmark to judge the optimality of various

existing gradient-based estimators including TV- and Log-

regularization algorithms.

APPENDIX A

LÉVY-ITŌ DECOMPOSITION

For a Lévy process x(t), let p̂x(t)(!) denote the charac-

teristic function of the random variable x(t). Furthermore,

let (a, b, v(·)) be the Lévy-Khintchine triplet associated with

the random variable x(1), which has the same distribution as

x(t+ 1)� x(t), for all t.
For arbitrary integers m,n, the two representations of the

random variable x(m) written as

x(m) =
n�1X

i=0

x
⇣
(i+ 1)

m

n

⌘
� x
⇣
i
m

n

⌘

=
m�1X

i=0

x(i+ 1)� x(i) (35)

show that ⇣
p̂x(m

n
)(!)

⌘n
=
⇣
p̂x(1)(!)

⌘m
. (36)

By using the continuity property in the definition of Lévy

processes, we can further generalize (36) to

p̂x(t)(!) =
⇣
p̂x(1)(!)

⌘t
. (37)

This suggests the Lévy-Khintchine triplet
�
t a, t b, t v(·)) for

the random variable x(t). The triplet can be decomposed as

(ta, tb, 0)| {z }
BM

+
�
0, 0, tv1(·)

�
| {z }

CP

+
�
0, 0, tv2(·)

�
| {z }

PJ

, (38)

where v1 is an absolutely integrable function, v2 is a pure

singular distribution, and v = v1+v2. The latter decomposition

is achieved by adapting Lebesgue’s decomposition theorem

for distributions corresponding to measures. In (38), the term

BM reveals the Lévy-Khintchine triplet of a Brownian motion

with non-zero mean. Similarly, since v1 is integrable, the term

CP reflects a compound Poisson process. The last term PJ,

due to singular nature of v2, is referred to as the pure jump

component. Note that the decomposition (38) is equivalent to

decomposing the process itself to three independent processes

as

x(t)
d
=xBM (t) + xCP (t) + xPJ(t), (39)

which is known as the Lévy-Itō decomposition.
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APPENDIX B

MMSE ESTIMATION OF LÉVY PROCESSES

A. Derivation of MMSE formula (23)

To prove (23), we start by the definition of MMSE and we

apply the explicit form of bxMMSE = Ex|y {x} to simplify the

equations.

n MMSE(n) = E

n��x� Ex|y {x}
��2
o

= E

n��x� y � Ex|y {x� y}
��2
o

= E

n
kx� yk2

o
� Ey

n��Ex|y {x� y}
��2
o

(22)
= n�2 � �4

Ey

�
kr log py(y)k2

 

= n�2 � �4

Z
rTpy(y)r log py(y)dy

= n�2 + �4

✓Z
py(y)∆ log py(y)dy

�
nX

i=1

Z

Rn−1

@

@yi
py(y)

����
1

yi=�1

dy

dyi

◆

= n�2 + �4

Z
py(y)∆ log py(y)dy. (40)

B. Derivation of MMSE Estimator for Brownian Motion

If x is an n-dimensional Brownian motion, we can write

it as x = D�1u, where u is an n-dimentional random

vector with distribution N (0,�2
uIn). Thus, the distribution of

y would be N (0,�2In + �2
uD

�1D�T). Now, according to

(22) we have,

bxMMSE = y + �2r log py(y) = y + �2rpy(y)

py(y)

= y � �2
�
�2I+ �2

u(D
TD)�1

��1
y

=
⇣
In � �2

�
�2I+ �2

u(D
TD)�1

��1
⌘
y. (41)

This is the so called Winner filter.

Notice that for any Levy process for which the variance of

the steps is �2
u, this estimator gives the minimum MSE among

all linear estimators (LMMSE estimator).

C. KLT of Finite-Variance Lévy Processes

While the increments are stationary, the actual Lévy pro-

cesses are not, which complicates their analysis. The autocor-

relation function in the finite-variance case is

E [(x(t1)� E [x(t1)]) (x(t2)� E [x(t2)])]

=
c

2
(|t1|+ |t2|� |t2 � t1|) , (42)

where c is a constant [27]. Thus, if we consider the vector

x containing samples of a normalized Lévy process with

increments of unit variance, the covariance matrix of x would

be

E
⇥
xxT

⇤
= C =

�
DTD

��1
, (43)

where, for all i, j 2 [1 . . . n] the components cij = [C]ij are

given by

cij =
h�
DTD

��1
i
ij
= min{i, j}. (44)

We are interested in finding the eigenvalues of C�1, where

C�1 = DTD =

8
>>><
>>>:

2, i = j 6= n

1, i = j = n

�1, |i� j| = 1

0, otherwise.

(45)

Then, by writing the eigenvalue equation of the matrix C as

C�1v = �v, (46)

where v = [v1 · · · vn]
T, we obtain the recursive set of

equations
8
><
>:

2v1 � v2 = �v1

�vi�1 + 2vi � vi+1 = �vi, for i = 2, . . . , n� 1

�vn�1 + vn = �vn.

(47)

The solution of these equations is given by

vi =
1p

�(�� 4)

 ✓
2��+

p
�(��4)

2

◆i

�
✓

2���
p

�(��4)

2

◆i
!

(48)

for i = 1, . . . , n. Finally, by plugging (48) into (47) and

performing some algebraic manipulations, we obtain

� = 4 sin2
✓
⇡

2

2k � 1

2n+ 1

◆
(49)

for k = 1, . . . , n. The entries of the corresponding eigenvec-

tors vk =
⇥
vk1 . . . v

k
n

⇤T
are given by

vki =
2p

2n+ 1
sin

✓
2k � 1

2n+ 1
i⇡

◆
, (50)

for k = 1, . . . , n.

D. MMSE of Estimation of Brownian Motion or Equivalently

Performance of LMMSE

MMSE estimator for Brownian motion or the LMMSE

estimator for any finite variance Levy process is equivalent

to the entry-wise MMSE in the KLT domain. In KLT domain

we have

ỹ = VTy = Λ
�

1

2VTu+VTn = Λ
�

1

2 ũ+ ñ. (51)

where V =
⇥
v1| · · · |vn

⇤
and Λ = diag(�1, . . . ,�n). No-

tice that since u and n have distributions N (0,�2
uIn) and

N (0,�2In), respectively, and V is a unitary matrix, ũ and ñ

are also distributed as N (0,�2
uIn) and N (0,�2In).

Now, the MSE of estimating the ith-entry of Λ
�

1

2 ũ from

the ith-entry of ỹ, simply is �2
u/
⇣

�2

u

�2 + �i

⌘
. Thus, we have

MMSE(n) =
1

n

nX

i=1

�2
u

�2
u

�2 + 4 sin2
⇣

⇡
2

2i�1
2n+1

⌘ . (52)
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If we tend n to infinity, we get

lim
n!1

MMSE(n) =

Z 1

0

�2
u

�2
u

�2 + 4 sin2
�
⇡
2 t
�dt

=
�2

q
1 + 4 �2

�2
u

. (53)
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