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ABSTRACT Establishing and tracking beams in millimeter-wave (mmWave) vehicular communication is a
challenging task. Large antenna arrays and narrow beams introduce significant system overhead configuring
the beams using exhaustive beam search. In this paper, we propose to learn the optimal beam pair index
by exploiting the locations and types of the receiver vehicle and its neighboring vehicles (situational
awareness), leveraging machine learning classification and past beam training data. We formulate the
mmWave beam selection as a multi-class classification problem based on hand-crafted features that capture
the situational awareness in different coordinates. We then provide a comprehensive comparison of the
different classification models and various levels of situational awareness. Furthermore, we examine several
practical issues in the implementation: localization is susceptible to inaccuracy; situational awareness at
the base station (BS) can be outdated due to vehicle mobility and limited location reporting frequencies; the
situational awareness may be incomplete since vehicles could be invisible to the BS if they are not connected.
To demonstrate the scalability of the proposed beam selection solution in the large antenna array regime,
we propose two solutions to recommendmultiple beams and exploit an extra phase of beam sweeping among
the recommended beams. The numerical results show that situational awareness-assisted beam selection
using machine learning is able to provide beam prediction, with accuracy that increases with more complete
knowledge of the environment.

INDEX TERMS MmWave, beam alignment, situational awareness, machine learning.

I. INTRODUCTION

With the potential for high data rates, mmWave is the most
viable approach to support the massive sensor data shar-
ing in vehicular applications [2]. MmWave communication
employs large antenna arrays to provide beamforming gain
and gather receive power. Unfortunately, the narrow beams
of mmWave communication and the high mobility are found
in the vehicular context. A large codebook has to be searched
exhaustively to align the beam pointing angles in current
beam training solutions. Optimal beam pair is then configured
based on the radio frequency (RF) and multi-path signatures
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measured through beam training [3]–[5]. In vehicular com-
munication, these beam training protocols become infeasible
due to the highly dynamic channels and short beam coher-
ence time.

Fortunately, wireless cellular communication systems have
access to vast data resources – yet untapped – which can
make beam training more efficient. At every BS, sector, and
RF channel, hundreds of pilot signals are sent between the
BS and users in its coverage area to measure the propagation
channel every second. With the same cadence, the users send
feedback to the BS about the measured channel, for the BS
to select transmission parameters accordingly. Remarkably,
this information is leveraged only over a fraction of a second
and then discarded. This ‘‘data collection - discard’’mode in
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the wireless industry may be explained at lower frequencies
due to the presence of more propagation paths in the channel,
the variability in phone handset movement, and limitations in
sensing capabilities of phones.
Data-driven beam training is a promising approach for

mmWave vehicular systems. MmWave channels are more
deterministic given a certain environment geometry, com-
pared to that of the lower frequencies. As a result, the BS can
learn the relationship between the geometry of surrounding
objects and the beam direction, since these objects serve
as blockages or reflectors and can change directions of the
beams. Also, vehicles travel along roads in predictable ways,
following certain patterns, such as higher density and slower
speed during rush hour. Furthermore, vehicles are equipped
with sensors like satellite navigation, radars, LiDARs, cam-
eras, etc, which can be used to localize vehicles and sense
the environment [2], [6]. Connected vehicles may share their
positions and sensor data, leading to a notion of shared sit-
uational awareness. Last, the BS is well-equipped with the
capability to accommodate the needs for data-driven solu-
tions: (a) It has access to cloud and edge computing capa-
bility, (b) it is the natural data fusion hub for data generated
by various types of sensors on a vehicle, and (c) it can also
monitor current transmission status and is capable of caching
the useful transmission records [7], [8].
We employ ensemble learning-based random forest clas-

sification for mmWave vehicular beam prediction, which
is an efficient and robust solution [9]–[11]. By averaging
several independent predictors, ensemble models are able
to maintain the bias of individual predictors while still
decreasing variance [12], [13]. A random forest [9] aggre-
gates multiple classification trees [14], each one trained on
bootstrapped training samples. In addition, the classifier
splits trees using only partial features randomly selected for
each split. The predicted class is the majority class voted by
the bootstrapped classification trees. Decision trees are able
to capture non-linear and complicated relationship among
features but are susceptible to high variance in predictions
and overfitting [12]. By introducing bagging and randomness
to splits, random forest suffers less from overfitting and is
able to generalize better [15], [16]. A review of othermachine
learning classification techniques tested in this paper can be
found in [17].
Recently, out-of-band information aided mmWave beam

training was proposed in [2], [6], [18]–[20]. The key idea is
to leverage data collected from sensors like radar or other
communication systems to help reduce the beam search over-
head. Location information was exploited in [21] for machine
learning-based beam training. The idea was to quantize the
receiver location into several bins and then leverage statistical
learning to recommend likely beam pairs. A learning-to-rank
framework was used in [22] to enhance the flexibility of the
learningmodel for continuous receiver locations. A limitation
of the work in [21] and [22] is that the proposed algorithms
only considered knowledge of the target vehicle, but not the
locations of the other vehicles. This makes it difficult to

predict non-line-of-sight (NLOS) links without trying many
beam pairs. In [23], a simulation framework was proposed
to generate vehicular channels with temporally-correlated
vehicle trajectories. An initial investigation was provided to
solve the mmWave beam selection problem when all vehi-
cles’ (including the neighboring vehicles) locations were
incorporated in the features. In addition to beam selection,
it was shown in [24] that environment information of vehicle
locations could also be used to predict the beam power to
further automate vehicular beam training. In [23] and [24],
however, the design of the environment features was not
elaborated and issues in practical implementation were not
discussed.

In this paper, we leverage ensemble learning-based clas-
sification to identify the appropriate beam pair for mmWave
vehicular communication. We define situational awareness
as the locations and types of the receiver and the neighboring
vehicles. We provide a comprehensive investigation of an
efficient machine learning framework for mmWave vehicular
beam selection leveraging situational awareness. The key
contributions are summarized as follows.

• Instead of only using the receiver location as in [21]
and [22], we propose to exploit a richer set of vehicle
information to predict the optimal beam pair index and
configure mmWave vehicular link. We leverage situ-
ational awareness to capture reflections and different
multi-path effects in the environment, and then to filter
the angular characteristics of the receivers. Although
regression could be used for predicting the exact angles,
IEEE 802.11 ad and 5G NR only transmit and collect a
limited number of fixed beam pairs. Along these lines,
machine learning provides a framework to formulate
beam selection as a classification problem. In particular,
we formulate mmWave vehicular beam selection as a
multi-class classification problem. We leverage random
forest [9], an ensemble learning method that provides an
efficient and robust approach for different classification
problems [10], [11].

• We encode the situational awareness into different prop-
erly ordered hand-crafted features in Cartesian coordi-
nates, polar coordinates and occupancy grids. Vehicles
report their real-time locations regularly to the BS. Once
the receiver initiates a beam training request, the BS con-
structs a bird’s-eye viewmap of the current environment
based on the vehicles’ report of locations. The BS then
filters and organizes the locations/types of the receiver
and the neighboring vehicles, and formulates the situa-
tional awareness for the receiver. The database saves the
beammeasurement results along with the corresponding
situational awareness for offline learning.

• Wemodel and evaluate noisy features in practical imple-
mentations. Location information might be imperfect
due to the location reporting delay or the localization
inaccuracy of sensors. Also, the situational awareness
could be incomplete, since some vehicles might be invis-
ible to the BS if they are not connected.
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• Instead of relying on single-label classification to iden-
tify the optimal beam, we provide several mechanisms to
demonstrate the scalability and generalization of beam
selection for large antenna arrays, at the cost of beam
training among a small number of beam pairs. The
system builds the solutions upon recommending a set
of candidate beams based on situational awareness.
The BS and the receiver conduct beam training within
the smaller beam search space to identify the optimal
beam pair. We propose to leverage the estimated prob-
ability distribution of beams to recommend the beams.
Multi-label classification serves as another option which
selects the top beams based on beam reference signal
received power (RSRP).

The rest of the paper is organized as follows. Beam selec-
tion is formulated as a classification problem in Section II.
The problem is motivated in Section II-A, which demon-
strates the potential of applying situational awareness to pre-
dict the optimal beam. The system model is explained in
Sections II-B and II-C, including the simulation setup and the
ray tracing based channel modeling. Hand-crafted features
are encoded in Section II-D and the features are ordered for
concatenation in Section II-E. In Section III, realistic issues
of inaccurate or missing locations in situational awareness
are discussed and modeled. An overview of solutions to gen-
eralize the beam selection solution for large antenna arrays
is provided in Section IV. Numerical results are demon-
strated in Section V. The final conclusions are drawn in
Section VI.
In this paper, all matrices are represented by large bold

letters while the vectors are represented by small bold letters.
Conjugate transpose of a matrix is indicated by (·)∗, transpose
of a matrix is represented as (·)T , the Kronecker product is
denoted as ⊗, the ceiling function is denoted as ⌈·⌉, and the
cross product of two sets is ×.

II. SYSTEM SETUP AND PROBLEM FORMULATION

In this section, we propose to learn the optimal beam pair
index from situational awareness and the past beam training
data using multi-class classification.We first motivate the use
of situational awareness in our problem. We then discuss the
data collection, the channel modeling and the feature design.
We leverage an offline learning framework and establish our
dataset using ray tracing simulation in an urban mmWave
vehicle-to-infrastructure (V2I) network.

A. SITUATIONAL AWARENESS

BSs, also called road-side units (RSUs), are envisioned to
be deployed at a relatively low height in the urban canyons
(generally collocated with the lamp due to the high den-
sity of mmWave infrastructures). With vehicle mobility and
the existence of a large number of vehicles with different
sizes (e.g., high trucks, ambulances, SUVs, and small cars),
the line-of-sight (LOS) path to the receiver might suffer from
blockage, for example by a large truck, as shown in Fig. 1.

FIGURE 1. An illustration of the multiple paths of a vehicular channel in
the urban canyon. The receiver is demonstrated as a red sedan. The LOS
path (represented as the red line) could potentially be blocked by a large
vehicle such as a truck (shown in the figure as a blue truck). The green
dashed lines indicate potential reflections. In case of blockage,
the alternating paths are possible due to the reflections on the buildings,
on the reflecting vehicle (blue sedan), and on the ground.

Various objects in the environment can serve as reflectors
for NLOS paths. Among the different types of reflecting
objects, buildings, ground or other roadside construction are
static, while mobile reflectors include vehicles, bicyclists,
and pedestrians. In our work, we neglect the impact of pedes-
trians and bicyclists due to their low height and location at
the roadway edge. Since metallic surfaces are good reflectors
while they are difficult to penetrate through, vehicle is one
of the primary mobile factors that could affect the vehicular
channels [25], [26]. Thanks to the similarity of vehicle sizes,
the regularity of the vehicle motion and the lane deployment,
it is possible to keep track of vehicle locations and character-
ize the shapes and types. We define the situational awareness
as knowledge of the receiver and its neighboring vehicles’
locations and types.

MmWave beam are configured based on multi-path chan-
nels, which can be captured by the geometry of objects in
the environment. Vehicles are the primary source of block-
ages and reflections for the vehicular channels. Due to the
consistent antenna placement on the vehicles, vehicles’ loca-
tions, shapes and sizes can determine the directions and the
strengths of the paths. Hence, within the same vehicular phys-
ical environments (urban canyon, urban intersections, rural
roads, etc), there exists some certain function that maps the
situational awareness to the optimal beam direction. In this
paper, we investigate a simple scenario, with vehicles on
a two-lane straight urban street. We propose to learn the
optimal beam pair index by leveraging all vehicles’ locations
and types, which comprise the situational awareness at the
BS. It should be noted, however, the proposed solutions can
be extended to other vehicular environments as well. Situa-
tional awareness is available in automated driving and can
be obtained from sensors deployed at connected vehicles,
such as GPS, radar, LiDARs, etc. In this paper, we leverage
offline learning since we are primarily targeting at revealing
the relationship between the situational awareness and the
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FIGURE 2. An illustration of the communication between BS and vehicles
to establish the dataset. The vehicle sends its manufacturer and model
information to the BS after it gets connected in the cell, which can further
be translated to the information of its types, sizes and shapes.
Meanwhile, the BS and vehicle conduct beam training and the optimal
beam pair index is fed back to the BS. Vehicle keeps tracking and
updating its real-time location to the BS. After obtaining the information
of all vehicles, the BS constructs a bird’s-eye view map of the vehicles in
the current urban canyon and formulates the situational awareness for
each vehicle, which is saved as features in the dataset. The optimal beam
pair index corresponding to the situational awareness in each data
sample is then used as the label for the classification.

vehicle’s optimal beam pair index. The model, however, can
be extended to online learning aswell [23], [27], and is a topic
of future work.
Fig. 2 provides a brief illustration of communication

between the BS and the receiver to establish the dataset.
We assume a non-standalone network, where a system with
low frequency such as LTE or dedicated short-range com-
munication (DSRC) coexists with mmWave. When a vehicle
enters the coverage range of the BS, it detects the network
and gets connected to the cell. During this process, some
basic information about the vehicle, such as its manufac-
turer and model will be delivered to the BS, to determine
its size and type. The size of vehicles can be represented
by continuous values of length, height, width. The type of
vehicles, such as truck, SUV, or sedan can be indicated by
categorical variables. After the vehicle enters the cell, a beam
training request is initiated by the vehicle. Beam sweeping
is conducted between the BS and the vehicle. Beam RSRPs
are measured by the vehicle and subsequently sent back and
stored at the BS. The vehicle location, or in future work its
trajectory, is fed back to the BS regularly. The location update
frequency could either be synchronized or unsynchronized
with that of the beam training request. The impact of feedback
will be discussed in Section III-B.

Traditional beam selection solution involves testing can-
didate transmit and receive beam pairs to find the one that
is likely to give the highest beam RSRP. To avoid such
exhaustive search, we formulate beam selection as a multi-
class classification problem, where features are extracted
from situational awareness and the label is the categorical
variable of the optimal beam pair index. It should be noted
that the situational awareness is available at the BS, and
all the learning and prediction are implemented at the BS.
In Section II-B - II-E, we discuss the details of data collection,

FIGURE 3. Illustration of the deployment of ray tracing simulation. Small
cars and trucks are randomly dropped in the two lanes of the urban
canyon. Receivers are mounted on the top center of the small cars, and
the BS is denoted by the green box. The figure displays the five strongest
paths of the channel for a NLOS receiver. It is shown that multiple
reflections happen on the buildings and the vehicles.

channel modeling, and how to encode vehicle locations and
types into appropriate formats of features.

B. DATA COLLECTION FOR VALIDATION

Since there is no testbed available for mmWave V2I commu-
nication, we use a ray tracing simulator to collect data for
the learning. Ray tracing is an approach to compute the prop-
agation paths between the transmitter and receiver, given a
CAD model of environment with predefined surface material
properties [28]. Both industry and academia have used ray
tracing for channel modeling and site-specific propagation
prediction [29]–[32]. We use a commercial ray tracing simu-
lator called Wireless Insite [33]. To validate the effectiveness
of situational awareness in assisting mmWave beam selec-
tion, we consider a simple scenario with a two-lane straight
street in an urban canyon shown in Fig. 3. The proposed beam
selection solution can be tested and generalized by running
ray-tracing simulation and collecting data in other vehicular
environments as well.

The buildings are modeled by cuboids with a concrete
exterior, located on both road sides with random sizes. The
simulation includes two types of vehicles: high trucks, with
length, width, height = {Tℓ,Tw,Th}, and low cars (e.g.,
sedans) of size= {Cℓ,Cw,Ch}. For simplicity, all the vehicles
are modeled as cuboids with metal exteriors. In each simula-
tion, the type of vehicle (truck and car) is determined by a
Bernoulli random variable with a predefined probability. The
distance between adjacent vehicles is modeled by an Erlang
distribution with parameter (kerl, θerl) to form a sequence of
vehicles on both lanes [21], [34], [35]. The length of the
simulated street is Lstreet = 120 m. In each of the simula-
tion snapshot, receivers are mounted on top of only the low
vehicles. The trucks are free of blockage and therefore the
beam is LOS, and do not require machine learning prediction.
The data and codes can be found in [36].
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C. CHANNEL MODEL

Ray tracing is used to compute the top Lp strongest paths
between the transmitter and the receiver, considering the
effects of reflection, transmission, and diffraction. For NLOS
receivers at mmWave, the strongest ray is generally deter-
mined by the first-order reflection. The ray tracing simulation
formats the output angles in spherical coordinates, with the
origin located at the transmitting antenna dipole. We take the
Lp = 25 strongest rays from the given configurations of
environment (vehicles, urban canyon, etc) and transceivers.
Each path includes: (1) arrival azimuth angle φA, (2) arrival
elevation angle θA, (3) departure azimuth angleφD, (4) depar-
ture elevation angle θD, (5) path gain α, (6) phase shift ω, and
(7) time-of-arrival τ . We use the parameters in (1) - (7) to cal-
culate a multi-input-multi-output (MIMO) channel impulse
response [37]. Denoting the number of transmit antenna as
Nt and that of receive antenna as Nr, the pulse-shaping filter
as g(·), the steering vectors as at(·) and ar(·), and the sampling
period as T , the wideband channel H[n] with Lc taps is [21]

H[n] =
√

NtNr

×

Lp−1
∑

ℓ=0

g(nT − τℓ)ar(φ
A
ℓ , θAℓ )a∗

t (φ
D
ℓ , θDℓ )αℓe

jωℓ ,

0 ≤ n ≤ Lc − 1. (1)

Due to the dense deployment of BSs and the short BS-vehicle
distance for mmWave V2I, channels are susceptible to
the change of heights and the elevation spread of depar-
ture/arrival angles [38]. To control transmit and receive
beams in both the azimuth and elevation domains, we assume
that both the transmitter and the receiver apply uniform planar
arrays (UPA). The UPA at the transmitter faces towards the
street. For the receiver, the UPA is mounted on top of the
vehicle and faces upwards. The size of UPAs is denoted as
Nt = Nr = Ny × Nx, where Ny is the number of antenna
vertically and Nx is the antenna number horizontally. Beam
training is performed based on search for the transmitting
beamforming and receiving combining vectors from a code-
book. We use two-dimensional (2D) DFT codebooks W and
F for the precoder and combiner, where each element of W
and F is one beam codeword. Defining a DFT matrix Wx
of size Nx × Nx and Wy of size Ny × Ny, the i-th beam
codeword in the beam codebookW andF isW{i} = F{i} =
[

Wx ⊗ Wy
]

:,i
. Other codebooks can be used and may give

higher performance if carefully designed.
A brute force approach to beam selection proceeds as

follows. There are in total NB = NtNr different beam pairs
in the dataset. For the i-th beam pair, (wi, fi) ∈ W × F, i ∈

{1, 2, · · · ,NB}, the normalized received power pi is

pi =

Lc−1
∑

n=0

∣

∣w∗
i H[n]fi

∣

∣

2
. (2)

Stacking the received power of all beams calculated from (2),
the received power vector p is

p = [p1, p2, · · · , pNB ], (3)

FIGURE 4. Illustration for encoding the environment with Cartesian
coordinates. The origin lies at the left bottom of the simulation area. Each
vehicle location is encoded as (horizontal location, lane index).

where NB is the number of beam pairs in the beam codebook.
Furthermore, we have

s = argmaxp, (4)

and the optimal beam pair index s is obtained.

D. ENCODING VEHICLE LOCATION

The BS collects vehicle locations at fixed time intervals.
To translate the raw data collected from sensors into the fea-
ture format that is suitable for our learningmodel, we propose
the following solutions to encode the location. We evaluate
the performance metrics of each encoding solution in the
simulations.

1) CARTESIAN COORDINATES

The first approach is to encode locations in Cartesian coor-
dinates, as shown in Fig. 4. The vehicles are assumed to
be traveling in the center of each lane. Hence, a categorical
variable is enough to represent the lane index for a vehicle.
Each vehicle’s location is represented by (horizontal location,
lane index), where the horizontal location is the coordinate
of the vehicle’s center along the x coordinate. In our work,
the origin of the Cartesian coordinates is set at the left bottom
of the simulation area.

2) POLAR COORDINATES

Beam training with a codebook of pointing beams is essen-
tially a problem of finding the strongest path direction in the
channel. In LOS links, for example, polar coordinates (or
spherical coordinates) give an exact angle-of-arrival (AoA)
and angle-of-departure (AoD). As a result, polar coordinates
and spherical coordinates, are a natural means to encode
locations. In polar and spherical coordinates, the origin is set
at the center of the receiver, as shown in Fig. 5. Each vehicle
or BS’s location is represented by (distance to the origin,

polar angle), relative to the receiver. Spherical coordinates
include the elevation angle in the three-dimensional (3D)
space to incorporate the heights of different vehicles. In the
spherical coordinates, each vehicle location is represented as
(distance to the origin, azimuth angle, elevation angle).
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FIGURE 5. Illustration for encoding the environment with polar
coordinates. The origin lies at the receiver. The polar angle is defined as
the angle between the direction of vehicle (or BS) relative to the receiver
and the x axis. Vehicle location is encoded as (distance to the origin,
polar angle) relative to the receiver.

3) OCCUPANCY GRID

An alternative to represent the coordinates is to create an
image in either 2D or 3D occupancy grids. For example, in the
2D case, the idea is to quantize the area into regular-sized
occupancy grids with a certain granularity dx . The grid gran-
ularity is quantified by the distance between the center of
horizontally adjacent grids. Assuming the size of the simu-
lation area is Dx , the grids can be represented by a matrix G

with a size of 2 × ⌈Dx
dx

⌉. There are three types of vehicles:
neighboring trucks, neighboring cars, and the receiver car.
An illustration is provided in Fig. 6. If there is no vehicle
inside the g-th grid of the ℓ-th lane (ℓ = 1, 2), we indicate
the value G[ℓ, g] = 0; if part of the truck lies inside the
grid, G[ℓ, g] = 1; if part of a car (excluding the receiver)
is in the grid, G[ℓ, g] = 2; if the receiver lies inside the
grid, G[ℓ, g] = 3. The categorical variables 1, 2, 3, 0,
are further one-hot encoded as 1000, 0100, 0010 and 0001.
The occupancy grid can also be expanded into a 3D space,
which is quantized into cuboids based on the pre-defined
granularities. Denoting the height of the area as Dz and its
granularity as dz, the grid can be represented a matrix of
size 2 × ⌈Dx

dx
⌉ × ⌈

Dz
dz

⌉, where each entry characterizes the
type of the vehicle that occupies the corresponding grid.
The grid matrix G can be kept as its original format to pre-
serve spatial correlation and extract the patterns for example
with a convolutional layer. It can also be flattened into a
vector.

Similar to images composed of pixels, the grid-type fea-
tures have more flexibility to manipulate, since they can
encode almost any arbitrary urban canyons into images.
Also, learning algorithms could work efficiently with image
type features. The occupancy grid, however, encodes the
locations and types in a lossy way due to the quantization.
A higher quantization resolution leads to a larger dimension
of features and heavier computational costs, while a low
resolution cannot provide accurate characterization of the
vehicle locations.

FIGURE 6. Illustration for encoding the environment in 2D regular-sized
occupancy grids. Along the x-axis direction, the area of two lanes is
quantized to grids of the same size. The value of the grid is determined by
the type of the vehicle (or blank space) that occupies the grid. The value
of the grid is denoted as 0, 1, 2, 3, respectively for the blank space,
neighboring truck, neighboring car, and the receiver.

E. ORDERING THE LOCATION FEATURES

Features extracted from the physical environment need to
be properly organized and integrated [39]. In our problem,
vehicles are treated as individual objects and their locations
are concatenated to form the feature vector with situational
awareness. In the Cartesian and polar coordinates, with mul-
tiple vehicles, it still remains a challenge how to order all
vehicles properly for feature concatenation. A good feature
organization and concatenation will allow feature dimen-
sion reduction by discarding less important vehicle locations.
It should be noted that occupancy grids encoding does not
have an ordering problem, but does have a resolution and
feature dimension tradeoff.

Neighboring vehicles could have different impacts on the
receiver channel, based on their relative distance to the
receiver, the type of the vehicle, or the lane they are located
on. Intuitively, a vehicle close to the receiver has a higher
chance of affecting beam direction than a vehicle that is
located far away. Also, a vehicle in the lane closer to the BS
is more likely to block the receiver on the other lane. Large
trucks are more likely to block the LOS link and serve as a
reflector for a path, while a small car might contribute little
to the reflections. Hence, we leverage two different ordering
schemes for the vehicles.

1) Natural ordering of cars and trucks

In this case, the vehicles are ordered from the left to the right
in the first then the second lane. We denote r as the loca-
tion of the receiver (in Cartesian coordinates) or the loca-
tion of the BS (in polar coordinates). The location of all
vehicles (trucks or cars) from left to right (without the

receiver in Cartesian coordinates) on the ℓ-th lane are rep-
resented as vℓ, ℓ = 1, 2. The feature vector f is represented
as

f = [r; v1; v2], (5)

where vℓ, ℓ = 1, 2 includes locations of cars and trucks,
which are differentiated by an one-hot encoded categorical
variable, 10 or 01. For example, a car in the first lane will
be represented as [horizontal distance, lane index, 10] in
Cartesian coordinates.
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2) ORDERED LOCATION FEATURES

Vehicle locations in the situational awareness need to be
ordered when concatenated. Vehicles can be ordered based
on the relative distance of the vehicle to the receiver, the type,
and the lane of the vehicle.We denote the ordered locations of
trucks on the ℓ-th lane as

−→
tℓ , and those of cars as

−→
cℓ . Features

with ordered vehicles
−→
f for each data sample can be written

as
−→
f = [r;

−→
t1 ;

−→
t2 ;

−→
c1 ;

−→
c2 ]. (6)

For the trucks in the first lane, we denote the horizontal
location of all the trucks along the x-axis in the first lane
as [x1, x2, · · · , xn], where n is the number of trucks in the
first lane. The receiver horizontal location is xRX. The relative
distance of the trucks to the receiver is calculated as di =

|xi−xRX|. Restricting the total number of the trucks included
in the feature on each lane asNtruck, the locations of the trucks
in the first lane t1 is
−→
t1 = [xi1 , xi2 , · · · , xiNtruck ]

T ,

|di1 | < |di2 | < · · · < |diNtruck |. (7)

A fixed number of vehicles is required in the feature, for the
purpose of making dimensions of features consistent under
different deployment scenarios. If the number of trucks n >

Ntruck, the feature deletes the locations of the farthest n −

Ntruck trucks from the receiver; otherwise, the feature adds in
Ntruck − n virtual trucks that are lying very far away, where
x = ∞ (we choose x = 104 here). Similarly,

−→
t2 ,

−→
c1 ,

−→
c2

follow the same ordering rules as
−→
t1 .

Properly ordered vehicles enable consistent meanings
along the different feature dimensions and avoid potential
confusion for the learning model.

III. PRACTICAL IMPLEMENTATION

In practice, situational awareness could be inaccurate or
incomplete. For example, location has error that depends
on the localization technologies and the environment. Infor-
mation may be outdated due to the limited location update
frequencies. Situational awareness may also be missing due
to unconnected vehicles. In this section, we describe how
each of these issues may be incorporated to evaluate the
system robustness.

A. LOCALIZATION INACCURACY

Location informationmay be obtained from different sensors,
like GPS, radar, LiDARs. Each sensor has its own error
model. For example, for GPS, the location error depends
on the satellite geometry, blockage, atmospheric condi-
tions, and the specific locations for GPS [40]. We model
the localization error along both coordinates (x coordinate
along the lane direction, and y coordinate perpendicular
to the lane direction) by a location-independent Gaussian
distributionN (0, σ 2). Furthermore, we assume that the loca-
tion errors along the x and y-axes are independent. Along the
horizontal direction, the localization error is directly added to

the actual vehicle location. On the y-axis, the location is added
by the localization error and then quantized to the lane index.
The effect of localization inaccuracy along the y-axis might
lead to a different lane index of the vehicle and therefore a
wrong feature vector. Consistently, the localization inaccu-
racy will be modeled in both the training and testing datasets.

B. LOCATION UPDATING FREQUENCY

Infrequent location updates introduce errors to the situational
awareness due to vehicle mobility. In a connected vehicle sce-
nario, vehicles report their locations to the BS every Tloc time
for automate navigation purposes, while the beam training
request might happen at a different interval Tbt. The errors
in the dataset due to the outdated locations include:
(a) Testing data: Locations of the vehicles could become

outdated due to vehicles’ mobility. In the prediction phase,
for example, a vehicle initiates a beam request at any time
t , but might receive an outdated predicted beam index based
on an old situational awareness. To match the beam train-
ing request and guarantee a low level of vehicle location
errors, vehicles may have to report locations to the BS more
frequently;
(b) Training data: In data collection, the BS receives the

regular location updates and the beam feedback from the
vehicle. When Tloc 6= Tbt, the time when beam training hap-
pens does not match that when the location is updated. The
collected beammeasurement is therefore inconsistent with its
corresponding situational awareness, which introduces error
to the training data.

We consider two mechanisms with synchronized and
unsynchronized feedback, which are illustrated in Fig. 7.
When Tloc = Tbt, there is synchronized feedback, while
otherwise, the feedback is unsynchronized. At starting time
t0, for example, the velocity of a certain vehicle is v0, and
the acceleration is a0. Assuming the acceleration is non-zero
(i.e, the vehicle is either accelerating or decelerating), and
remains stable during the time interval t0 < t < t0 + Tloc,
the location error at time t can be approximated by xǫ(t) =

v0(t−t0)+ 1
2a0(t−t0)

2.We analyze theworst case of outdated
locations, which assumes all vehicle locations are outdated
for a maximum of Tloc time, i.e., the location error equals
xǫ(t0 + Tloc) = v0Tloc + 1

2a0T
2
loc. We then substract the error

from the real location of vehicles to calculate the outdated
location. To evaluate the effects of synchronized and unsyn-
chronized feedback, we model the velocity and the accelera-
tion rate as truncated Gaussian distribution due to practical
constraints of speed limit and vehicle performance [41], [42].
For the velocity, the mean is defined as the average velocity
v̄m/s and the standard deviation is σv m/s. The mean and the
standard deviation for the acceleration are respectively ām/s2

and σa m/s2. The Gaussian distribution is then truncated by
the upper and lower bounds for the velocities and accelera-
tions.

To minimize the effects of the vehicle mobility on the
location error, one alternative is to pack more information

VOLUME 7, 2019 87485



Y. Wang et al.: MmWave Vehicular Beam Selection With Situational Awareness Using Machine Learning

FIGURE 7. An illustration of the case with unsynchronized beam
feedback and location update. We denote the fixed interval for location
update as Tloc, and that of beam training (and beam feedback) as Tbt.
When Tloc = Tbt, the collected data of location (situational awareness)
and beam information is always synchronized. Beam measurement result
is an exact match with the current situational awareness. When
Tloc 6= Tbt, the unsynchronized location update and beam feedback leads
to mismatch of the situational awareness (feature) and optimal beam
pair index (label). The mismatch leads to errors in the training data.

in the feedback from vehicles to BS. Connected vehicles,
by DSRC for example, are built around the SAE protocol
J2735 basic safety message (BSM), which incorporates not
only location, but also velocity, acceleration, and other trajec-
tories information [43]–[45]. The BSM is broadcasted every
100 ms in SAE protocol [46]. As long as the acceleration
remains stable during this interval, the BS is able to calculate
the exact location error xǫ(t) and keep track of the vehicle
location based on equations of motion and previous state of
mobility parameters [47], [48]. It should also be noted that
exhaustive beam search, most of the time, cannot capture the
instantaneous beam changes, since the beam training only
happens at fixed time slots t = Tbt,2 Tbt, · · · . The proposed
model, however, is flexible enough to predict any potential
changes of beams, since knowledge of mobility parameters
at the BS (velocity, acceleration) enables continuous tracking
of vehicle locations and therefore of the beams based on the
locations.

C. CONNECTED RATE

Not all vehicles will be connected. The connected rate defines
the percentage of vehicles with connected devices, whose
locations are known to the BS. Lower connected rates might
have significant impact on our model since the features need
to be properly selected and ordered based on the locations
as shown in Section II-D and II-E. With a low connected
rate, the vehicle locations might be missing and the features
can be misaligned. In this paper, we divide the vehicles into
four sets: 1) C as the connected cars, 2) C̄ as the uncon-
nected cars, 3) connected trucks T , and 4) unconnected
trucks T̄ . We assume only the connected cars, i.e., C, will
initiate the beam training requests in the current situational
awareness-assisted solution. For the unconnected vehicles,
beam training still relies on traditional approaches. To model
the different connecting levels, we randomly select trucks and
cars as being connected based on a Bernoulli distribution
with a certain connected rate. Trucks and cars which are not
connected will be invisible to the BS and the locations will be
absent from the features.

IV. GENERALIZATION AND SCALABILITY IN LARGE

ANTENNA ARRAYS

Beam selectionwith situational awareness performswell with
a small number of beams in the codebook, using machine
learning classification. When the number of beams grows
large and therefore a lot of classes are required to be clas-
sified, the single-label classification model does not scale
well and classification error can be significant due to the
complex structure of the learning model and the huge num-
ber of hyper-parameters to tune. For example, with a DFT
codebook at transmitter and receiver, a 4 × 4 UPA corre-
sponds to (42)2 = 256 beam pairs, while a 16 × 16 UPA
has (162)2 = 65536 beam pairs in total. We propose the
following approaches to improve the scalability of the situ-
ational awareness-aided beam selection and demonstrate its
generalization in the large antenna array regime.

In particular, instead of identifying one single beam pair
based on single-label classification, we aim at relaxing the
constraint and recommending a small set of the beams
(K beams) that are likely to be optimal. Among the set of
the recommended beams, the BS and receiver conduct beam
sweeping and the BS selects the beam pair with the high-
est beam RSRP. We leverage the predicted probability mass
function (PMF) of the beams and a multi-label classifier to
recommend beams.

A. BEAM PROBABILITY DISTRIBUTION

In Section II-A, we explained how random forest classifier
can predict the optimal beam pair index given situational
awareness. To identify a set of likely beams, we leverage the
predicted class probabilities, i.e., the beam PMF distribution,
from the output of random forest classifier. In random forest
classification, the classifier makes a class prediction for each
tree in the random forests. The classifier then counts the
fraction of trees that vote for a certain beam and estimates
the beam PMF. The BS then recommends K beam pairs with
the highest estimated class probabilities. It should be noted
that the solution is efficient since it directly leverages the
probabilistic output from random forest classification, which
can be directly obtained by predict_proba function in
scikit-learn (sklearn). Optimal beam pair index suffices to
establish the dataset, and the model does not require extra
feedback from the receiver.

B. MULTI-LABEL CLASSIFICATION

Scalability of the proposed beam selection solution can be
achieved by exploiting an extra phase of beam sweeping over
the recommended beam pair set. In this section, multi-label
classification is considered as an alternative for recommend-
ing the beams.
Multi-label classification is a variant of the classifica-

tion problem where multiple labels are assigned to each
instance. In our problem, the labels for the multi-label
classification are the top-K beam indexes with the high-
est beam RSRP. If the optimal beam pair is not included
in the recommended set, it is still very likely that at least
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TABLE 1. An example of beams in the multi-label dataset. The
top-2 beams selected at each geometry are marked by a ×.

TABLE 2. The transformed label for the multi-variate binary classification
problem based on the samples in Table 1.

one of the good beams is in the recommended beam set.
In case of a misclassification, the selected beam can still
guarantee good performance and will not lead to an outage.
We can solve the multi-label classification by formulating an
equivalent multi-variate binary classification problem (i.e.,
the binary relevance method [49]). For example, among the
four classes 1, 2, 3, 4 in Table 1, four binary classifiers bc1,
bc2, bc3, bc4 will be formulated per class as in Table 2. For
each of the sample of one certain class i, if under the current
situational awareness (which is abbreviated as SA in Table 1
and Table 2), i is among the top-K beams, then the label for
the i-th binary classifier is 1, and 0 otherwise. Different from
the approach proposed in IV-A which requires the feedback
of only the optimal beam pair index, the receiver needs to
further feedback the indexes of the top-K beams.

V. PERFORMANCE EVALUATION

In this section, we provide a comprehensive evaluation of the
proposed beam selection approach. We focus on the evalu-
ation of two performance metrics: the alignment probability
and the achieved throughput ratio. We define ci as the pre-
dicted beam pair index for the i-th data sample in the testing
dataset, and si as the optimal beam pair index defined in
(4). The total number of the samples in the testing dataset
is m. In the case of single-label classification, the alignment
probability P(1) is equivalent to the definition of the accuracy
in machine learning classification [17]:

P(1) =
1

m

m
∑

i=1

✶(ci = si). (8)

For the case when multiple beams are recommended and the
recommended beam set for the i-th sample is Ri, the align-
ment probability equals the top-K error as

P(K) =
1

m

m
∑

i=1

✶(si ∈ Ri). (9)

Due to the physical adjacency of beams, especially when the
size of the antenna array is large, the difference among the top
beam RSRPs can be marginal. Hence, we propose to evaluate
the throughput achieved with the predicted beam pair as well.
The detailed results and discussions are presented in Table 3.
In particular, the reference throughput is the ideal throughput
achieved by selecting the optimal beam pair identified by
exhaustive beam search. Denoting the beam power of the i-th
sample as pi, which is defined in (3), we define the achieved
throughput ratio RT as

RT =

∑m
i=1 log2(1 + pi[ci])

∑m
i=1 log2(1 + pi[si]))

. (10)

We start by comparing the performances of beam prediction
with different machine learning models. Then we evaluate
the alignment probability with different levels of situational
awareness by including different numbers of vehicle loca-
tions in the features. We examine the effects of several imple-
mentation issues on the performance. Last, we demonstrate
the performance enhancement with multiple beams recom-
mended.

A. LEARNING MODELS

In Table 3, we compare the alignment probability with dif-
ferent feature encoding approaches. We implement training
and testing in disjoint datasets with 80% and 20% out of
∼98K samples in total. We apply a five-fold cross-validation
for the learning. We tune the hyper-parameters for each
classifier. The last column in Table 3 shows the maximum
throughput ratio achieved using the optimal feature encod-
ing per classifier. In the current dataset, we have UPAs of
size 4x4 at the transmitter and receiver. From the result,
we observe that polar coordinates, especially 3D polar coor-
dinates, perform better than the Cartesian coordinates and the
occupancy grids. We also evaluate the classifier performance
of RBF-SVM, gradient boosting, random forest, and deep
feedforward neural networks. We use sklearn for the training
and testing for SVM, gradient boosting, and random forest
classification [50]. We implement the deep learning model
in Keras [51]. The results show that the random forest out-
performs other classifiers, achieving the highest alignment
probability of 84.16%.

Another important observation is that the achieved
throughput does not scale with the alignment probability.
Despite the fact that random forest achieves much higher
alignment probability compared to other classifiers such
as SVM and neural networks, the differences among their
achieved throughputs are insignificant. The reason is that the
RSRP of the strongest several beams are close. The results
show that even if the classifier cannot predict the exact opti-
mal beam pair index, as long as the selected one is among
one of these strongest beams, the throughput will not be too
bad. The conclusion reveals the fact that alignment probabil-
ity might not be the only important performance metric for
evaluation. Even though the model cannot guarantee 100%
alignment probability as exhaustive beam search, it could

VOLUME 7, 2019 87487



Y. Wang et al.: MmWave Vehicular Beam Selection With Situational Awareness Using Machine Learning

TABLE 3. Alignment probability and achieved throughput ratio of beam selection on test data with different classifiers.

FIGURE 8. Alignment probability with different number of vehicle
locations in the features, with LOS samples only, NLOS samples only,
the full datasets with/without feature ordering, and the full dataset with
a reduced set of features. We start by using only the receiver location in
the features. We then add the first-lane trucks, second-lane trucks,
first-lane cars, second-lane cars, sequentially in the features,
as explained in Section II-E. The red dashed curve is the alignment
probability achieved by only including parts of the vehicle locations in the
feature, e.g., the receiver and the closest trucks on each lane.

still be accurate enough to identify the good beams. This is
important for mmWave vehicular system design, since it is
beneficial to sacrifice some optimality to largely reduce the
overhead.

The result also shows that deep learning does not out-
perform the random forest classifier. The dataset is highly
unbalanced, where ∼ 55% of the samples have the same
class. Compared to deep learning, the random forest classifier
is able to handle the imbalance well in our dataset with a
relatively small size of data samples. Random forest also
generalizes well with data bagging, which generates multiple
subsets of data samples for training from the original dataset
using combinations with repetitions [15]. Last, the dimension
of the hand-crafted features is relatively small, which makes
the random forest an efficient solution to our specific problem
and dataset compared to deep learning.

B. EFFECTIVENESS OF SITUATIONAL AWARENESS

In Fig. 8, we evaluate and compare the system performance
by incorporating different levels of situational awareness in
the spherical coordinates. We quantify the levels of situa-
tional awareness by the completeness of the environment
information. To compare, we apply different numbers of
neighboring vehicles in the features. We evaluate the align-
ment probability using the LOS dataset, the NLOS dataset,
the full dataset with and without the feature ordering, and

the full dataset with a reduced number of features. In the
case without feature ordering, the features are concatenated
following the procedure in II-E.1. With feature ordering,
the locations are ordered based on vehicle’s relative distance
to the receiver as described in Section II-E.2. For the full
dataset, when only the receiver location is included in the
features, an alignment probability of around 62% is achieved.
After adding the first-lane truck locations to the features,
the alignment probability grows to 82%. Similar observations
can be obtained by adding the second lane trucks. From
the curve, it can be concluded that most of the alignment
probability improvement is contributed by the closest trucks’
(around only 2-3) locations on each lane.

Furthermore, when small vehicles (cars) are included in the
features, the alignment probability remains stable. We come
to an important conclusion that reveals the propagation
characteristics in mmWave urban vehicular communication.
In this paper, the machine learning model captures the rela-
tionship between the mmWave channel and the situational
awareness that is comprised of the geometry of different vehi-
cles in the urban environment. The negligible improvement
of alignment probability by adding more small cars in the
features implies that small cars such as sedans have minor
impact on mmWave V2I channels. In other words, small cars
are not an important source of scattering for mmWave V2I
communication in an urban canyon.

We reduce the number of vehicle locations in the fea-
tures and only keep those vehicle locations that improve the
alignment probability. In our dataset, the reduced feature set
is: (receiver location, closest three trucks in the first lane,
closest truck in the second lane). The red dashed curve shows
the alignment probability of around 84% when the reduced
feature set is used. Also, the unordered features give a lower
bound for the alignment probability of the ordered features
as explained in Section II-E.
With different numbers of vehicle locations in the features,

the alignment probabilities of the LOS and NLOS datasets
exhibit different behaviors. For the LOS dataset, the align-
ment probability stays constant at around 89% ∼ 92%.
For the NLOS dataset, the contribution of a higher level of
situational awareness becomes prominent. Including the first
lane of trucks only, the alignment probability grows from
53% to 72%. More vehicle locations lead to an improvement
of NLOS beam prediction accuracy to 78%. The major differ-
ence between the LOS and NLOS performance lies in their
different reflections and multi-path effects. In LOS samples,
the multi-path signature has a dominant LOS path along with
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FIGURE 9. Comparison of alignment probability with different levels of
localization accuracy, in Cartesian coordinates, 2D polar coordinates and
spherical coordinates. Localization errors along and perpendicular to the
horizontal direction are evaluated individually. Specifically, the dashed
lines represent the case with only the localization error along the
horizontal direction. The triangles demonstrate the performance which
only includes the location errors perpendicular to lane direction. The
circles evaluate the performance which combines the localization errors
along both directions.

several weak NLOS paths with reflections. Hence, it is suffi-
cient to directly point the beam towards the receiver, without
full knowledge of the neighboring vehicles. For the NLOS
receivers, however, reflections become the most important
means of establishing a link and are the vital components of
the channel. Situational awareness gives the BS the capability
to capture the multi-path effect on the surrounding vehicles
for NLOS links, which hence enables significant gains in the
alignment probability with more vehicle locations included.

C. NOISY FEATURES

In this section, the features include vehicle location inaccu-
racy as described in Section III. Fig. 9 compares the alignment
probability, when different localization inaccuracymodelings
are applied. The location inaccuracy of both the x and y coor-
dinates makes a big difference on the prediction accuracy.
When the localization error is small, the alignment probabil-
ity drops significantly with the error of the y coordinate. The
sensor might localize the vehicles on a different lane if the
error along the y coordinate is large. When the error variance
grows large, the localization error on the x coordinate domi-
nates. When the localization error grows large, the prediction
accuracy falls below 70%. One limitation of our model is that
it heavily relies on the accurate vehicle locations provided
by the different sensors. It is promising, however, that sensor
fusion of radar, LiDAR and camera can be leveraged from
autonomous vehicles to provide more accurate localization
and situational awareness knowledge.
Fig. 10 demonstrates how the performance is affectedwhen

a longer location reporting interval is applied with vehicle
mobility. We summarize the mobility parameters in Table 4.
Parameters vmax, vmin represent the upper and lower bounds
for the truncated Gaussian distribution of the velocity, while
amax and amin denote the corresponding bounds for the accel-
eration rate.

FIGURE 10. Comparison of alignment probability with different vehicle
velocities, accelerations and location reporting intervals. Here we
consider three different synchronization mechanisms: 1) synchronized
feedback, 2) unsynchronized feedback as discussed in Section III-B, and
3) more feedback including velocity and acceleration. Particularly,
we assume the acceleration rate remains constant during the 1000 ms we
evaluate in the figure. We assume uniformly accelerated rectilinear
motion for all vehicles and there are no localization errors modeled in
either the training or the testing datasets for fair comparison.

We assume uniformly accelerated rectilinear motion for all
vehicles, with random velocities and accelerations modeled
in Section III-B. For fair comparison, no localization errors
are included in the datasets. In the unsynchronized feed-
back case, the alignment probability degrades with a longer
reporting interval. For example, with reporting interval of
around 200 ms, the alignment probability drops to around
76% from 84% at v̄ = 110 km/h. Therefore, if the velocities
and accelerations can be fed back to the BS along with the
locations, the updated locations can be kept track of and
the alignment probability can be guaranteed, with negligible
extra feedback overhead required.

In the synchronized feedback case, only the testing dataset
has location errors due to vehicle mobility, while the train-
ing data is accurate. We can observe that the performance
degrades a lot and the learning fails. As shown in the dashed
lines, the alignment probability becomes extremely low for
a large location reporting interval with a high speed, e.g.,
v̄ = 110 km/h. Performance degradation for the synchronized
case, however, is expected. Synchronized feedback provides
an error-free training dataset. The testing dataset, however,
is noisy and has a completely different distribution from the
training data. Hence, the distribution learned from the training
data cannot be applied in the testing data for evaluation.

In conclusion, the effect of a longer reporting interval on
the performance is significant, especially with high mobility.
It is important that more information, including the velocity
and acceleration along with the location, is packed and com-
municated between the vehicles and the BS. The mobility
parameters of velocity and acceleration not only avoid the
unnecessary noise introduced to the features, they also pro-
vide continuous tracking of the vehicle locations and there-
fore enable a seamless tracking of the potential beam change.
Feedback of vehicle location, velocity and acceleration is

VOLUME 7, 2019 87489



Y. Wang et al.: MmWave Vehicular Beam Selection With Situational Awareness Using Machine Learning

TABLE 4. Mobility parameters for comparing performance of different vehicle location update frequencies.

FIGURE 11. Comparison of alignment probability with different
connected rates in Cartesian coordinates.

sufficient to keep track of the beam, which also eliminates
the necessity of frequent exhaustive beam search in case of
beam changes.
Fig. 11 plots the alignment probability with different vehi-

cle connected rates. Previous results in Fig. 8 showed that
the small cars contribute little to the prediction of the optimal
beam pair. Also, since the channels of all small cars are simu-
lated and used for the learning, disconnecting some small cars
will lead to different numbers of data samples for the learning.
Hence, we assume all small cars are connected to the BS.
Trucks might be unconnected based on a certain connected
rate. Zero connected rate is equivalent to the case without
situational awareness, while full connected rate is equiva-
lent to the full situational awareness case as discussed in
Section V-B. The alignment probability scales almost linearly
with the connected rate. To guarantee prediction accuracy,
it may make sense to design an operating mechanism where
the beam training can be switched between: (a) the traditional
exhaustive beam search approach, and (b) the situational
awareness assisted-solution, based on the different vehicle
connected rates.

D. GENERALIZATION AND SCALABILITY

To evaluate the scalability of the beam recommendation
solutions proposed in Section IV, we compare the achieved
throughput ratio RT with different numbers of beams rec-
ommended in Fig. 12, in datasets with various-sized antenna
arrays. Even though multi-label classification requires extra
feedback from the receiver about the top-K beam pair index,
the simple solution based on the estimated beam probabil-
ity distribution in Section IV-A is accurate and efficient.

FIGURE 12. Comparison of achieved throughput ratio RT with different
recommendation solutions and number of antennas deployed. The red
curves represent the case with a 4 × 4 UPA at transmitter and
receiver. Blue and black curves represent 4 × 8 and 16 × 16 UPAs. The
solid lines represent the recommendation based on beam probability
distribution. The dashed lines are the results from the recommendation
based on multi-label classification.

For the transceivers with UPAs of size 4 × 4, the result
shows that the estimated probability based solution is able
to achieve almost the ideal throughput with only four beams
recommended. It can also be concluded that the proposed
solution scales and generalizes well with the large antenna
arrays. Even for the case with 16 × 16 UPAs, by recom-
mending six beams, the throughput loss ismarginal. It is also
observed from Fig. 12 that the gaps among the throughput
performance with different antenna arrays are insignificant,
due to the physical adjacency of beams for large antenna
arrays.

VI. CONCLUSION

In this paper, we proposed a situational awareness-aided
beam training solution using machine learning in mmWave
V2I communication. Situational awareness provides
valuable side information to capture the multi-path and
reflection effects in vehicular communication. Exploiting
the regularity of the vehicular geometry and moving trajec-
tories, the beam selection was formulated as a classifica-
tion problem, with features of properly modeled situational
awareness. We observed significant improvement of align-
ment probability when more vehicle locations, i.e., a higher
level of situational awareness, are added in the features.
We also revealed the fact that the scatterings on small cars
are negligible compared to those that happen on the large
vehicles such as trucks. Situational awareness was shown
to be useful to characterize the physical environment of
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vehicular communication in urban canyon. For future work,
more detailed situational awareness features of vehicle sizes
and exterior shapes can be investigated and generalized in
different vehicular contexts, including urban intersection,
rural roads, etc.
The proposed beam selection framework is dependent

on the availability of accurate localization of vehicles.
In practice, however, various factors can lead to inaccurate
or incomplete situational awareness. We compared the loca-
tion inaccuracy introduced by localization error, the limited
location updating frequencies from vehicles, and different
connected rates of vehicles. The results demonstrated the
sensitivity of the proposed model to localization errors. Most
of the errors, however, can be corrected either by leverag-
ing advanced localization technologies or by feeding back
mobility information, such as velocity and acceleration to
the BS. Also, we can shift the mode of beam training based
on the connected rate, between predicting the beam via the
proposed solution and the traditional solution by exhaustive
beam search.
The random forest was shown to outperform other classi-

fiers in terms of simplicity, efficiency and accuracy. With a
highly unbalanced dataset and the relatively small dimension
of features, a random forest classifier was preferred and also
deep in terms of the large number of trees available in the
model. Last, it was shown that with simple statistics obtained
from the classification, the scalability of the beam selection
approach was achieved by allowing an extra phase of beam
sweeping among a small beam search space. Even with a
large antenna arrays, e.g., 16× 16 UPA, 99% of the through-
put can be achieved, which requires search among only six
beams.
For future work, temporally-correlated data will be

collected through ray tracing through properly modeled vehi-
cle trajectories. Online learning models are one promis-
ing approach to test how fast the training accuracy can be
improved and howmany data samples are needed for satisfac-
tory performance of beam prediction in field implementation.
Hybrid beamforming at mmWave is another potential appli-
cation scenario, which requires joint beam recommendation
among multiple RF chains. Last, the situational awareness
can be leveraged for full mmWave beam training automation,
including the prediction of the beam RSRP, rank of channel,
and other relevant channel statistics.
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