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Abstract

Predicting the effects of genetic variants on splicing is highly relevant for human genetics. We describe the
framework MMSplice (modular modeling of splicing) with which we built the winning model of the CAGI5 exon
skipping prediction challenge. The MMSplice modules are neural networks scoring exon, intron, and splice sites,
trained on distinct large-scale genomics datasets. These modules are combined to predict effects of variants on exon
skipping, splice site choice, splicing efficiency, and pathogenicity, with matched or higher performance than
state-of-the-art. Our models, available in the repository Kipoi, apply to variants including indels directly from VCF files.

Keywords: Splicing, Variant effect, Variant pathogenicity, Deep learning, Modular modeling

Background
Genetic variants altering splicing constitute one of the

most important class of genetic determinants of rare [1]

and common [2] diseases. However, the accurate predic-

tion of variant effects on splicing remains challenging.

Splicing is the outcome of multiple processes. It is a

two-step catalytic process in which a donor site is first

attacked by an intronic adenosine to form a branchpoint.

In a second step, the acceptor site is cleaved and spliced

(i.e., joined) to the 3′ end of the donor site. The sequences

of the donor site, of the acceptor site, and of the intronic

region surrounding the branchpoint, which are recog-

nized during spliceosome assembly, contribute to splicing

regulation [3]. Moreover, many regulatory elements such

as exonic splicing enhancers (ESEs) and silencers (ESSs)

and intronic splicing enhancers (ISEs) and silencers (ISSs)

also play key regulatory roles (reviewed by [4]). In addition

to genetic variants at splice consensus sequence, distal

elements can also affect splicing and cause disease [5].

Hence, predictive models of splicing need to integrate

these various types of sequence elements.
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Previous human splice variant interpretation methods

can be grouped into two categories.

One category consists of algorithms that score sequence

for being bona fide splice regulatory elements including

splice sites [6, 7], and exonic and intronic enhancers and

silencers [8–13]. Variants can be scored with respect to

these regulatory elements by comparing predictions for

the reference sequence and for the alternative sequence

containing the genetic variant of interest. However,

although methods combining several of these scores have

been proposed, including Human Splicing Finder [14],

MutPred splice [15], and more recently SPiCE [16], the

resulting physical and quantitative effect of these vari-

ants on splicing remains difficult to assess with these

algorithms.

The second category of models aimed at predicting

relative amounts of alternative splicing isoforms quanti-

tatively from sequence [17–19]. In this context, a quan-

titative measure that has retained much attention in the

literature is the percent spliced-in (PSI, also denoted �),

which quantifies exon skipping. � is defined as the frac-

tion of transcripts that contains a given exon [20]. It can

be estimated as the fraction of exon-exon junction reads

from an RNA-seq sample supporting inclusion of an exon

of interest, over the sum of these reads plus those support-

ing the exclusion of this exon [20]. Two early models were
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fitted to predict direction of � changes between tissues

(exon inclusion, exon skipping, and no change) in mouse

[21, 22] from sequence. State-of-the-art models for pre-

dicting � from sequence are SPANR [17] and HAL [18]

for human, and the model from Jha et al. [23] for mouse.

The related quantity �5 quantifies for a given donor site

the fraction of spliced transcripts with a particular alter-

native 3′ splice site (A3SS). The quantity �3 has been

analogously defined to quantify alternative 5′ splice sites

(A5SS) [24]. It should be noted that �5 is often referred

as � for A3SS, and �3 as � for A5SS (e.g., [25, 26]).

However, throughout this manuscript, we are consistently

using the notations �5 and �3 as defined by Pervouch-

ine et al. [24]. The recently published algorithm COSSMO

[19] predicts �5 from sequence by modeling the compe-

tition between alternative acceptor sites for a given donor

site and analogously for �3. COSSMO has shown supe-

rior performance over MaxEntScan [7] on predicting the

most frequently used splice site among competing ones.

Furthermore, splicing efficiency has been proposed to

quantify the amount of precursor RNA that undergo splic-

ing (exon-skipped or misspliced transcripts are ignored)

at a given splice site by comparing the amount of RNA-

seq reads spanning an exon-intron boundary of interest to

the corresponding exon-exon junction reads [27]. The lat-

est model to predict variant effects on splicing efficiency is

the SMS score, which is based on scores for exonic 7-mers

estimated from a recently published saturation mutage-

nesis assay [28]. However, no model can be applied to

all the abovementioned splicing quantities, although they

are influenced by common regulatory elements. Further-

more, none of these software handle variant calling format

(VCF) files natively, making their integration into genetic

diagnostics pipelines cumbersome. Also, these software

often do not handle indels (insertions and deletions),

although indels are potentially the most deleterious

variants.

Here, we trained building block modules separately for

the exon, the acceptor site, and the donor site and for

intronic sequence close to the donor and close to the

acceptor sites. This modular approach allowed leverag-

ing rich datasets from two high-throughput perturbation

assays focusing on distinct aspects of splicing: (i) a mas-

sively parallel reporter assay (MPRA) with millions of

random short sequences in intron and exon sequence

[18], and (ii) a high-throughput assay that quantifies the

effect of naturally occurring exonic variants on the splic-

ing of their exon [29]. These building block modules could

then be combined into distinct models predicting effects

of variants on � , �5, �3, splicing efficiency, and one

model predicting splice variant pathogenicity trained on

the database ClinVar [30]. We outperform state-of-the-

art models for each task but �3, on which MMSplice and

HAL both are the best. In particular, our model of exon

skipping ranked first at the 5th challenge of the Criti-

cal Assessment of Genome Interpretation group (CAGI5,

https://genomeinterpretation.org/). All our models are

available open source in the model zoo Kipoi [31] and can

be applied for variant effect prediction directly from VCF

files.

Results

Modular modeling strategy

We designed neural networks to score five potentially

overlapping splicing-relevant sequence regions: the donor

site, the acceptor site, the exon, as well as the 5′ end and

the 3′ end of the intron (Fig. 1a). The donor and the accep-

tor models were trained to predict annotated intron-exon

ba

Fig. 1 Individual modules of MMSplice and their combination to predict the effect of genetic variants on various splicing quantities. aMMSplice
consists of six modules scoring sequences from donor, acceptor, exon, and intron sites. Modules were trained with rich genomics dataset probing
the corresponding regulatory regions. bModules from a are combined with a linear model to score variant effects on exon skipping (��),
alternative donor (��3), or alternative acceptor site (��5), splicing efficiency, and they are combined with a logistic regression model to predict
variant pathogenicity. La and Ld stand for the length of intron sequence taken from the acceptor and donor side respectively

https://genomeinterpretation.org/
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and exon-intron boundaries from GENCODE 24 genome

annotation (see the “Methods” section, Fig. 1a, Additional

file 1: Figure S1). The exon and intronmodels were trained

from a MPRA that probed the effect of millions of ran-

dom sequences altering either the exonic 3′ end and the

intronic 5′ end for alternative 5′ splicing (A5SS, quanti-

fied by �3), or the exonic 5′ end and the intronic 3′ end

for alternative 3′ splicing (A3SS, quantified by �5) (see

the “Methods” section, Fig. 1a, Additional file 1: Figure

S2) [18]. For later use, the modules were defined as the

corresponding neural network models without the last

activation layer. We have two intron modules, the intron

5′ module that scores intron from the donor side and

the intron 3′ module that scores intron from the accep-

tor side. Likewise, we have two exon modules, the exon

5′ module that trained from A3SS and exon 3′ mod-

ule that trained from A5SS (see the “Methods” section,

Additional file 1: Figure S2). To score exonic sequence,

only one of the exonic module is applied depending on

the alternative splicing quantity. Training data and mod-

ule architecture are summarized in Table 1. Next, we

combined these modules to predict how genetic variants

lead to (i) differences in � , (ii) differences in �3, (iii)

differences in �5, (iv) differences in splicing efficiency,

Table 1 Summary of trained modules and models

MMSplice model Training data Architecture Loss function Target value Parameters

Donor module GENCODE 24, positive:
annotated donors, negative:
random sequence (“Methods”
section)

Four layer neural
network with dropout
and batch normalization,
Additional file 1: Figure
S1A

Binary cross entropy Positive vs. negative 18,049

Acceptor module GENCODE 24, positive:
annotated acceptors, negative:
random sequence (“Methods”
section)

Two layer conv. neural
network with dropout
and batch normalization,
Additional file 1: Figure
S1B

Binary cross entropy Positive vs. negative 4833

Exon 5′ module MPRA [18] exonic sequence One conv. layer shared
with the Exon 3′

module, followed with
one specific dense layer,
Additional file 1: Figure
S2

Binary cross entropy �5 6145

Exon 3′ module MPRA [18] exonic sequence One conv. layer shared
with the Exon 5′

module, followed with
one specific dense layer,
Additional file 1: Figure
S2

Binary cross entropy �3 6145

Intron 5′ module MPRA [18] intronic sequence One conv. layer shared
with the Intron 3′

module, followed with
one specific dense layer,
Additional file 1: Figure
S2

Binary cross entropy �3 13,825

Intron 3′ module MPRA [18] intronic sequence One conv. layer shared
with the Intron 5′

module, followed with
one specific dense layer,
Additional file 1: Figure
S2

Binary cross entropy �5 13,825

�logit(�) model Vex-seq [29] Linear regression Huber loss �logit(�), Eq. 2 9

Splicing efficiency
model (in vivo)

MaPSy (“Methods” section) Linear regression Huber loss Splicing efficiency,
Eq. 10

5

Splicing efficiency
model (in vitro)

MaPSy (“Methods” section) Linear regression Huber loss Splicing efficiency,
Eq. 10

5

Pathogenicity model
(w/o phyloP and
CADD)

ClinVar [30] [− 10, 10] around
donor, [− 40, 10] around
acceptor

Logistic regression Binary cross entropy Pathogenic vs.
benign

14

Pathogenicity model
(with phyloP and
CADD)

ClinVar [30] [− 10, 10] around
donor, [− 40, 10] around
acceptor

Logistic regression Binary cross entropy Pathogenic vs.
benign

18
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and (v) to disease or benign phenotypes according to the

ClinVar database (Fig. 1b). Specifically, we trained one lin-

ear model on top of the modules to predict �� . The

same linear model was applied to predict ��5 and ��3

by modeling the competition of two alternative exons.

Another linear model was trained to predict change of

splicing efficiency and a logistic regression model was

trained to predict variant pathogenicity from the modules

(Fig. 1b).

MMSplice improves the prediction of variant effect on

exon skipping

To assess the performance of MMSplice for predicting

effects of variants on exon skipping, we first considered

the Vex-seq dataset [29]. Vex-seq is a high-throughput

reporter assay that compared � for constructs contain-

ing a reference sequence to � for matching constructs

containing one of 2059 Exome Aggregation Consortium

(ExAC [32]) variants. The difference of � for the variant

allele to the reference allele is denoted �� . These vari-

ants consisted of both single nucleotide variants as well

as indels from exons and introns (20 nt upstream, 50

nt downstream). The data for the HepG2 cell line was

accessed through the Critical Assessment of Genome

Interpretation (CAGI) competition [33]. The 957 variants

from chromosome 1 to chromosome 8 were provided as

training data. The remaining 1054 variants from chromo-

some 9 to 22 and chromosome X were held out for testing

by the CAGI competition organizers and were not avail-

able throughout the development of the model. The test

data consisted of 572 exonic and 526 intronic variants and

included 44 indels.

The Vex-seq experiment is an exon skipping assay,

whereas our exon modules were trained for A5SS (�3)

and A3SS (�5). Because of high redundancy between

these two modules, we used the exon 5′ module as it

was better at predicting exon skipping exonic variants on

Vex-seq training data than the exon 3′ module (R = 0.52 v.s

R = 0.25,P = 0.001, bootstrap,Additional file 1: Figure S3).

We built an MMSplice predictor for �� by train-

ing a linear model to combine the modular predictions

and interaction terms between modules with overlap-

ping scored regions from the Vex-seq training data (see

the “Methods” section, Eq. 2). We compared MMSplice

with three state-of-the-art splicing variant scoring mod-

els: SPANR [17], HAL [18], and MaxEntScan [7] on

the held-out Vex-seq test data (“Methods” section). The

methods HAL [18] and SPANR [17] have been reported

to be the two best performed existing methods on a

recent large-scale perturbation assay probing 27,733 rare

variants [34], while MaxEntScan [7] was considered as

a baseline reference model. SPANR scores exonic and

intronic SNVs up to 300 nt around splice junctions. HAL

scores exonic and donor (6 nt to the intron) variants.

MaxEntScan scores [− 3, + 6] nt around the donor and

[− 20, + 3] nt around the acceptor sites. The Vex-seq data

was processed the same way for these models (“Methods”

section). Unlike the other methods, SPANR does not take

custom input sequences and could therefore score single

nucleotide variants but not for indels. We evaluated the

performance of �� predictions of MMSplice, HAL, and

SPANR using root-mean-square errors (RMSE) on test

data. MaxEntScan scores sequences but does not predict

� . We therefore compared the correlation of differences

of MaxEntScan scores to �� and used Pearson correla-

tion on test data as a common metric to compare all these

methods.

On the Vex-seq data, MMSplice showed a large

improvement over HAL and SPANR. First, MMSplice

could score all 1098 variants of the test set whereas HAL

could only score 572 (52.1%) and SPANR 966 (88%) of

them. Second, the difference in � predicted by MMSplice

correlated better when restricted to the respective vari-

ants scored by the other methods (R = 0.68 for MMSplice

v.s. R = 0.44, 0.26 for HAL and SPANR respectively,

both comparison P = 0.001, bootstrap, Fig. 2b–d). A

higher performance than other models was also obtained

even when we bluntly summed the prediction scores from

the five modules without fitting any parameter to the

Vex-seq training data (R = 0.66 and R = 0.67 when

using the exon 3′ module in place of the exon 5′ module,

Additional file 1: Figure S4). This shows that the superior

performance of our model is primarily due to the mod-

ules not the combination linear model that was trained

from Vex-seq training data. Moreover, MMSplice showed

higher accuracy than HAL and SPANR on these data

when considering root-mean-square errors (RMSE = 0.1

for MMSplice versus 0.28 for HAL and 0.14 for SPANR,

Fig. 2b–d).

We further compared our prediction for donor and

acceptor site variants with the popular model Max-

EntScan [7]. MMSplice performed better both in donor

sequence (R = 0.87 for MMSplice versus 0.66 for Max-

EntSan5, P = 0.001, bootstrap, Additional file 1: Figure

S5) and acceptor sequence (R = 0.81 for MMSplice versus

0.69 for MaxEntSan3, P = 0.001, bootstrap, Additional

file 1: Figure S6), when restricted to the subset of variants

that MaxEntScan3 could score (42 donor variants and 149

acceptor variants). HAL performed better (R = 0.71) than

MaxEntScan5 (R = 0.66) but worse than MMSplice (R =

0.87) on donor variants (P = 0.001 for both comparisons,

bootstrap, Additional file 1: Figure S5).

Altogether, MMSplice outperformed SPANR, HAL, and

MaxEntScan on predicting effects of genetic variants on

exon skipping observed on this large-scale perturbation

data, by covering more variants and also by providing

more accurate predictions. Our model also ranked the

first in the 2018 CAGI Vex-seq competition. A joint
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Fig. 2MMSplice improves the prediction of variant effect on exon skipping. a Schema of the Vex-seq experiment [29]. The effect of 2059 ExAC
variants (red star) from or adjacent to 110 alternative exons were tested with reporter genes by measuring percent splice-in of the reference
sequence (�ref) and of the alternative (�alt) by RNAseq. b–dMeasured (y-axis) versus predicted (x-axis) � differences between alternative and
reference sequence for MMSplice (b), HAL [18] (c), and SPANR [17] (d) on Vex-seq test data. Color scale represents counts in hexagonal bins. The
black line marks the y = x diagonal. Each plot is shown with the subset of variants that the considered model can score. Pearson correlations (R) and
root-mean-square errors (RMSE) were also calculated based on the scored variants. The 95% confidence intervals for these two metrics were
calculated with bootstrap (“Methods” section). (e) Schema of MFASS experiment [34]. Exon skipping effects of 27,733 ExAC SNVs (red star) spanning
or adjacent to 2339 exons were tested by genome integration of designed construct. Splice-disrupting variant (SDV) is defined as a variant that
change an exon with original exon inclusion index� 0.5 by at least 0.5. f Precision-recall curve of MFASS SDV classification based on model
predicted �� . Precision-recall curve for all three models was calculated for the sets of variants they can score. MMSplice (black) scored all 27,733
variants, SPANR (yellow) scored 27,663 variants (1,048 SDVs), and HAL (blue) scored 14,353 variants (489 SDVs)

publication with the organizers and challengers is in the

planning.

MMSplice classifies rare splice disrupting variants with

higher precision and recall

To further compare models on predicting exon skipping

level with independent datasets that no model has been

trained on, we used the splicing functional assay from

Cheung et al. [34]. Cheung et al. found 1050 splice-

disrupting variants (SDVs); the majority are extremely

rare, after examining 27,733 ExAC single-nucleotide

variants (SNV) with Multiplexed Functional Assay of

Splicing using Sort-seq (MFASS) (Fig. 2e). The author

benchmarked several variant effect prediction methods

including conservation-based methods like CADD [35],

phastCons [36], and the state-of-the-art splicing variant

scoring tools HAL and SPANR. Among all, the two splic-

ing variant scoring methods performed much better than

the others, thus MMSplice was compared with those two.

MMSplice model with the final combination linear model

trained from Vex-seq training data was applied to classify

SDVs based on predicted �� solely from sequence. Our

model achieved overall higher Area under the precision-

recall curve (auPR, MMSplice: 0.41, HAL: 0.27, SPANR:

0.26, P = 0.001 for both MMSplice versus HAL and

MMSplice versus SPANR, bootstrap) when all models

considering only their scored variants (Fig. 2f ). In total,

MMSplice scored all variants, SPANR scored 99.7% of all

variants, while HAL scored only 51.8% of them. When

considering exonic variants only, MMSplice (auPR=0.29)

performed similar to HAL (auPR = 0.27) (P = 0.326,

bootstrap, Additional file 1: Figure S7). For intronic vari-

ants, MMSplice had an auPR of 0.55 in comparison to

0.43 for SPANR (P = 0.001, bootstrap, Additional file 1:

Figure S7).

Overall, MMSplice demonstrated a substantital

improvement over SPANR for both intronic and exonic

variants and showed a similar performance to HAL

for classifying exonic SDVs. This result also demon-

strates the power of our model to score the effect of

rare variants, for which association studies often lack of

power.

MMSplice predicts variants associated with competing

splice site selection with high accuracy

The MMSplice modular framework allows modeling

alternative splicing events other than exon skipping. To

demonstrate this and assess the performance ofMMSplice

on other alternative splicing events, we built MMSplice

models to predict association of variants around alter-

native donors on alternative 5′ splicing (A5SS, �3) and

variants around alternative acceptors on alternative 3′

splicing (A3SS) (“Methods” section) in GTEx. �5 and �3

values for homozygous reference variants as well as with
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heterozygous and homozygous alternative variants were

calculated from RNA-seq data of the GTEx consortium

[37] (“Methods” section). Here too, our MMSplice mod-

els allowed handling indels. One example is the insertion

variant rs11382548 (chr11:61165731:C-CA). It is a splice

site variant that turns a CG acceptor to an AG acceptor. It

showed the largest ��5 among all assessed variants.

We benchmarked MMSplice against MaxEntScan,

HAL, and COSSMO. Overall, MMSplice (R = 0.66) sig-

nificantly outperformed COSSMO (R = 0.5, P = 0.016,

bootstrap) and MaxEntScan (R = 0.46, P = 0.001,

bootstrap) and tied with HAL (R = 0.67, P = 0.558,

bootstrap) on predicting ��3 (Fig. 3a–d). On predicting

��5, MMSplice (R = 0.57) again significantly outper-

formed both COSSMO (R = 0.37) and MaxEntScan (R =

0.44) (all P = 0.001, Fig. 3e–g). This conclusion also

holds when using RMSE as evaluationmetric (Fig. 3). Even

though HAL can predict A5SS donor variants well, the

model has been trained for predicting A5SS and may not

generalize well to other alternative splicing types. It only

showed moderate performance when predicting donor

variants from Vex-seq skipped exons (Additional file 1:

Figure S5). In contrast, MMSplice showed consistent high

performance across different types of alternative splicing

events.

MMSplice outperformed COSSMO for both donor and

acceptor variants even thoughCOSSMOwas trained from

estimated �5 and �3 values from GTEx data. One pos-

sible reason is that COSSMO was trained from reference

sequence to predict �5 and �3, ignoring the genetic vari-

ants of the GTEx dataset. In contrast, MMSplice was

trained to predict �� from genetic perturbation data

(Vex-Seq). Also, COSSMO was trained to predict splice

site usage for an arbitrary number of alternative splice

sites, while we focused here on the cases with only two

alternative splice sites.

Prediction of splicing efficiency

We next used our modular approach to derive a model

that predicts splicing efficiency, i.e., the proportion of

spliced RNAs among spliced and unspliced RNAs [27].

We have done so in the context of a second CAGI5

challenge (Fig. 4a), whose training dataset is based on

a massively parallel splicing assay (MaPSy [27]) and

which is described in the “Methods” section. This MaPSy

dataset consists of splicing efficiencies, 5761 pairs of

matched wild-type and mutated constructs, where each

mutated construct differed from its matched wild-type

by one exonic non-synonymous single-nucleotide variant

(“Methods” section). The assay has been done both with

an in vitro splicing assay and in vivo by transfection into

HEK293 cells (“Methods” section). A test set of 797 con-

struct pairs was held-out during the development of the

model.

a

e

b

f

c

g

d

Fig. 3 Evaluation of models predicting ��5 and ��3 on the GTEx dataset. Associated effects (y-axis) versus predictions (x-axis) for GTEx variants
around alternative spliced donors (3 nt in the exon and 6 nt in the intron) and acceptors (3 nt in the exon and 20 nt in the intron) were considered.
�5 (or �3) of homozygous (black) and heterozygous (blue) alternative variants as well as homozygous reference variants were calculated by taking
the mean �5 (or �3) across individuals with the same genotype (excluding individuals with multiple variants within 300 nt around splice sites) on
brain and skin (not sun exposed) samples. For donor variants, MMSplice (a) was benchmarked against COSSMO (b), HAL (c), and MaxEntScan (d). For
acceptor variants, MMSplice (e) was benchmarked against COSSMO (f) and MaxEntScan (g). The 95% confidence intervals for Pearson correlation (R)
and root-mean-square errors (RMSE) were calculated with bootstrap (“Methods” section). The dotted line marks the y = x diagonal
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a

b

ed

c

Fig. 4 Splicing efficiency prediction. aMaPSy experiment (“Methods” section). Effect of 5761 published disease-causing exonic mutations on splicing
efficiency is measured both in vivo and in vitro. Changes of splicing efficiency were quantified by allelic log-ratio. b–eMeasured (y-axis) versus
predicted (x-axis) allelic ratio for 797 variants in the test set for MMSplice (b, c) and the SMS score [28] (d, e). The dotted line marks the y = x diagonal.
The 95% confidence intervals for Pearson correlation (R) and root-mean-square errors (RMSE) were calculated with bootstrap (“Methods” section)

We trained a linear model on top of the modular pre-

dictions with MaPSy training data to predict differential

splicing efficiency reported by theMaPSy data (“Methods”

section). This linear model was trained the same way as

for Vex-seq except that the response was the allelic log-

ratio (Fig. 4a and “Methods” section) instead of�logit(�).

One model was trained for the in vivo data and another

model was trained for the in vitro data. Our MMSplice

model for differential splicing efficiencies predicted the

effect of those non-synonymous mutations on the held-

out test set reasonably well in vitro (R = 0.57, 4a) and well

in vivo (R = 0.37, 4c). Also, our MMSplice model for dif-

ferential splicing efficiencies outperformed the SMS score

algorithm [28] on in vitro data (P = 0.001, bootstrap,

4d) and reached similar performance on the in vivo data

(P = 0.524, bootstrap, 4e). MMSplice significantly out-

performed SMS scores in both conditions when evaluated

with RMSE (0.74 and 0.95 for MMSplice versus 1.01 and

1.12 for SMS scores, P = 0.001 for both comparison,

bootstrap). Several reasons may have led to the worse per-

formance in vivo. One possible reason is that the in vivo

assay may involve RNA degradation factors, which also

regulate level of spliced RNA species by regulating RNA

stability. Another possible reason is that the folding of

RNAs in vivo may be more complex than in vitro, which

in turn affects splicing [38], making the prediction in vitro

more difficult.

MMSplice can contribute to improved predictions of splice

site variant pathogenicity

Predicting variant pathogenicity is a central task of

genetic diagnosis. However, large amount of variants are

annotated as variant of uncertain significance (VUS).

A good splice variant effect prediction model can help
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interpreting VUSs. To evaluate the potential of MMSplice

to contribute in predicting variant pathogenicity, we con-

sidered the ClinVar variants (version 20180429, [30]) that

lie between 40 nt 5′ and 10 nt 3′ of an acceptor site or

10 nt either side of a donor site of a protein coding gene

(Ensembl GRCh37 v75 annotation, “Methods” section) as

potentially affecting splicing. Among these variants, we

aimed at discriminating between the 6310 variants clas-

sified as pathogenic and the 4405 variants classified as

benign. To this end, we built an MMSplice model that

implements a logistic regression on top of the MMSplice

modules (“Methods” section). Variants can potentially

be in the vicinity of multiple exons. MMSplice handles

this many-to-many relationship (Fig. 5a). Conveniently,

MMSplice can be applied to a variant file in the standard

format VCF [39] and a genome annotation file in the stan-

dard GTF format. Moreover, MMSplice is available as a

Variant Effect Predictor Plugin (VEP [40]).

This MMSplice model was benchmarked against

SPANR [17] and the ensemble of three other models:

MaxEntScan [7], HAL [18], and the branch point predic-

tor LaBranchoR [41]. We also compared our MMSplice

model and competing models with phyloP and CADD

scores as additional features (Additional file 1: Supple-

mentary Methods). Model performances were bench-

marked under 10-fold cross-validation (Fig. 5b). Globally

on all the 10,715 considered variants, MMSplice alone

(auROC = 0.940) outperformed SPANR (auROC = 0.821,

P = 0.001, bootstrap) and the ensemble model combin-

ingMaxEntScan, HAL, and LaBranchoR (auROC= 0.928)

(P = 0.001, bootstrap). AddingMMSplice to the ensemble

model further improved the auROC to 0.954 (P = 0.001,

bootstrap). Moreover, MMSplice with phyloP and CADD

features (auROC = 0.973) achieved a performance close

to the best ensemble model kipoiSplice5 that included

MMSplice (auROC = 0.979, P = 0.003, bootstrap, Fig. 5),

a

b

Fig. 5 Predictions on ClinVar variants. a Variants are first mapped to potentially affected exons. Variants in the exon or in the intron, within La nt of
the acceptor site or within Ld nt from the donor site are considered to affect splicing of the exon. Afterwards, reference and alternative sequences
are retrieved and subjected to MMSplice for prediction. MMSplice gives a prediction for each variant-exon pair. bModel comparison on classifying
pathogenicity of ClinVar splice variants. Models were trained and evaluated in 10-fold cross-validation. Error bars indicate one standard deviation
calculated across folds. The six leftmost models (blue) are incrementally added to the ensemble model: “+phyloP+CADD ” uses all five previous
models as well as phyloP and CADD scores. Performance of MMSplice and SPANR alone as well as their performance with phyloP and CADD scores
are on the right (orange)
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indicating that MMSplice alone captured most of the

sequence information captured by all other models.

We were then interested in delineating the added value

of MMSplice per gene region. To this end, we grouped

the variants based on their position yielding to (1) 832

exonic variants from the acceptor site region, (2) 1902

exonic variants from the donor site region, (3) 3575

intronic variants from the donor site region, and (4)

4393 intronic variants from the acceptor site region. On

exonic variants, we further benchmarked against Mut-

Pred Splice [15] which predicts pathogenicity of exonic

variants. Among the models that do not integrate phyloP

and CADD features, MMSplice was the best in the accep-

tor site region (auROC = 0.602 for the exonic variants

and auROC = 0.970 for the intronic variants, Additional

file 1: Figure S8A,D). On the donor site region, MMSplice

and the ensemble of MaxEntScan, HAL, and LaBran-

choR were both the best models (auROC = 0.651 for

the exonic variants and auROC = 0.977 for the intronic

variants, Additional file 1: Figure S8B,C). MMSplice

performed better than MutPred Splice on both exonic

regions (MMSplice: auROC = 0.602, 0.651, MutPred:

auROC = 0.594, 0.642, Additional file 1: Figure S8A,B),

even though MutPred integrates conservation features

[15]. Furthermore, the ensemble model that included

MMSplice with phyloP and CADD features had a simi-

lar performance than the best ensemble model in all four

regions (Additional file 1: Figure S9, auROC = 0.893,

0.917, 0.981, 0.982 versus auROC = 0.894, 0.919, 0.988,

0.985). Notably, phyloP and CADD had good perfor-

mance on exonic variants (auROC = 0.874, 0.869),

but close to random in the evaluated intronic variants

(auROC = 0.505, 0.483). In contrast, all other splicing

models without phyloP and CADD were performing bet-

ter at intronic variants but much worse at exonic variants,

likely because many pathogenic exonic variants do not

affect splicing but have a functional impact on the protein.

Recently, SPiCE [16] has been proposed as a method

to predict the probability of a splice site variant affect-

ing splicing. SPiCE is a logistic regression model trained

from 142 manually collected and experimentally tested

variants.We thus benchmarked against SPiCEwith 12,625

ClinVar variants (2312 indels) that SPiCE was able to score

(it failed to score variants from sex chromosomes, “Methods”

section). MMSplice (auROC = 0.911) outperformed

SPiCE (auROC = 0.756, P = 0.001, bootstrap). More-

over, this higher performance of theMMSplice model also

held when we fine-tuned the logistic regression model of

SPiCE on the ClinVar training dataset (auROC = 0.760,

P = 0.001, bootstrap, Additional file 1: Figure S10).

Altogether, these results show that MMSplice not only

improves the predictions of the effects of variants on bio-

physical splicing quantities, but also helped improving

variant pathogenicity predictions.

Discussion
We have introduced MMSplice, a modular framework to

predict the effects of genetic variants on splicing quan-

tities. We did so by training individual modules scoring

exon, intron, and splice sites. Models built by integrat-

ing these modules showed improved performance against

state-of-the-art models on predicting the effects of genetic

variants on � , �3, �5, splicing efficiency, and pathogenic-

ity. The MMSplice software is open source and can be

directly applied on VCF files and handles single nucleotide

variants and indels. Like other recent models [17–19],

MMSplice score variants beyond the narrow region close

to splice sites that is for now suggested by clinical

guidelines [42]. We also implemented a VEP [40] plu-

gin that wraps the python implementation. These features

should facilitate the integration of MMSplice into bioin-

formatics pipelines at use in genetic diagnostic centers

and may help in improving the discovery of pathogenic

variants.

MMSplice leverages the modularity of neural net-

works and deep learning frameworks. MMSplice is imple-

mented using the deep learning python library Keras [43].

All MMSplice modules and models are shared in the

model repository Kipoi [31], which should allow other

computational biologists to improve individual modules

or to flexibly include modules into their own models.

We hope this modular approach will help the commu-

nity to coordinate efforts and continuously and effec-

tively built better variant effect prediction models for

splicing.

Variations across the reference genome or across nat-

ural genetic variations in the population may be limited

by evolutionary confounding factors, limiting the model’s

ability to make predictions about rare genetic variants.

Experimental perturbation assays are useful because they

circumvent these confounding factors. Here, we have

leveraged a massively parallel reporter assay [18] to build

individual modules. Also, models predicting � and splic-

ing efficiencies were trained on large-scale perturbation

datasets (Vex-seq [29] andMaPSy). We note however that

MMSplice was not entirely fitted on perturbation assays:

The donor site and the acceptor site modules have been

trained on the GENCODE annotation, which is observa-

tional. Our models outperformed models based on the

reference genome and natural variations and was only

matched by models based on perturbation assays (HAL

for ��3 and the SMS score for in vivo splicing efficiency

changes). Nonetheless, one should remain cautious about

how predictive rules learned from specific perturbation

assays generalize to more general contexts. For instance,

the Rosenberg MPRA dataset probed only two 25-nt-

long sequences for a very specific construct. Hence, it

is important to validate models on further independent

perturbation data.
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Our models have some limitations. First, splicing is

known to be tissue-specific [44, 45], while our mod-

els are not. Nevertheless, our models can serve as a

good foundation to train tissue-specific models. Second,

RNA stability also plays a role in determining the ratio

of different isoforms [29]. Models predicting RNA sta-

bility from sequence, as we recently developed for the

Saccharomyces cerevisiae genome [46] could be integrated

as further modules. Third, our exon and intron modules

are developed from minigene studies, and the perfor-

mance evaluation on predicting �� and splicing effi-

ciency changes are also done with minigene experiment

data. However, chromatin states are known to have a

significant role in splicing regulation [47]. Hence, vari-

ant effect prediction for endogenous genes could possibly

benefit frommodels taking chromatin states into account.

Fourth, our exon and intron modules have only one con-

volutional layer, which is not enough to learn complex

interaction effects of splicing regulatory elements [48].

We have explored using multiple convolutional layers, but

the performance on the Vex-seq training data was sim-

ilar (data not shown). We therefore chose the simpler

architecture. The limitation may come from the train-

ing data, as the perturbation assay we are training from

has 2.5 million random sequences of 25 nucleotides. This

library is maybe not deep enough to probe motif inter-

actions, relative distances, and orientations. Non-random

libraries that probe the grammar of discovered motifs

could be designed in the future and help studying motif

interactions. Fifth, MMSplice can technically score vari-

ants arbitrarily deep into introns. However, as the training

data of MMSplice did not cover deep intronic variants,

we suggest to only consider up to 100 nt into introns,

as we did here. Further models, such as SPANR which

is able to score variants up to 300 nt into the intron,

would need to be developed to cover deep intronic vari-

ants.

Like former splicing predictors [17–19, 21–23], the goal

of MMSplice is to predict quantitatively physical mea-

sures of splicing and not variant pathogenicity. Whether

affecting splicing at given locus leads to disease heavily

depends on the function of the gene and of the splice

isoforms. Moreover, existing pathogenicity annotations,

such as from the ClinVar database, are probably biased

toward tools such as MaxEntScan that are popular and

have been in use for a long time. Nonetheless, our results

indicate that MMSplice predictions could be potent

predictive features for pathogenic variant scores such as

S-CAP [49] or CADD [35].

Methods

Donor and acceptor modules

The donor and the acceptor modules were trained

using the same approach. A classifier was trained to

classify positive donor sites (annotated) against neg-

ative ones (random, see below) and the same for

the acceptor sites. The classifiers predicted scores can

be interpreted as predicted strength of the splice

sites.

Donor and acceptormodule training data

For the positive set, we took all annotated splice junc-

tions based on the GENCODE annotation version 24

(GRCh38.p5). For the donor module, a sequence window

with 5 nt in the exon and 13 nt in the intron around the

donor sites was selected. For the acceptor module, the

region around the acceptor sites spanning from 50 nt in

the intron to 3 nt in the exon was selected in order to

cover most branch points. In total, there were 273,661

unique annotated donor sites and 271,405 unique anno-

tated acceptor sites. This set of splice sites was considered

as the positive set. In particular, not only sites with the

canonical splicing dinucleotides GT andAG for donor and

acceptor sites, respectively, were selected, but also sites

with non-canonical splicing dinucleotides were included

as positive splice sites.

The negative set consisted of genomic sequences

selected within the genes that contributed to positive

splice sites, in order to approximately match the sequence

context of the positive set. Negative splice sites were

selected randomly around but not overlapping the positive

splice sites. To increase the robustness of the classifiers,

around 50% of the negative splice sites were selected to

have the canonical splicing dinucleotides. In total, 410,111

negative donor sites and 406,841 negative acceptor sites

were selected. During model training, we split 80% of the

data for training and 20% of the data for validation. The

best performing model on the validation set was used for

variant effect prediction.

Donor and acceptormodule architecture

Neural network models were trained to score splice sites

from one-hot-encoded input sequence. The donor model

was a multilayer perceptron with two hidden layers with

Rectified Linear Unit (ReLU) activations and a sigmoid

output (Additional file 1: Figure S1A). The hidden lay-

ers were trained with a dropout rate [50] of 0.2 and

batch normalization [51]. We chose a multilayer percep-

tron over a convolutional neural network because of the

short input sequence of the donor model. The accep-

tor model was a convolutional neural network with two

consecutive convolution layers, with 32 15 × 1 convo-

lution followed by 32 1 × 1 convolution (Additional

file 1: Figure S1B). The second convolutional layer was

trained with a dropout rate of 0.2 and batch normaliza-

tion. For these models, we found the number of layers and

the number of neurons in each layer by hyperparameter

optimization.
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Exonmodule

Exonmodule training data

The exonic random sequences from the MPRA experi-

ment by Rosenberg et al. [18] were used to train the exon

scoring module. This MPRA experiment contains two

libraries, one for alternative 5′ splicing and one for alter-

native 3′ splicing. The alternative 5′ splicing library has

265,137 random constructs while the alternative 3′ splic-

ing library has 2,211,789. Each random construct has a

25-nt random sequence in the alternative exon and a 25-

nt random sequence in the adjacent intron. �5 and �3 of

different isoforms were quantified by RNA-Seq for each

random construct [18]. Here, 80% of the data was used for

model training and the remaining were used for valida-

tion. The best performing model on the validation set was

used for variant effect prediction.

Exonmodule architecture

Rosenberg et al. [18] showed that the effects of splicing-

related features in alternative exons are strongly correlated

with each other across the two MPRA libraries, reflect-

ing that similar exonic regulatory elements are involved

for both donor and acceptor splicing. We thus decided to

train exon scoring module from the two MPRA libraries

by sharing low-level convolution layers (128 15 × 1 fil-

ters, Additional file 1: Figure S2). The inputs of the

network were one-hot-encoded 25-nt random sequences.

The output labels were �5, respectively �3, for the alter-

native exon. After training, the exon modules for each

library were separated by transferring the correspond-

ing weights to two separated modules with convolution

layer with ReLU non-linearity followed by a global aver-

age pooling and a fully connected layer. We have used

a global pooling after the convolution layer allowing to

take exons of any length as input. This ended up with

two exon scoring modules, one for alternative 5′ end

(exon 5′ module) and one for alternative 3′ end (exon 3′

module).

Intron module

Intron modules were trained in the same way as the

exon modules (Additional file 1: Figure S2) by using

intronic random sequences from the MPRA experiment

as inputs, except that we used 256 15 × 1 convolu-

tion filters, because intronic splicing regulatory elements

from the donor side and the acceptor side are less sim-

ilar [18]. This ended up with a module to score intron

on the donor side (intron 5′ module) and a module

to score intron on the acceptor side (intron 3′ mod-

ule).

Training procedure for the modules

All neural network models for the six modules were

trained with binary cross-entropy loss (Eq. 1) and Adam

optimizer [52]. We implemented and trained these

models with the deep learning python library Keras

[43]. Bayesian optimization implemented in hyperopt

package [53] was used for hyper-parameter optimization

together with the kopt package (github.com/avsecz/kopt).

Every trial, a different hyper-parameter combination

is proposed by the Bayesian optimizer, with which a

model is trained on the training set, its performance

is monitored by the validation loss. The model

that had the smallest validation loss was selected.

Lossi = −(ψi log ψ̂i + (1 − ψi) log(1 − ψ̂i)) (1)

Variant effect prediction models

Variant processing

Variants are considered to affect the splicing of an exon if

it is exonic or if it is intronic and at a distance less than

La from an acceptor site or less than Ld from a donor site.

The distances La and Ld were set to 100 nt in this study

but can be flexibly set for MMSplice. MMSplice provides

code to generate reference and alternative sequences from

a variant-exon pair by substituting variants into the refer-

ence genome. Variant-exon pairs can be directly provided

to MMSplice. This is the case for the perturbation assay

data Vex-seq, MFASS, and MaPSy. MMSplice can also

generate variant-exon pairs from given VCF files (Fig. 5a).

For insertions, and for deletions that are not overlap-

ping a splice site, the alternative sequence is obtained by

inserting or deleting sequence correspondingly. For dele-

tions overlapping a splice site, the alternative sequence is

obtained by deleting the sequence and the new splice site

is defined as the boundaries of the deletion. In all cases,

the returned alternative sequence always have the same

structure as the reference sequence, with an exon of flexi-

ble length flanked by La and Ld intronic nucleotides. Each

variant is processed independently from the other vari-

ants, i.e., eachmutated sequence contains only one variant

(Fig. 5a). If a variant can affect multiple target (i.e., sites or

exons), the MMSplice models return predictions for every

possible target (Fig. 5a).

Variant effect prediction for�

Strand information of all Vex-seq assayed exons were

first determined by overlapping them with Ensembl

GRCh37 annotation release 75. Reference sequences were

extracted by taking the whole exon and 100 nt flanking

intronic sequence. Variant sequences were retrieved as

described in the “Variant processing” in the “Methods”

section, whereby variant-exon pairs were provided by the

experimental design.

We modeled the differential effect on � in the logistic

scale with the following linear model:

https://github.com/avsecz/kopt
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�logit(�) = logit(�alt) − logit(�ref)

= β0 + β1�S3′ intron

+ β2�Sacceptor + β3�Sexon

+ β4�Sdonor + β5�S5′ intron

+ β61(Exon overlap splice site modules)�Sexon

+ β71(5
′ intron overlap donor module)�S5′ intron

+ β81(3
′ intron overlap acceptor module)�S3′ intron

+ ǫ (2)

where

�S = Salt − Sref (3)

for all fivemodules,1(·) is the indicator function, ǫ is the

error term, the suffix alt denotes the alternate allele, and

the suffix ref denotes the reference allele. This model has

nine parameters: one intercept, one coefficient for each of

the five modules, and interaction terms for regions that

were scored by twomodules (Fig. 1). The latter interaction

terms were useful to not double count the effect of vari-

ants scored by multiple modules. These nine parameters

were the only parameters that were trained from the Vex-

seq data. The parameters of the modules stayed fixed. To

fit this linear model, we used Huber loss [54] instead of

ordinary least squares loss to make the fitting more robust

to outliers.

The model predicts �logit� for the variant. We trans-

form this to �� with a given reference � as follows:

�̂alt = σ(�logit� + logit(�ref))

��̂ = �̂alt − �ref

(4)

where

σ(x) =
1

1 + e−x
(5)

logit(x) = log
x

1 − x
(6)

To prevent infinite values in cases �ref = 0 or �ref =

1,�ref values were clipped to the interval [ 10
−5, 1−10−5].

HAL model is provided by the authors. A scaling fac-

tor required by HAL was trained on the Vex-seq train-

ing data using code provided by the authors [18]. The

SPANR precomputed scores (which are called SPIDEX),

were obtained from http://www.openbioinformatics.org/

annovar/spidex_download_form.php.

Performance on theMFASS dataset

MMSplice was applied the same way as for Vex-seq,

except that module combining weights were learned from

the Vex-seq training data, with MFASS data kept entirely

unseen. SDVs were classified based on the predicted ��

for a variant. Area under the precision-recall curve (auPR)

were calculated with trapz function from R package

pracma.

Variant effect prediction for�3 and�5

The Genotype-Tissue Expression (GTEx) [37] RNAseq

data (V6) was used to extract variant effect on �3 and �5.

Variants [− 3, + 6] nt around alternative donors of alter-

native 5′ splicing events and variants [− 20,+ 3] nt around

alternative acceptors for alternative 5′ splicing events were

considered. The skin (not sun exposed) samples and the

brain samples with matched whole genome sequence data

available were processed. �5 and �3 were calculated with

MISO [20] for each sample. Altogether, 1057 brain sam-

ples and 211 skin samples could be successfully processed

with MISO. �3 and �5 for homozygous reference variant,

heterozygous variants, and homozygous alternative vari-

ants were calculated by taking the average across samples

with the same genotype, excluding samples from individ-

uals with more than one variants within 300 nt around the

competing splice sites.

We predicted differences in �5 as follows. We consid-

ered only donor sites with two alternative acceptor sites.

We extracted the relevant sequences for the correspond-

ing two alternative exons and apply the model of Eq. (2)

which was fitted on Vex-seq training data. This returned

a �logit(�) for each alternative exon, denoted �S1 and

�S2, from which we calculate the predicted alternative�5

as follows:

�5alt = σ
(

�logit(�5) + logit
(

�5ref

))

(7)

where we model the �logit(�5) considering the influence

of variant on both alternative exon as follows (derivations

provided in supplements):

�logit(�5) = �S1 − �S2 (8)

The above computation applies to individual alleles.

To handle heterozygous variants, we assumed expression

from both alleles are equal. This led to the following

predictions for homozygous and heterozygous variants:

��5homo = �5alt − �5ref

��5hetero =
(

�5ref + �5alt

)

/2 − �5ref

(9)

Analagous calculations weremade to predict differences

in �3.

Pre-trained COSSMO model [19] was obtained from

the author website (http://cossmo.genes.toronto.edu/).

The predicted ��5 (or ��3) values of COSSMO were

calculated by taking the difference between the pre-

dicted �5 (or �3) from alternative sequence processed by

MMSplice and reference sequence.

Splicing efficiency dataset (MaPSy data)

The splicing efficiency assay was performed for 5,761 dis-

ease causing exonic nonsynonymous variants both in vivo

in HEK293 cells and in vitro in HeLa-S3 nuclear extract

as previously described [27]. Here, the exons were derived

from human exons and were reduced in size to be shorter

http://www.openbioinformatics.org/annovar/spidex_download_form.php
http://www.openbioinformatics.org/annovar/spidex_download_form.php
http://cossmo.genes.toronto.edu/
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than 100 nt long by small deletions applied to both the

reference and the alternative version of the sequence. This

way, the wild-type and the mutated alleles differed from

each other by a single point mutation and the wild-type

allele differed from a human exon by the small deletions.

The deletions were centered at the midpoint between the

variant and the furthest exon boundary. The sequences

of each substrate are listed in Additional file 2: Table S1

and also described further on the CAGI website (https://

genomeinterpretation.org/content/MaPSy).

Overall, 4964 of the variants were in the training set

and 797 were in the test set. The amount of spliced tran-

scripts and unspliced transcripts for each construct with

reference allele or alternative allele were determined by

RNA-Seq. The effect of mutation on splicing efficiency for

a specific reporter sequence was quantified by the allelic

log-ratio, which is defined as:

log2

(

mo/mi

wo/wi

)

(10)

where mo is the mutant spliced RNA read count, mi is

the mutant input (unspliced) RNA read count, wo is the

wild-type spliced RNA read count, and wi is the wild-type

input RNA read count. Transcripts with exon-skipped or

misspliced are ignored.

Variant effect prediction for splicing efficiency (MaPSy data)

We fitted a model to predict differential splicing efficiency

on the training set with a linear regression with a Huber

loss as defined by Eq. 2, except that the response variable

is the allelic log-ratio (Eq. 10) instead of �logit(�). We

used the exon 5′ module for the splicing efficiency model.

Performance onMaPSy data was reported on the held-out

test set.

SMS scores was applied to wild-type and mutant

sequence by summing up all 7-mer scores as described by

Ke et al. [28]. The predicted allelic log-ratio is the SMS

score difference between mutant and wild-type sequence.

Variant pathogenicity prediction

Processed ClinVar variants (version 20180429 for

GRCh37) around splice sites were obtained from Avsec

et al. [31]. Specifically, single-nucleotide variants [− 40,

10] nt around the splicing acceptor or [− 10, 10] nt

around the splice donor of a protein-coding genes

(Ensembl GRCh37 v75 annotation) were selected. Vari-

ants causing a premature stop codon were discarded.

After the filtering, the 6310 pathogenic variants con-

stituted the positive set and the 4405 benign variants

constituted the negative set. The CADD [35] scores

and the phyloP [55] scores were obtained through VEP

[40]. MMSplice �Score predictions of the five mod-

ules as well as indicator variables of the overlapping

region were assembled with a logistic regression model

to classify pathogenicity. Performance was assessed by

10-fold cross-validation (Additional file 1: Supplementary

Methods).

To compare MMSplice with SPiCE [16], we restricted to

the regions that SPiCE scores, i.e., [− 12, 2] nt around the

acceptor or [− 3, 8] nt around the donor of protein-coding

genes. Variants causing a premature stop codon were dis-

carded. SPiCE was trained to predict the probability of a

variant to affect splicing (manually defined by experimen-

tal observations). To apply it for pathogenicity prediction,

the logistic regression model of SPiCE was refitted with

ClinVar pathogenicity as response variable. MMSplice

model was applied as described above without conserva-

tion features. Models were compared under 10-fold cross-

validation.

Bootstrapping for P value and confidence interval estimation

Significance levels when comparing the performance of

two models were estimated with the basic bootstrap [56].

Denoting t1 the performance metric (Pearson correlation,

auPRC, or auROC) of MMSplice and t2 the performance

metric of a competing model, we considered the differ-

ence d = t1 − t2. We sampled with replacement the test

data B = 999 times and each time i computed the boot-

strapped metric difference d∗
i . The one-sided P value was

approximated as [56].

P =
1 + #{d∗

i ≤ 0; i = 1...B}

B + 1
(11)

We estimated confidence intervals of Pearson correla-

tions and root-mean-square values, using the percentile

bootstrap approach. Specifically, we generated 1000 boot-

strap datasets of the same size by sampling with replace-

ment. Noting the value of either of the statistics of

interest as θ∗, the reported 95% confidence interval is
(

θ∗
0.025, θ

∗
0.975

)

, where θ∗
0.025 and

(

θ∗
0.975

)

are the 2.5 and the

97.5 percentiles, respectively.

Additional files

Additional file 1: Supplementary methods and figures. (PDF 674 kb)

Additional file 2: Table S1: MaPSy splicing efficiency data. (CSV 3 kb)
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