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MMSE-Optimal Approximation of Continuous-Phase
Modulated Signal as Superposition of

Linearly Modulated Pulses
Xiaojing Huang, Member, IEEE, and Yunxin Li, Senior Member, IEEE

Abstract—The optimal linear modulation approximation of
any -ary continuous-phase modulated (CPM) signal under the
minimum mean-square error (MMSE) criterion is presented in
this paper. With the introduction of the MMSE signal component,
an -ary CPM signal is exactly represented as the superposition
of a finite number of MMSE incremental pulses, resulting in the
novel switched linear modulation CPM signal models. Then, the
MMSE incremental pulse is further decomposed into a finite
number of MMSE pulse-amplitude modulated (PAM) pulses,
so that an -ary CPM signal is alternatively expressed as the
superposition of a finite number of MMSE PAM components,
similar to the Laurent representation. Advantageously, these
MMSE PAM components are mutually independent for any
modulation index. The optimal CPM signal approximation using
lower order MMSE incremental pulses, or alternatively, using a
small number of MMSE PAM pulses, is also made possible, since
the approximation error is minimized in the MMSE sense. Finally,
examples of the MMSE-optimal CPM signal approximation and
its comparison with the Laurent approximation approach are
given using raised-cosine frequency-pulse CPM schemes.

Index Terms—Continuous-phase modulation (CPM), Laurent
representation, minimum mean-square error (MMSE).

I. INTRODUCTION

CONTINUOUS-PHASE modulation (CPM) [1]–[4] is a
nonlinear modulation scheme, although the phase re-

sponds linearly to the input data. CPM has the advantage of
excellent power and bandwidth efficiency with constant signal
envelope. Its disadvantage is its nonlinear nature, which results
in complexity in receiver implementation and difficulty in
signal analysis. For these reasons, the CPM scheme has been
mostly used for binary signaling with special modulation in-
dexes in many power- and bandwidth-efficient communication
systems. To combat the inherent nonlinearity, Laurent discov-
ered that a binary CPM signal with any noninteger modulation
index can be exactly decomposed as a sum of a finite number
of pulse-amplitude modulated (PAM) signal components [5].
Mengali and Morelli extended this binary PAM decomposition
to multilevel cases by expressing a noninteger modulation
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index -ary CPM signal as the product of several constitu-
tional binary CPM signals [6]. A complementary solution for
decomposing the integer modulation index CPM signal was
also proposed recently [7]. Thus, the theory of CPM signal
PAM decomposition under the banner of Laurent representation
seemed to be complete.

However, the Laurent representation has two major draw-
backs. First, the PAM components of a CPM signal are generally
not mutually independent, except when the modulation index is
a multiple of 0.5. As a consequence, the autocorrelation func-
tion of a CPM signal is not, in general, a sum of all PAM pulses’
autocorrelation functions. Cross-correlations between different
PAM components exist, which still causes difficulty in CPM
signal analysis. Second, when a small number of PAM pulses
are used to approximate a CPM signal, the approximation error
is not minimized in the minimum mean-square error (MMSE)
sense, except for some special modulation indexes. Other draw-
backs include the inefficiency in practical application, due to
the large number of pseudosymbols in which the data symbols
are hidden, and the complicated decomposition procedure, es-
pecially for multilevel CPM signals.

In this paper, a new approach, directly applicable to any
-ary CPM signal, is taken to represent the CPM signal as the

superposition of linearly modulated pulses. By this approach,
novel switched linear modulation models are derived for the
CPM signal with either an integer or noninteger modulation
index. Then, the linearly modulated pulses in the models are
further decomposed into PAM pulses, similar to Laurent rep-
resentation. However, the PAM components are now always
mutually independent. When fewer linearly modulated pulses
are used to approximate the CPM signal, with a simultaneous
reduction in signal memory, the approximation error is always
minimized in the MMSE sense. Other advantages include the
explicit closed-form expressions for all functions and coeffi-
cients in the representation. Thus, the drawbacks associated
with the Laurent representation as mentioned above are all
solved.

As has been known to us, many existing simplified CPM
models, such as Laurent’s PAM decomposition and Rimoldi’s
continuous-phase encoder (CPE) plus memoryless modulator
(MM) decomposition [13], have found wide application in
CPM signal analysis, receiver complexity reduction, signal
synchronization, and parameter estimation [8]–[13]. The pro-
posed switched linear modulation models can be also exploited
to construct simple CPM receivers, reducing both the number
of matched filters and trellis states at the same time [14].

0090-6778/$20.00 © 2005 IEEE
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It is worth noting that in terms of matched-filter reduction
for the maximum-likelihood-type CPM receivers, Huber and
Liu took a signal space dimension reduction approach [15].
Moqvist and Aulin showed that the optimal lower dimensional
approximation was given by the principal components method
under the criterion of minimum residual error [16]. However,
this approach does not reduce the memory of the approximated
CPM signal, so the reduction in trellis states has to be treated
separately.

The rest of this paper is organized as follows. Analogous to
the Laurent signal component defined in Appendix A, the no-
tion of an MMSE signal component for an -ary CPM signal is
first introduced in Section II. Then, the switched linear modula-
tion models are derived in Section III by decomposing the CPM
signal as a superposition of the MMSE incremental pulses. In
Section IV, the MMSE incremental pulses are further decom-
posed into a finite number of MMSE PAM pulses associated
with independent pseudosymbols. In Section V, the autocorre-
lation function of the CPM signal approximated by lower order
MMSE incremental pulses is formulated, and the approxima-
tion error is proven to be minimized. In Section VI, examples of
the MMSE-optimal CPM signal approximation and the compar-
ison with the Laurent approximation approach are given using
the raised-cosine frequency pulse (LRC) CPM scheme. Finally,
conclusions are drawn in Section VII. A reformulated Laurent
representation is also provided in Appendix B.

II. MMSE SIGNAL COMPONENT OF CPM SIGNAL

The equivalent lowpass envelope of an -ary CPM signal
[1]–[4] with unity signal power can be expressed as

(1)

where the data symbol with symbol interval belongs to the
-ary alphabet , and the phase shift

function is assumed to be zero for a negative value of time
and ( denotes the modulation index) for time greater than

symbol intervals, i.e.,

for
for

(2)

For can be any monotonic function. Ac-
cording to the Laurent representation [5]–[7], for nonin-
teger can be decomposed into a sum of a finite number of
PAM components. The coefficient, denoted as , associated
with the th Laurent PAM pulse at time is referred to as
the pseudosymbol [6]. Especially, the pseudosymbol associated
with the first Laurent PAM pulse can be expressed as

(3)

which represents the CPM signal’s accumulative phase rotation
contributed by all previously transmitted data symbols up to
time . Since all the possible phases of constitute
the phase states of the CPM signal, we simply refer to it as the
phase state symbol.

Now let us consider the contribution of consecutively trans-
mitted data symbols , starting from

time where stands for a specific time
index, to the transmitted CPM signal waveform. We refer to this
contribution as a kind of signal component associated with the

data symbols. The expression of this signal component must
meet the following requirements. First, this signal component
is a function of the data symbols. Second, due to the CPM’s
phase continuity, this signal component should contain a factor

to account for the influence (phase rotation) of all pre-
viously transmitted data symbols up to time .
In Appendix A, we have shown that the Laurent signal compo-
nent is exactly the product of
the Laurent complex pulse , which is a
function of data symbols, with (for noninteger ) or

(for integer ), see (A4) and (A5).
Thus, analogous to the Laurent signal component, we define

the MMSE signal component in
the form of

for noninteger

(4)

for integer

(5)

but determine the function by
the MMSE criterion. Under this criterion, we first ex-
press the mean-square error (MSE) between the -ary
CPM signal and its MMSE signal component

as
, where

denotes the ensemble averaging over all
symbols other than . Then, letting
the functional derivative

to minimize the MSE, we find

for noninteger (6)

where

(7)

We see that is also a windowed com-
plex exponential similar to the Laurent complex pulse derived
in Appendix A, and is therefore referred to as the MMSE com-
plex pulse. Accordingly, is called the MMSE window func-
tion. Applying the same MMSE criterion for an -ary CPM
signal with integer , the MMSE complex pulse and the MMSE
window function have the same expressions as (6) and (7), re-
spectively, after ignoring the sign ambiguity for odd due to
an undetermined number of factors ( for odd )
involved in the derivation.
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Derived from (7) and (2), demonstrates some inter-
esting properties, such as

(8)

(9)

for (10)

generally has an infinite duration (except for ,
where is any integer), but will attenuate to zero for noninteger

as . For integer oscillates as . If
with integer becomes a periodic function, so that

it is alternatively expressed as

for integer (11)

where

elsewhere

is one ( even) or half ( odd) period of .

III. CPM SIGNAL REPRESENTATION BY

MMSE INCREMENTAL PULSES

To decompose an -ary CPM signal into additive linearly
modulated pulses, let us first analyze the difference between
the MMSE signal component associated with data sym-
bols and the one associated with

data symbols , which in-
dicates an increment to the waveform of the MMSE signal
component when the data symbol is transmitted after

. Assuming a noninteger and
using the property of given in (9), this difference is found
to be

(12)

where

(13)

is a causal function (i.e., for )
and is referred to as the MMSE incremental pulse of order .
Note that for any , the th-order MMSE incremental pulse

will be the same as the th-order one
, since and

for and , according to (10) and (2).

Then we rewrite the MMSE signal component in terms of the
MMSE incremental pulses of orders from 1 to as

(14)

Letting , the MMSE signal component will be expressed
as the convolution of only the th-order MMSE incremental
pulse with the phase state symbol, since the first terms on
the right-hand side (RHS) of (14) will decay to zero because of
the attenuated window functions, that is

(15)

Finally, letting , the MMSE signal component becomes
, which is the -ary

CPM signal itself (assuming an initial value of the phase state
symbol ), i.e.,

(16)

In this way, the -ary CPM signal is decomposed exactly
into a sum of the th-order MMSE incremental pulses

modulated by the phase state
symbols .

Following a similar procedure as described above and care-
fully dealing with the sign ambiguity, we can also decompose
the -ary CPM signal with integer into a sum of the th-order
MMSE incremental pulses. However, since becomes a pe-
riodic function with integer [see (11)], it will not decay to zero,
but will appear in the final decomposition expression. Thus

for integer (17)
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Fig. 1. Switched linear modulation models. (a) For noninteger modulation index CPM signal. (b) For integer modulation index CPM signal.

Equations (16) and (17) represent the exact modeling of an
-ary CPM signal using the th-order MMSE incremental

pulses. To have more efficient signal modeling, we may wish
to use the MMSE incremental pulses of lower order to
approximate the -ary CPM signal, i.e.,

for noninteger (18)

for integer (19)

Equations (18) and (19) suggest new signal models for the
CPM signal representation and approximation. We call these
models switched linear modulation models, which are illus-
trated in Fig. 1. For a noninteger modulation index CPM signal,
the switched linear modulation model comprises a switch
and a bank of filters with the MMSE incremental pulses

as their respective impulse responses.
The input symbol and the previously transmitted symbols

stored in an stage shift register
(representing the memory) are applied to the switch to select

the modulation filter, and the phase state symbol is fed
into the selected filter. All the filters’ outputs are finally added
together to give the approximated CPM signal. For an integer
modulation index CPM signal, a filter with impulse response

is always connected to generate the periodic component,
in addition to the switch and the bank of filters. The data-in-
dependent phase state symbol is fed into the filter
and the linear modulation filter, selected according to data
symbols , and . With the above
switched linear modulation models, CPM is now described as
a linear time-varying system. The nonlinearity inherent within
the phase modulation is embodied in the phase state symbol

.
In all complex-valued MMSE incremental

pulses of order , there are only in-
dependent real-valued pulses, due to the properties
of derived from (13), i.e.,

(symmetry property) and ,
where denotes the ensemble averaging over .

IV. CPM SIGNAL REPRESENTATION BY MMSE PAM PULSES

The th-order MMSE incremental pulse
can be further decomposed

into additive pulses, so that an -ary CPM signal can be
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alternatively expressed as a sum of a finite number of PAM
components, similar to the Laurent representation [5]–[7],
but with a different set of PAM pulses and their associated
pseudosymbols.

To perform this PAM decomposition, we rewrite (13) as

(20)

The first complex exponential in the brackets on the
RHS of (20) can be expressed as a product of terms,

i.e.,
. Assuming that is an integer power of

2, i.e., where is any positive integer, the -ary
data symbol , can be represented in
radix-2 form as

(21)

where are binary bits associated with
. Thus, a term in the form of can be fur-

ther expressed as a product of terms, i.e.,

, and then ex-

pressed as ,

since . Ap-
plying the above procedure to other terms in the form of

, we have

(22)

Furthermore, a product of terms in the form of
can be expanded into a

sum of additive terms. Expanding other products of
terms in the form of

in (22) into respective sums of
additive terms, (22) becomes a product of sums, each of which
has additive terms, and can be further expanded into a sum
of additive terms.

To analytically describe this expansion, we use an integer
number as the index for the addi-
tive terms, and represent it in the radix- form as

(23)

where , and is further represented in the
radix-2 form as

(24)

where . The sum of the additive terms ex-

panded from is then

expressed as

, and the

sum of the additive terms expanded from

is ex-

pressed as

. Finally, the sum of the additive
terms expanded from (22) becomes

(25)

Note that since the first term in the expansion
of in (22) is

, all the terms with
(total terms) in (25) will add up to

, which is exactly
the second term in the brackets on the RHS of (20), so
that these terms will disappear in the decomposition of

. Therefore,
comprises terms from (20) and (25), i.e.,

(26)

where

(27)
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is a complex coefficient determined by index and data symbols
, and

(28)

is a real-valued causal function, we call it the MMSE PAM pulse.
With being decomposed into MMSE

PAM pulses, (18) is rewritten as

for noninteger

(29)
where

(30)

is the pseudosymbol associated with the th MMSE PAM pulse.
Similarly, from (19) we have

for integer (31)

We see that an -ary CPM signal is approximated by a sum
of MMSE PAM components, plus a data-inde-
pendent periodic component for the integer modulation index.
By this MMSE PAM decomposition, CPM is now described as
a combination of linear time-invariant systems.
The nonlinearity of phase modulation is embodied in the pseu-
dosymbols or .

The first MMSE PAM pulses, numbered from
to , generally have infinite pulse duration (except for

where is any integer). They constitute the first-order
MMSE incremental pulse, and are therefore called the main
MMSE PAM pulses. All other MMSE PAM pulses numbered

from to are finite-duration pulses with
duration for .

From (27) and (30), we have , where
denotes ensemble expectation over all transmitted data

symbols, and

otherwise.

Therefore, all the MMSE PAM components in an -ary CPM
signal are mutually independent. This is the fundamental advan-
tage over the Laurent representation, by which the PAM compo-
nents are independent only for those modulation indexes which
are multiples of 0.5.

The MMSE PAM pulses and associated pseudosymbols have
explicit closed-form expressions for any modulation index and
any symbol alphabet size, as can be seen in the above deriva-
tion. This motivates us to reformulate the Laurent representation
to make the PAM decomposition more efficient, especially for
a multilevel CPM signal (see Appendix B). More importantly,
with the Laurent incremental pulses being defined, the reformu-
lated Laurent representation also fits in the switched linear mod-
ulation models. Furthermore, under the reformulated Laurent
representation, the modulation index of any -ary
CPM signal, or of any constitutional
binary CPM signal, can be an integer.

V. AUTOCORRELATION AND APPROXIMATION

ERROR EVALUATION

First, let us derive the autocorrelation function of the approx-
imated -ary CPM signal , which is defined by

(32)

Using the switched linear modulation models and exploiting the
properties of MMSE window function , we can express

in terms of and , as shown in (33) at the
bottom of the page, which is valid for both noninteger and in-
teger modulation indexes. When , the above autocorrela-
tion function is the exact one of an -ary CPM signal [4], [17].

It is of interest to know that from the above autocorrelation
evaluation, is the same for all when

. This implies that the approximation of an -ary CPM
signal, using either MMSE incremental pulses of order higher

(33)
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Fig. 2. MMSE window functions �w (t) of quaternary 2RC scheme with
h = 0:25 for l = 0; 1; 2.

than 1 or MMSE PAM pulses of number more than , only
improves the autocorrelation within .

Then, let us evaluate the approximation error when the -ary
CPM signal is represented by the superposition of linearly mod-
ulated pulses, which can be measured by

(34)

Since we can easily show, according to the switched linear mod-
ulation models, that

(35)

we have

(36)

(37)

Therefore, is finally evaluated as

(38)

Obviously, will be zero when .
Also note from (36) that the ensemble-averaged correlation

between the error signal and the approximated signal
is always zero, which means that the error signal is orthog-

onal to the approximated signal, and hence, the approximation
error is minimized for any given .

Fig. 3. First-order MMSE incremental pulses h (t) and h (t) of
quaternary 2RC scheme with h = 0:25.

VI. EXAMPLES

The -ary CPM signal with raised-cosine frequency pulse
(i.e., the LRC scheme) is used to demonstrate the optimal signal
modeling by the switched linear modulation models. Fig. 2
shows the MMSE window functions of a quaternary 2RC
scheme (i.e., and ) with for .
The first-order MMSE incremental pulses and
are shown in Fig. 3 ( and are not displayed
because of the symmetry property). The second-order MMSE
incremental pulses are shown in Fig. 4(a) and (b). Only 8 out of
16 complex-valued pulses are displayed due to the symmetry
property. Fig. 5 shows the MMSE PAM pulses, where the three
main MMSE PAM pulses are displayed in Fig. 5(a), and the
rest of the nine MMSE PAM pulses are shown in Fig. 5(b) with
extended scales. Table I summarizes how these MMSE PAM
pulses are calculated according to (28). We also draw the nine
MMSE PAM pulses shown in Fig. 5(b) using the same scales
as those used in Fig. 5(a) [see the enclosed area on the left-hand
side bottom of Fig. 5(a)] and find out that these pulses only
carry a small amount of signal power, as compared with the
main MMSE PAM pulses. Therefore, in most practical cases,
we can use the main MMSE PAM pulses (or the first-order
MMSE incremental pulses) to approximate the CPM signal
without causing significant modeling error.

Fig. 6 shows the autocorrelation functions of the quaternary
2RC schemes with for . Since ,
the second-order autocorrelation functions are the exact auto-
correlation functions of the quaternary 2RC schemes. The first-
order autocorrelation functions for are almost
the same as their exact ones, whereas the first-order autocor-
relation function for is slightly different from its exact
version, with . This means that the approxi-
mation errors using the first-order MMSE incremental pulses or
the main MMSE PAM pulses for are negligible,
whereas only 3.3% of signal power is ignored by signal approx-
imation for . Fig. 7 shows the approximation errors as
functions of for -ary LRC schemes with different and
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Fig. 4. Second-order MMSE incremental pulses of quaternary 2RC scheme with h = 0:25. (a) h (t); h (t); h (t), and h (t).
(b) h (t); h (t); h (t), and h (t).

Fig. 5. MMSE PAM pulses of quaternary 2RC scheme with h = 0:25. (a) Main MMSE PAM pulses. (b) Other MMSE PAM pulses.

values, using the first- and second-order MMSE incremental
pulses (or the corresponding numbers of MMSE PAM pulses),
respectively. We see that the approximation errors generally in-
crease as , or increase for a given order of approxima-
tion. However, by increasing the order of approximation, we can
meet any approximation-error requirement for any , and
values. For most practical binary and quaternary CPM signals,
the first-order approximation is already sufficient to achieve ef-
ficient signal modeling with satisfactory approximation preci-
sion. For example, the first-order approximation error for the
quaternary 2RC scheme with can be found to be

from Fig. 7(a), which means that only 0.02% of signal
power is ignored by this signal approximation.

Finally, let us compare the MMSE-optimal approximation
with the Laurent approximation approach. Since the Laurent in-
cremental pulses have been defined in Appendix B, this com-
parison can be easily performed under the same switched linear
modulation modes. The approximation errors as a function of
for -ary LRC schemes with different and values, using

the first-order Laurent incremental pulses and the first-order
MMSE incremental pulses, respectively, are shown in Fig. 8. We
see that the curves using Laurent incremental pulses are
discontinuous functions of , with discontinuity points located
at , where are positive integers (the Laurent
representation is valid at these , but invalid in the close vicini-
ties of these ), whereas the curves using MMSE incre-
mental pulses are continuous functions of , and the approxima-
tion errors are always smaller (or equal at some values). Once
the parameters and are given and an approximation-error
threshold is specified, these curves also provide us with
indications as to where the valid regions of are. For example, if
we want to model the quaternary 2RC CPM
signal with modeling error less than 0.1 using the Laurent ap-
proximation, the valid modulation index, according to Fig. 8(a),
will be , and . If
we want to model the CPM signal with the same and pa-
rameters and the same modeling-error threshold, but using the
MMSE-optimal approximation, any will be valid.
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TABLE I
CALCULATION OF MMSE PAM PULSES FOR QUATERNARY 2RC SCHEME (M = 4 AND L = 2)

Fig. 6. Autocorrelation functions of quaternary 2RC with h = 0:25; 0:5;1

for l = 1; 2.

VII. CONCLUSION

We have shown that any -ary CPM signal with any modu-
lation index can be exactly expressed as the superposition of a

finite number of linearly modulated pulses. These linearly mod-
ulated pulses can be either the MMSE incremental pulses, by
which the CPM signal can be represented by the switched linear
modulation models, or the MMSE PAM pulses. Explicit closed-
form formulas for these linearly modulated pulses and asso-
ciated pseudosymbols are also developed. The proposed novel
CPM signal linear modulation representation will simplify the
CPM signal analysis, since all the linearly modulated signal
components are mutually independent. When using lower order
MMSE incremental pulses or a small number of MMSE PAM
pulses to approximate the CPM signal, the approximation error
is minimized in the MMSE sense, resulting in the MMSE-op-
timal CPM signal approximation, superior to the Laurent ap-
proximation approach.

APPENDIX A
LAURENT SIGNAL COMPONENT FOR CPM SIGNAL

This appendix introduces the notion of a Laurent signal com-
ponent for an -ary CPM signal. It is shown that the Laurent
signal component can be expressed as a Laurent complex pulse



HUANG AND LI: MMSE OPTIMAL APPROXIMATION OF CPM SIGNAL 1175

Fig. 7. Approximation errors versus modulation index for M -ary LRC schemes with M = 2; 4; 8 and L = 2; 3; 4 using (a) the first-order MMSE incremental
pulses, and (b) the second-order MMSE incremental pulses.

Fig. 8. Approximation errors versus modulation index using the first-order Laurent incremental pulses (dashed lines) and the first-order MMSE incremental
pulses (solid lines), respectively, for (a) M -ary LRC schemes with M = 2; 4; 8 and L = 2, and (b) M -ary LRC schemes with M = 2; 4; 8 and L = 3.

multiplied by a phase state symbol, where the Laurent complex
pulse is a windowed complex exponential.

Let us begin with a binary CPM signal (i.e.,
and ). From [5] and [7], in (1) can be de-
composed into a sum of PAM components for nonin-
teger , i.e., ,
or, a sum of one data-independent periodic compo-
nent and data-dependent PAM components for
integer , i.e.,

. Since
from (3) for noninteger , we see that a

symbol at time is encoded in the transition
from to , and the contribution of to the
transmitted signal waveform is represented by the PAM
component . Considering the impact of all
previously transmitted date symbols, which is included in
the PAM component , we define

as
the main Laurent signal component associated with symbol

. For integer , since from [7], we know that
the contribution of to the transmitted signal waveform is

represented by the PAM component .
Therefore, including the data-independent periodic com-
ponent, the main Laurent signal component is defined as

. Using the Laurent representation formulas derived
from [5] and [7], can be finally expressed as

for noninteger , or
for integer , where

(A1)

is a windowed complex exponential with real-valued window
function

for noninteger

for integer

(A2)
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and phase-shift function . We call the main Lau-
rent complex pulse associated with symbol .

The concepts of the main Laurent signal component and main
Laurent complex pulse can be easily extended to -ary CPM
signals, by defining the main Laurent signal component of the

-ary CPM signal as the product of its constitutional binary
CPM signals’ main Laurent signal components. It is found that
the main Laurent signal component can be always expressed as
a complex-valued pulse, i.e., the main Laurent complex pulse
of the -ary CPM signal, multiplied by a phase state symbol.
The main Laurent complex pulse also has the same expression
as (A1). However, the window function now becomes

, a product of the binary CPM signals’ window
functions, where each is calculated using (A2), with
the phase shift function replaced by and the modulation
index by . Note that for some noninteger

and is any odd number, the modulation index
may become an integer when . Also note that for non-

integer , we have
for

, due to the property of (2). Therefore, the
window function for any -ary CPM signal can be generally
expressed, in terms of , as

(A3)

For noninteger , with which none of
is an integer, we simply replace with and ignore
the term in (A3). Equation (A3)
also applies to integer by assuming and ig-
noring the terms
and , since all

will be integers.
Extending the main Laurent signal component and main Lau-

rent complex pulse concepts to include consecutively trans-
mitted data symbols, we define the Laurent signal component
associated with data symbols for any

-ary CPM signal as the sum of all PAM pulses modulated by
their respective pseudosymbols, which are only related to these

data symbols, as well as the phase state symbol (for
noninteger ) or (for integer ), including the data-inde-
pendent periodic component for integer , and find out that it
can be always expressed as

for noninteger

(A4)

for integer

(A5)

The Laurent complex pulse associated
with the data symbols is also de-
rived as a windowed complex exponential with window func-
tion and phase shift function ,
i.e.,

(A6)
where the window function is found to be

(A7)

which is a finite-duration pulse for noninteger with
for and , or an infinite-duration pulse for
integer .

Some interesting properties of can be also identified as
follows:

(A8)

(A9)

for (A10)

For integer is a periodic function and has the same
alternative expression as (11).

APPENDIX B
REFORMULATION OF LAURENT REPRESENTATION

Based on the Laurent signal component expression derived
in Appendix A, and following the same procedure as described
in Section III, we can express an -ary CPM signal exactly
as the superposition of the th-order Laurent incremental pulse

plus a data-independent periodic com-
ponent for integer , similar to (16) and (17). The th-order Lau-
rent incremental pulse is found to be

(B1)

Thus an -ary CPM signal can be approximated by the same
switched linear modulation models, but with Laurent incre-
mental pulses.

Furthermore, following the same procedure as described in
Section IV, but using equation

for
noninteger , the th-order Laurent incremental pulse defined
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by (B1) can be decomposed as a sum of Laurent
PAM pulses.

The th-order approximation of the -ary CPM signal using
Laurent PAM pulses has the same expressions as (29) and (31),
but and are now evaluated, respectively, by

(B2)

(B3)
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