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ARTICLE

Mnemonic prediction errors bias hippocampal
states
Oded Bein 1✉, Katherine Duncan2 & Lila Davachi 3,4✉

When our experience violates our predictions, it is adaptive to upregulate encoding of novel

information, while down-weighting retrieval of erroneous memory predictions to promote an

updated representation of the world. We asked whether mnemonic prediction errors promote

hippocampal encoding versus retrieval states, as marked by distinct network connectivity

between hippocampal subfields. During fMRI scanning, participants were cued to internally

retrieve well-learned complex room-images and were then presented with either an identical

or a modified image (0-4 changes). In the left hemisphere, we find that CA1-entorhinal

connectivity increases, and CA1-CA3 connectivity decreases, with the number of changes.

Further, in the left CA1, the similarity between activity patterns during cued-retrieval of the

learned room and during the image is lower when the image includes changes, consistent

with a prediction error signal in CA1. Our findings provide a mechanism by which mnemonic

prediction errors may drive memory updating—by biasing hippocampal states.
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A
s our day unfolds, much of what we encounter is expected:
we typically navigate to work or school along the same
route, sit in the same seats in the same space and engage

with the same people. However, layered on top of the repetition of
similar places and events are novel or surprising events; and when
we travel to unfamiliar places, we experience even more novelty.
This interplay between similarity and novelty poses different
demands on our memory system. On the one hand, the repeating
aspects of each day may trigger the retrieval of related memories
that may allow those memories to then serve as predictions to
guide adaptive behavior1–3. By contrast, surprising events may
shift the memory system toward encoding of those contextually
novel events4–8. Intriguingly, the hippocampus has been pro-
posed to mediate both the encoding of new events and the
retrieval of previous related experiences9–12. However, at a
mechanistic level, these processes require seemingly conflicting
processes: new encoding benefits from plasticity in hippocampal
networks while this kind of plasticity during retrieval may per-
manently alter the veracity of long-term memories5,13,14. Fur-
thermore, at the neural population level, encoding presumably
requires that current experiences be represented in an activity
pattern distinct from other stored memories, a process known as
pattern separation14,15. Retrieval, on the other hand, may be
supported by the recovery of a previously encoded activity pat-
tern, or pattern completion10,14,16,17. Thus, a critical question is
how can the hippocampal system balance these two seemingly
opposing processes? And what factors may bias the hippocampus
towards one over the other4–6,18–20?

Current models of hippocampal function propose that com-
munication along distinct CA1 pathways may be associated with
encoding and retrieval states5,13,18. Specifically, it has been pro-
posed that, during encoding of novel experiences, input from the
medial temporal cortical regions that receive numerous sensory
inputs, such as the entorhinal cortex21–24, may be prioritized by
hippocampal area CA1. By contrast, during retrieval, CA1 may
preferentially process input from hippocampal area CA3. CA3
neurons are highly interconnected, a feature proposed to facilitate
pattern completion and promote the retrieval of encoding-related
ensembles, which can then be conveyed to area CA110,14,17,25–28.
Empirical work in rodents has shown that CA1–entorhinal
coherence is higher in the fast-gamma band compared with the
slow-gamma band, while CA1–CA3 coherence is higher in the
slow versus fast-gamma band, supporting a functional distinction
between these pathways19,29. These different gamma band fre-
quencies have also been linked to different behaviors, such as fast
or slow running speed18,29,30. More recently, CA1 fast-gamma
band activity was observed during learning of spatial routes in a
maze, compared with slower-gamma activity evident during
retrieval of learned routes31. Similarly in humans, Griffiths et al.32

recently have shown with intracranial electroencephalogram
(EEG) in the hippocampus an increase in fast-gamma activity
during associative encoding compared with retrieval, in contrast
to a complementary increase in slow-gamma activity during
retrieval relative to encoding. Further, CA1–CA3 coherence has
been shown to be enhanced in the central arm of a T-maze,
potentially reflecting retrieval of the goal location25. Additional
support of the dissociation between the two pathways comes from
studies showing that CA1 coupling with the entorhinal cortex and
area CA3 occurs at different phases of a theta cycle5,13,33–35.
Extending this theoretical and empirical framework to humans,
we have recently shown, using functional magnetic resonance
imaging (fMRI), that CA1–CA3 functional connectivity is sig-
nificantly enhanced during episodic memory retrieval compared
with novel associative encoding20. Importantly, the magnitude of
CA1–CA3 connectivity during retrieval predicted retrieval suc-
cess20. Together, these results provide support for the idea that

the hippocampus may shift between encoding and retrieval states
by modulating CA1 connectivity with distinct input regions.

One prominent factor that may bias hippocampal dynamics
toward encoding rather than retrieval is mnemonic prediction
error6,8,36. There is now much work demonstrating that hippo-
campal activity increases when sequential predictions are vio-
lated37–40. This increase has been localized to hippocampal area
CA1 in both humans and rodents38,41–43. One interpretation of
this increased CA1 BOLD signal during mnemonic prediction
errors is that it may facilitate the encoding of the novel, unex-
pected, information, and thus promote memory updating and the
improvement of future predictions22,44. Indeed, there is some
behavioral evidence that mnemonic prediction errors facilitate
episodic memory38,45. Critically, however, CA1 activation cannot
speak to a shift in hippocampal states. As discussed above, these
states are mediated by differential connectivity between hippo-
campal subfields, and not by CA1 univariate activity. We there-
fore set out examine whether mnemonic prediction errors are
associated with a shift in hippocampal processing toward an
encoding state that prioritizes input from the entorhinal cortex
and away from a retrieval state5,8,14,46. Furthermore, we aimed to
link these effects with the quality of the prediction itself.

To test these hypotheses, participants underwent extensive
training to learn the furniture and layout of 30 distinct rooms.
Then, in the fMRI scanner, we probed participants to retrieve
each learned room by presenting a verbal cue (e.g., Johnsons boy’s
bedroom), which was then followed by a room image that either
matched the learned room image or included changes (Fig. 1a).
We operationalized the retrieval of the image as a form of
memory prediction, and prediction errors were cases when the
presented perceptual image was a violation of the actual learned
image. Using high-resolution imaging, we find that mnemonic
prediction errors bias CA1 functional connectivity toward
entorhinal cortex and away from subregion CA3. Moreover, CA1
activity patterns during the cue show evidence of room-specific
retrieval, potentially reflecting prediction of the learned room.
Further, introducing changes in the room image leads to lower
similarity between CA1 activity patterns during memory retrieval
at the cue and during viewing the room image, consistent with a
mnemonic prediction-error signal in CA1. Taken together, these
findings show that mnemonic prediction errors bias CA1 func-
tional connectivity, potentially to shift hippocampal processing to
favor encoding and down-weight retrieval.

Results
Behavior. A full reporting of the behavioral results has been
provided in Duncan et al.43, and is summarized here following a
brief description of the task. We had two types of change-
detection task: a Furniture task and a Layout task, in which
participants indicated whether a change occurred in the identity
or the layout of the furniture, correspondingly. On each trial, the
room image included 0–2 task-relevant changes and 0–2 irrele-
vant changes. For example, in the Furniture task, there can be two
task-relevant changes in the identity of the furniture, and one
task-irrelevant change in the layout of the furniture (see Meth-
ods). As reported in Duncan et al.43, a two (Task) by three
(Relevant changes) by three (Irrelevant changes) repeated-
measures ANOVA revealed that participants were more accu-
rate in the Layout task compared with the Furniture task. Rele-
vant changes did not interact with Task, however, introducing
irrelevant changes did reduce accuracy in the Furniture task more
than in the Layout task. Finally, relevant and irrelevant changes
interacted, such that having no irrelevant changes increased
accuracy, but only if there were no relevant changes as well (for
more details, see Duncan et al.43). However, despite some
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differences in behavioral effects of irrelevant and relevant chan-
ges, CA1 BOLD response predominately tracked the total number
of changes, irrespective of relevance to the task43. Thus, in sub-
sequent analyses, we collapse across relevant and irrelevant
changes and report the behavioral and neural data as a function
of the total number of changes. Accuracy data in the change-
detection tasks were entered to a five (Changes: 0–4) by two
(Task: Furniture/Layout) repeated-measures ANOVA. This
ANOVA revealed main effects of Changes and Task, as well as an
interaction (Changes: F(4,72)= 33.48, P < 0.0001; Task: F(1,18)=
8.50, P= 0.009; Interaction: F(4,72)= 3.24, P= 0.017). In both
tasks, accuracy was highest when there was no change (0 change)
and in the 4-changes conditions in comparison with the 1- to 3-
changes conditions.

Response times (RTs) also tracked the accuracy data: RTs were
significantly shorter in the 0-changes and the 4-changes condi-
tions compared with the 1- to 3 changes. These results reflect the
relative ease of indicating “match” when there were no changes at
all, or “mismatch” when there were many changes which provides
support for the rooms having been well learned. RTs were also
entered into the same ANOVA as the accuracy data, which again
revealed main effects of Changes and Task, and an interaction
(Changes: F(4,72)= 12.60, P < 0.0001; Task: F(1,18)= 6.04, P=
0.024; Interaction: F(4,72)= 7.66, P < 0.0001). Mean and SD of
accuracy and RT in each of the number of changes and each task

are provided in Table 1, and collapsed across tasks in Fig. 1.
Importantly, in the neural data we did neither observe a main
effect of Task nor an interaction between Task and Changes; thus,
we collapsed across tasks (see Results).

Mnemonic prediction errors bias CA1 functional connectivity.
Functional connectivity was measured using a beta-series corre-
lation approach47. Since previous literature do not report con-
sistent laterality of mnemonic prediction-error effects in the
hippocampus38–40,42,48, we looked at each hemisphere separately.
Prior to testing our main hypothesis, we conducted, in each pair
of anatomically defined ROIs, a five (Changes: 0–4) by two (Task:
Furniture/Layout) repeated-measures ANOVA, to test whether
collapsing across tasks is warranted. Indeed, there was neither
main effect of Task nor a Changes by Task interaction in func-
tional connectivity between CA1–CA3 (The CA3 ROI included
CA2, CA3, and dentate gyrus) or CA1–entorhinal, for the left and
the right hemispheres (all P’s > 0.17). Given this, we collapsed
across tasks for our main analyses. First, functional connectivity
was entered to a repeated-measures ANOVA with Hemisphere
(right, left), ROI (CA3, entorhinal) and Changes (0–4) as inde-
pendent variables. This ANOVA revealed a three-way interaction
of (F(4,72)= 4.24, P= 0.004, ηp2= 0.19), further justifying testing
for the effect of levels of changes on differential connectivity
between ROIs in each hemisphere separately. In the left hemi-
sphere, we found an interaction between Changes (0–4) and ROI
(entorhinal, CA3) using a repeated-measures ANOVA (F(4,72)=
6.04, P= 0.0003, ηp2= 0.25), confirming our prediction that the
number of changes in the presented room differentially modu-
lated CA1 connectivity with the entorhinal cortex and area CA3
(Fig. 2). The same ANOVA conducted on the right hemisphere
did not reveal a significant interaction (P= 0.68; no main effect of
Changes, P= 0.97; a main effect of ROI was observed, P= 0.001).
As the significant three-way interaction reported above qualified
the specificity of the interaction between ROIs and Changes to the
left hemisphere, further analyses were restricted to the left
hemisphere ROIs.

Having established that the number of changes differentially
modulated connectivity in CA1 pathways, we moved on to
examine the connectivity of CA1 with each region (entorhinal,
CA3) separately. As predicted, CA1–entorhinal connectivity
increased with more changes (Fig. 2). By contrast, and again
consistent with our predictions, CA1–CA3 connectivity decreased
as number of changes increased (Fig. 2). One-way repeated-
measures ANOVAs with the factor of Changes (0–4) conducted
for each pair of regions separately, confirmed that in both region
pairs (CA1–entorhinal or CA1–CA3), Changes significantly
modulated connectivity (CA1–entorhinal: F(4,72)= 4.49, P=
0.0027, ηp2= 0.20; CA1–CA3: F(4,72)= 3.58, P= 0.01, ηp2= 0.17).

Although not the main aim of this study, we sought to further
characterize the observed connectivity changes. To that end, we
asked, for each pair of ROIs (CA1–entorhinal/CA1–CA3),
whether connectivity changes correspond more to a linear trend,
or rather to a simpler match <mismatch pattern. For each pair of
ROIs, we constructed a mixed-level model, in which functional
connectivity was the explained variable. As explaining variables,
we included both a linear-trend contrast, in which the number of
changes (0–4) were coded as linearly increasing numbers, and a
match < mismatch contrast, in which the 0-change condition (i.e.,
match to the learned image) was compared with the 1–4-changes
conditions grouped together, treating all trials with any change
identically (see Methods). We then compared this full model to
either a model including only the linear-trend contrast, or only
the match < mismatch contrast. In CA1–entorhinal connectivity,
we found that the full model significantly outperformed the linear
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changes here), and indicated whether the seen image matched the learned

image (see Methods). b Accuracy and c reaction times (RTs) in the match

task. N= 19. Data are presented as mean values, error bars reflect +/−

SEM. Source data are provided as a Source Data file.
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model (χ2= 4.39, P= 0.036; AIC full: −80.68, linear: −78.29; BIC
full: −67.91, linear: −68.07), but not the match <mismatch
model (χ2= 1.31, P= 0.25), suggesting that the match < mis-
match contrast better describes CA1–entorhinal connectivity. For
CA1–CA3 connectivity, the full mode significantly outperformed
the match < mismatch model (χ2= 8.63, P= 0.0033; AIC
full: −72.56, match <mismatch: −65.93; BIC full: −59.80, match

< mismatch: −55.71), but not the linear model (χ2= 0.59, P=
0.44), suggesting that CA1–CA3 connectivity may decrease
linearly as number of changes increase.

We further examined how many individual participants
demonstrated the trends reported at the group level. We
computed, for each participant, the match < mismatch contrast
in CA1–entorhinal connectivity and the linear contrast in

Table 1 Accuracy rates and reaction times (for accurate responses) in the Layout and Furniture tasks.

Accuracy 0 change 1 change 2 changes 3 changes 4 changes

Layout task 0.89 (0.10) 0.69 (0.09) 0.74 (0.08) 0.75 (0.10) 0.90 (0.11)

Furniture task 0.88 (0.10) 0.65 (0.10) 0.68 (0.10) 0.72 (0.11) 0.77 (0.17)

Reaction times 0 change 1 change 2 changes 3 changes 4 changes

Layout task 2.23 (0.33) 2.28 (0.29) 2.25 (0.22) 2.06 (0.26) 1.95 (0.36)

Furniture task 2.22 (0.29) 2.35 (0.28) 2.30 (0.25) 2.02 (0.26) 2.24 (0.32)

Reaction times are in seconds. SDs are in parentheses. Source data are provided as a Source Data file.
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CA1–CA3 connectivity (contrasts are as described above and in
the Methods), as these were the contrast revealed to best explain
variance in functional connectivity in these regions. Indeed, the
overwhelming majority of the participants showed a positive
match <mismatch trend in CA1–entorhinal connectivity (16 out
of 19 participants, 84% of the participants), and a negative linear
trend in CA1–CA3 connectivity (18 out of 19 participants, 95% of
the participants).

We sought to control for univariate effects in the left CA1,
CA3, and entorhinal cortex to exclude the possibility that
univariate activation in these regions might have driven the
connectivity findings. To that aim, we first evaluated the
differences in univariate activation between levels of changes
(0–4). In CA1, we found a significant linear increase in CA1
activation (t(18)= 2.43, P= 0.026, Cohen’s d= 0.55, CI:
[0.0044–0.061]; linear-trend analysis, see Methods), reproducing
the results reported by Duncan et al.43. Since CA1 connectivity
showed opposite effects with CA3 vs. entorhinal cortex, we find it
unlikely that CA1 univariate activation could account for the
connectivity findings. We did not find any univariate differences
between levels of changes in CA3 or in entorhinal cortex (linear
trend: t(18)’s < 0. 88, P’s > 0.39; simple effects between levels of
changes: all t(18)’s < 0. 1.5, P’s > 0.15; see also Supplementary
Fig. 1). Thus, univariate activation in these regions is also unlikely
to account for the differences we did observe in connectivity.

Nonetheless, we conducted a control analysis, whereby for each
regions-pair (CA1–CA3/CA1–entorhinal), we included univariate
activation in a mixed-level model together with the match <
mismatch contrast or the linear-trend contrast as explaining
variables, and connectivity as the explained variable (see
Methods). We then compared these full models to a model
including only univariate activation. For CA1–entorhinal con-
nectivity, we took the match < mismatch contrast as our contrast
of interest in the full model, since this was the preferable contrast
that explained more variance in CA1–entorhinal connectivity.
Indeed, the full model significantly explained more variance, and
was preferable to the model including only the univariate activity
(χ2= 14.32, P= 0.0002, AIC or BIC reductions > 9.5). For
CA1–CA3 connectivity, we used the linear contrast as our
contrast of interest, since the linear contrast explained more
variance in connectivity. Again, the full model including the
linear contrast and univariate activity was preferable over the
model with only univariate activity (χ2= 11.26, P= 0.0008, AIC
or BIC reductions >6.5). These results show that for both
CA1–entorhinal and CA1–CA3 connectivity, the levels of
changes significantly explain variance when controlling for
univariate activation. Together, these analyses suggest that our
main connectivity findings are unlikely to be explained by
univariate activity. We further statistically controlled for accuracy
and reaction times differences between participants and levels of
changes, and our results held (Supplementary Note 2).

CA1 activity patterns show room-specific predictions. In the
previous analysis, mnemonic prediction errors were oper-
ationalized as changes in the probe room image, relative to a
retrieved memory of that room. Here, we sought to support the
notion that our task involved mnemonic prediction errors, by
providing evidence for room-specific predictions in CA1 during
the cue, that is, when participants were asked to retrieve the
room. To that end, we assessed the strength of the prediction in
CA1, as estimated by the level of neural pattern similarity
between a retrieved memory for a room compared with viewing
of the same room. Specifically, prediction strength was estimated
by correlating the multivariate BOLD activity pattern in CA1
during the presentation of each cue (e.g., “Johnson’s boy’s

bedroom”, to which participants were instructed to retrieve a
memory of that room) with the activity pattern measured when
participants actually viewed the same room (the 0-changes image
of the corresponding room) and comparing it to the correlation
with the pattern evoked by 0-changes images of other rooms.
Thus, the strength of mnemonic prediction should be reflected by
the degree to which cue periods (when memories are generated)
are more correlated with viewing the same as compared to other
rooms. This analysis was restricted to the left hemisphere, where
we had already obtained significant connectivity differences with
the number of changes (Fig. 2). We found that the correlation
with the corresponding room was higher than with the other
rooms, suggesting that specific-room reinstatement took place
in the left CA1 (match: M= 0.01, SD= 0.01; other: M= 0.0045,
SD= 0.005; t(18)= 2.50, p= 0.022; Cohen’s d: 0.57, CI of the
difference: [0.001–0.011]; 14 out of 19 participants, which are
74% of our participants, demonstrated qualitatively higher same-
vs. other-rooms reinstatement; this result holds when controlling
for univariate activation in CA1, see Supplementary Note 3).
Interestingly, we have also found a moderate correlation across
participants between prediction strength in CA1 and the increase
in CA1–entorhinal connectivity in response to errors (see Sup-
plementary Fig. 2 and the related Supplementary Note 1), lending
further support for the notion that functional connectivity
increases are related to predictions and their violations.

CA1 activity patterns reflect mnemonic prediction errors. The
previous result suggests that CA1 activity patterns during the cue
capture participants’ predictions. However, it does not directly
examine participants’ prediction errors. Here, we estimated a
mnemonic prediction-error signal in region CA1 by measuring
the difference between participants’ multivoxel activity patterns
during the cue (i.e., the mnemonic prediction) and during the
violations. To assess the level of mnemonic prediction errors in
CA1, we computed the correlation between the multivoxel
activity patterns of the prediction during the memory cue and the
violation when viewing the room in the same trial. First, corre-
lation values were submitted to a repeated-measures ANOVA,
with Changes (0–4) and Task (Furniture/Layout) as within-
participant factors. Since no interaction was obtained (F(4,72)=
0.34, P= 0.85), we collapsed across tasks for further analyses. We
found that pattern similarity in CA1 decreased as the number of
changes increased (see Fig. 3). Specifically, the match > mismatch
contrast revealed to be highly significant (contrast M= 0.01,
SD= 0.01, CI: [0.003–0.015], t(18)= 3.14, P= 0.006, Cohen’s d=
0.72; 14 out of 19 participants, which are 74% of our participants,
demonstrated a positive match > mismatch contrast; Source data
are provided as a Source Data file). This result further holds when
controlling for univariate activation (Supplementary Note 4), and
importantly, when subtracting the similarity of the cue to images
of the same trial type but of other rooms, suggesting that this
decrease in similarity reflects room-specific representation rather
than some broader decrease in pattern similarity in response to
mismatches (Supplementary Note 5). Further, the match > mis-
match contrast seemed to characterize the decrease better than
the linear contrast, which was only marginally significant (con-
trastM= 0.005, SD= 0.014, CI: [−0.001–0.012], t(18)= 1.76, P=
0.09, Cohen’s d= 0.40, see Fig. 3). CA1 activity patterns thus are
sensitive to the mismatch between a retrieved memory and per-
ceptual input that is an altered version of that memory.

Discussion
Behavioral and physiological work have implicated hippocampal
processing in both laying down new memories and retrieving past
memories9–14. The computational principles that underlie these
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processes are in conflict as encoding will benefit most from
synaptic plasticity, while, during retrieval, plasticity may alter the
memory trace and lead to inaccurate memory representa-
tions6,14,15,17. To address this apparent conundrum, it has been
proposed that encoding and retrieval may be mediated by distinct
hippocampal states5,8,13,18,32,49. Specifically, recent work has
linked functional coupling between CA1 and the entorhinal or
perirhinal cortices with encoding and CA1–CA3 coupling with
retrieval operations5,19,20,25,29,30,33–35,50.

Here, we leveraged these findings to ask whether interactions
between internal memory states and conflicting environmental
evidence can dynamically modulate or bias hippocampal pro-
cessing states in predictable ways. To the extent that violations of
expectations drive new learning or encoding, they should adap-
tively bias CA1 processing of inputs from medial temporal lobe
(MTL) cortical regions. At the same time, these mnemonic pre-
diction errors might down-weight projections from the now
incorrect memory-based predictions from CA3 to CA1. To test
that hypothesis, participants were cued to retrieve previously
well-learned images of rooms. Memory retrieval was then fol-
lowed by the visual presentation of images that either matched or
mismatched the learned information (see Methods and Results).
Consistent with our hypothesis, we found that in the left hemi-
sphere, CA1 connectivity with the entorhinal cortex increased as
mnemonic prediction errors increased. This was accompanied by

a decrease in CA1–CA3 connectivity for those same trials. Thus,
mnemonic prediction errors do not simply lead to an overall
general increase (or decrease) in functional connectivity of the
CA1 region, but rather they selectively and differentially mod-
ulate processing along distinct hippocampal pathways.

To support the notion that connectivity changes were related to
participants’ internal memory predictions, we quantified predic-
tion strength and mnemonic prediction error by examining the
multivoxel activity patterns in CA1. We found higher similarity
between activity patterns corresponding a retrieved memory of a
room and viewing of that same room compared with other
rooms, indicating room-specific memory reinstatement, or pre-
diction, in CA1. Further, as a supplemental finding (Supple-
mentary Fig. 2), we see evidence that participants with better cued
memory reinstatement showed a greater increase in
CA1–entorhinal connectivity in response to subsequent violations
of the remembered rooms. This across-participants correlation
provides initial evidence for the notion that CA1–entorhinal
connectivity is related to CA1 prediction strength. It would be
fruitful to further examine this relationship in a within-subjects
design. In addition, because the cue and probe aspects of each
trial were temporally proximal in our design (which was done to
maximize the effect of a mnemonic prediction error), it would be
beneficial to measure memory strength in temporally separate
trials. We have additionally found that in CA1, activity patterns
during cued memory reinstatement were more similar to activity
patterns during viewing the same image, compared with viewing
an altered version of image. This result is consistent with the
notion that CA1 activity patterns are sensitive to mnemonic
prediction errors. Together, our results suggest that an interplay
between internal memory predictions and environmental evi-
dence modulate hippocampal processing states, potentially driv-
ing hippocampal processing towards an encoding state and away
from a retrieval state6,8,14,18,36. Such state shifts may prove to be
an adaptive mechanism for memory updating: by reducing pro-
cessing of erroneous retrieved predictions while upregulating
encoding of the novel sensory evidence.

How the hippocampus shifts between memory states is largely
unknown. It is possible that both acetylcholine (Ach) and
dopamine (DA) play a role in biasing hippocampal states4,8,51–53.
Some models propose that novelty detection in the hippocampus
upregulates Ach input, which in turn increases excitation in the
CA1–entorhinal pathway, while dampening CA1–CA3 commu-
nication8,34. It has also been proposed that Ach input may further
entrain theta and gamma frequencies associated with encoding
versus retrieval states8,19,34,52,54. Another influential theory sug-
gests that increased CA1 activity in response to prediction errors
leads to an increase in activation in the ventral tegmental area
(VTA), a primary source of DA, which in turn projects back to
CA1 and entorhinal cortex53. Supporting evidence comes from
fMRI studies showing concomitant hippocampal and VTA acti-
vation in response to novel and unexpected events55,56, and
VTA–CA1 interactions were recently shown to mediate associa-
tive memory encoding57 (see ref. 58 for review). In rodents,
injection of DA agonist to the CA1–entorhinal pathway increased
the CA1 post-synaptic potential, suggesting that DA can increase
CA1–entorhinal synaptic transmission59 (cf. ref. 60). Thus, it is
possible that CA1 activation leads to engagement of the postu-
lated back-projection from VTA to CA1 and entorhinal cortex53

and serves to functionally couple these regions and enhance
CA1–entorhinal connectivity. Consistent with that notion, we
show preliminary results suggesting that connectivity in
CA1–entorhinal cortex was correlated with the strength of the
memory predictions measured in area CA1. Namely, participants
who showed greater similarity between a viewed room and the
rooms’ retrieval cue, our measure of a mnemonic prediction,
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exhibited larger increases in CA1–entorhinal connectivity in
response to presented rooms that contained changes, or viola-
tions, of the learned room. This interpretation of synchronization
via VTA input to CA1 and entorhinal cortex is further consistent
with the lack of a correlation between CA1–CA3 connectivity and
CA1 prediction strength (Supplementary Fig. 2). More work is
needed, however, to better understand how neurotransmitters
such as DA, Ach, and potentially norepinephrine51,61,62 con-
tribute to a shift in hippocampal connectivity with changing
mnemonic demands.

Another intriguing question for further research is whether and
how functional connectivity between hippocampal subregions is
related to pattern completion versus pattern separation
mechanisms10,14–17. Pattern completion, namely, the reinstate-
ment of a previously encoded activity pattern, has been suggested
to underlie memory retrieval16,63–65. Pattern separation, or the
allocation of a distinct activity pattern to similar experiences, is
suggested to underlie encoding of new memories66–69. Likewise,
previous empirical work has provided evidence that commu-
nication between CA1 and CA3, and between CA1 and entorh-
inal cortex may support retrieval versus encoding,
correspondingly20,25,33,35,50. This study, however, did not aim to
directly test whether pattern completion or separation took place
as a result of mnemonic prediction errors, but to examine whe-
ther memory violations are related to changes in intrahippo-
campal connectivity. Thus, the specific computations mediated by
communication between hippocampal subregions or by the
subregions themselves in the case of mnemonic prediction errors,
are exciting questions for future research to explore.

One limitation of this study is that our CA3 ROI included the
CA2 subregion and the dentate gyrus (DG). While this limitation
is necessary given the resolution of our data and is shared by
many human studies of hippocampal subfields70–72, recent
advances in functional imaging such as 7-Tesla MRI scanners,
might enable researchers to distinguish between CA3 and DG67.
Relatedly, we note that we based our manual segmentation on a
T1-weighted image, while some recent proposals recommend
using an additional T2-weighted image73. The main advantage in
using a T2 image is in distinguishing the corno ammonis (CA)
from dentate gyrus (DG)73,74. As mentioned above, we did not
aim to distinguish CA3 from DG in this study. Our manual
segmentation was performed based on a well-established proce-
dure relying on markers clearly visible on a T1 image75,76, thus
we believe that this concern is unlikely to influence our results.
Importantly, we report that functional connectivity between
hippocampal subfields was modulated in opposite directions:
CA1–CA3 connectivity increased, while CA1–entorhinal cortex
connectivity increased, as number of changes in the images
increased. Any possible blurring of ROIs, if occurred, would
therefore impair our ability to observe this dissociation. Future
work will be able to further specify the reported connectivity
findings.

While the accounts discussed above place the CA1
region as the source of violation-detection and connectivity
changes6–8,13,38,43,53,77, it is possible that prediction errors are also
detected in earlier brain regions. Experimental and computational
work in the predictive coding framework converge on the notion
that high-level areas project top-down predictions to earlier visual
cortices, where these predictions are then compared to incoming
sensory information78–80. Consistent with this, after learning that
a stimulus predicts another visual stimulus, greater activity was
reported in visual cortex of both humans and monkeys in
response to stimuli that violated such memory-based predictions,
compared to stimuli that confirmed prior expectations81,82 (for
reviews, see refs. 83,84). Moreover, it is now widely reported that
memory reinstatement in cortical regions is correlated with

hippocampal activity85–91. While fMRI studies cannot resolve the
temporality of neural activity, a recent ECoG study found that
memory reinstatement in visual processing regions preceded
hippocampal reinstatement in humans92. Together, these studies
suggest that memory reinstatement, or predictions, may occur in
early processing stages, and hence then influence subsequent
hippocampal processing. Like memory predictions, it is also
possible that early prediction-error signals as those mentioned
above may propagate forward to influence hippocampal proces-
sing44 and potentially mediate connectivity changes.

A critical assumption in models of CA1 function is that CA1
may be ideally suited to compare internal memory output with
input from visual cortical regions representing ongoing visual
experience6,7,53,93. While earlier investigations have reported
increased BOLD signal during mnemonic prediction errors in the
hippocampus and, specifically, in area CA138–40,43, these studies
neither specifically measure memory predictions in CA1 nor
could they address the content of CA1 processing. Thus, whether
the content of CA1 processing indeed reflects predictions as well
as incoming sensory input, or whether univariate findings reflect
other violation-related processes remained unknown. Here, we
found that in CA1, activity patterns during cued memory rein-
statement were more similar to activity patterns during viewing
the same image, compared to viewing an altered version of image
(see Results, Fig. 3). This result suggests that CA1 multivoxel
pattern representations are sensitive to the difference between
internal memory representations and sensory evidence, thus
providing essential evidence to support the role of CA1 as a
violation detector6,7,53,77,93.

In summary, we found that mnemonic prediction errors biased
hippocampal area CA1 connectivity toward entorhinal cortex and
away from area CA3. We propose that this bias may reflect a shift
in hippocampal states toward encoding of the novel sensory
information and away from retrieval of erroneous memory-based
predictions. How the hippocampus supports both encoding
and retrieval is an intriguing question that has received increased
attention in recent years4,18,32,46,64. The current results contribute
to this ongoing line of research by measuring hippocampal states
in humans, and by suggesting that the interplay between memory
reinstatement as a prediction and their subsequent violation, or
mnemonic prediction errors, may be an important factor in
biasing these states. Thus, in addition to understanding the dis-
tinct neural mechanisms that allow shifting between encoding
and retrieval, future research should aim at understanding the
psychological factors that may shift our cognitive system between
these different mnemonic states4,8,13.

Methods
Participants. Twenty participants were included in this study (mean age: 25.4
years). Further information can be found in Duncan et al.43, where the results of
univariate analyses of these data were previously published. One participant was
removed from all analyses due to substantial entorhinal dropout (see Regions of
interest). As was mentioned in Duncan et al.43, all participants provided informed
consent in a manner approved by the Institutional Review Board at New York
University.

Procedure. In the training phase (~24 h prior to scanning, and again before
entering the scanner), participants were extensively trained to identify each of 30
named rooms (e.g., “Johnson’s boy bedroom”) to criteria43. While scanning, par-
ticipants were employed in two change-detection tasks. In both tasks, the room’s
name appeared for 1.5 s, followed by 1-s blank and a probe image (4 s). The probe
image contained 0–2 changes in the individual pieces of furniture, along with 0–2
changes in the layout of the furniture, relative to the learned image, making a total
of 0–4 changes per image. In the Furniture task, participants were asked to indicate
whether all pieces of furniture were identical to the studied image. In the Layout
task, participants were asked to indicate whether the layout of the furniture was
identical to the learned image. This resulted in a two (Task: Furniture/Layout) by
five (Changes: 0–4 total changes) within-participant design. Each room appeared
once in every trial type (nine trial types: 0/1/2 furniture changes by 0/1/2 layout
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changes), across both tasks, to make a total of 270 trials. Here, we focused on total
number of changes (0–4 total changes, see below). Thus, analysis was conducted on
30 trials in each of the 0 and 4 changes, 60 trials in the 1- and 3-changes conditions,
and 90 trials in the 2-changes condition (across both tasks). Tasks were blocked,
such that each scan included one task (ten scans, five per task), and the blocks
alternated between the Furniture and the Layout task. One participant had eight
blocks, and another had seven. The minimal number of trials per condition was 24
and 21, correspondingly, still allowing a meaningful analysis. Hence, these parti-
cipants were included in the analysis.

FMRI parameters. Scanning was performed using a 3-T Siemens Allegra MRI
system. A high-resolution EPI sequence was used to collect functional data (TR=
2.5 s, TE= 49 ms, FOV= 192 × 96mm, 26 interleaved slices, distance factor of
20%, 1.5 × 1.5 × 2 mm voxel size). A T1-weighted high-resolution MPRAGE (1 ×
1 × 1mm voxel size) was used as an anatomical scan.

Regions of interest (ROIs). Anatomical ROIs were drawn manually by K.D. on
each participant’s MPRAGE anatomical image, and were then registered to func-
tional space. The same hippocampal ROIs (CA1, CA2/CA3/DG) reported in
Duncan et al.43 were used here. These ROIs were drawn in a similar procedure to
Kirwan et al.75. The entorhinal cortex was drawn using guidelines discussed by
Insausti et al.94 and Pruessner et al.95. ROIs were also masked to remove voxels
with substantial signal dropout, a concern mainly in the entorhinal cortex96. One
participant with only 12 voxels in the left entorhinal and 80 voxels in the right
entorhinal was excluded from all analyses. All other participants had on average
234 voxels in the left entorhinal ROI (range: 127–344), comprising 84% (range:
44–93%) of the anatomical left entorhinal. In the right entorhinal ROI, participants
averaged 255 (range: 165–337) voxels, which were 87% (59–95%) of the anatomical
right entorhinal.

Functional connectivity. fMRI beta-series correlation. Functional connectivity
between regions was computed using a beta-series correlation approach47, in which
a timeseries of single-trial parameter estimates in two regions are correlated. To
obtain the single-trial estimates, we used an LSS (least-square-separate)
approach97–99. We reasoned that this approach would maximize our ability to
capture the variance explained by the image portion of each trial (our focus of
interest) and distinguish this variance from preceding cue part of each trial (the
name of each room). Thus, in the first level analysis, a separate GLM was computed
for each trial. Each model included the image portion of a single trial as a regressor
of interest. The cue portion in all trials were included in one regressor of no
interest. Other images were binned based on trial type to make nine additional
regressors of no interest. In all regressors, events were modeled as boxcars lasting
for the duration of the event (1.5 s for cues, 4 s for images) convolved with a
double-gamma function to approximate the hemodynamic response. A temporal
derivative regressor was also added for each regressor. GLMs were implemented
using FSL FEAT. This procedure yielded 270 parameter estimates, one for each
trial. A t-stat was computed for each parameter estimate, and these were averaged,
per each trial, across all voxels in each ROI (CA1, CA2/CA3/DG, entorhinal cortex,
and perirhinal cortex, separately for right and left hemispheres). T-stats were then
binned based on experimental conditions: number of changes (0–4) and task
(Furniture/Layout) to make 10 t-series for each ROI. We then computed functional
connectivity between area CA1 and the other brain regions of interest: CA2/3/DG
and entorhinal cortex in each of the ten conditions separately for each hemisphere.
The Pearson’s r values per each participant, condition, and pair of ROIs were
Fisher-transformed and entered to the group-level analysis.

We further aimed to control for univariate effects in CA1, CA3, and entorhinal
cortex, to exclude the possibility that univariate activation might have driven
any connectivity findings. To that aim, for each participant, we averaged the t-
statistics corresponding to activation estimates in these same trials that were used
to compute connectivity, based on the level of changes (0–4). The statistical
procedure we used to evaluate univariate effects and to control for such potential
effects is detailed below in the section dedicated to statistical procedures. For the
functional connectivity and univariate analyses, as well as for the analyses below, all
the analysis steps after obtaining the t-statistics were performed using a costume
code in MATLAB R2018b (The MathWorks Inc), or in R (version 3.5.2; R Core
Team, 2018), where mentioned. More details can be found in the documentation at
https://github.com/odedbein/Ticky_public, where all the costume code is available.

CA1 mnemonic prediction strength analysis. In order to measure the strength of
participants’ mnemonic predictions, we used a representational similarity analy-
sis100,101 (RSA). To obtain the multivoxel activity pattern for each cue, we used the
same LSS procedure as for the images (see Functional connectivity: beta-series cor-
relation). Each cue was allocated a separate GLM, which included one regressor of
interest for the cue, and a few regressors of no interest: one regressor for all other cues,
and nine additional regressors modeling the images—one for every trial type. As with
the image models, a time-derivative regressor was added for each regressor. Parameter
estimates were then converted to t-statistics, which were taken to the RSA.

To boost SNR for the representational similarity analysis, we removed noisy/
non-responsive voxels by eliminating a third of the voxels that were least activated

by our task as determined by an independent GLM68,102,103. Specifically, we
conducted a GLM that included a regressor per trial type (nine trial types, see
above) capturing the image part of the trial, as well as one regressor for all cues (as
the models were conducted in the run level, and tasks were divided between runs,
this analysis effectively is conducted for each task separately). Events were boxcars
lasting for the duration of the event (1.5 s for cues, 4 s for images) and convolved
with a double-gamma function to approximate the hemodynamic response. A
temporal derivative regressor was also added for each regressor. We then computed
per-participant average activation for images per each level of changes (0–4), in
each task, and averaged across the level of changes and tasks, to get the average
activation level in our task. Then, for each participant, we excluded a third of the
left CA1 voxels that were least activated by our task from the RSA analyses. The
results without voxel selection were largely consistent and are reported in the
Supplementary Note 6.

To compute the strength of participants’ mnemonic predictions, we correlated
the multivoxel activity pattern in CA1 observed in response to each room cue with
the multivoxel activity pattern measured when participants viewed the intact room
image (i.e., the 0-changes image). For example, the CA1 activity pattern in response
to the verbal cue “Johnsons boy’s bedroom” was correlated with the CA1 activity in
response to the intact image of Johnsons boy’s bedroom. To compute the similarity
to the specific match image, while controlling for condition-level effects and
general similarity to all 0-changes images, we computed, for each cue, the
correlation between the activity pattern during the cue and the activity pattern of
other 0-changes images, and averaged across these correlation values. Then, we
subtracted this average correlation with other 0-changes images from the
correlation with the intact image corresponding to the cue (e.g., the intact image of
Johnsons boy’s bedroom). This yielded, for each cue, a measure of how good the
prediction of the specific corresponding room was, beyond overall similarity to a 0-
changes image. This procedure further controlled for differences in average
similarity values between participants, which is critical for a meaningful
interpretation of across participant correlations of prediction strength with
connectivity. Cues in some trials were excluded from this analysis: first, we
excluded cues in the 0-changes condition. These cues were presented in the same
trial as the corresponding intact image while all other 0-changes images were
presented in other trials, thus we avoided comparing within-trial similarity to
across-trial similarity. Second, we excluded cues and intact images that were
presented in the same scan to avoid inflating similarity values within the same
scan97. Third, we only took cues in which the cue and the intact image were
presented in the same task, to avoid introducing task differences between the cue
and the image. For each participant, the correlation values between the cues that
entered the analysis and their corresponding 0-changes images (other 0-changes
images subtracted, as detailed above) were averaged and Fisher-transformed per
task and then averaged across both tasks to obtain a prediction index per
participant.

CA1 multivariate mnemonic prediction-error analysis. To further support our
hypothesis that mnemonic prediction errors modulate hippocampal connectivity,
we aimed to compute a measure of mnemonic prediction error in our study. To
this end, we correlated the CA1 activity pattern (same voxel selection as for the
prediction strength analysis) during the presentation of each cue when participants
were instructed to retrieve a memory of the cued room (i.e., the mnemonic pre-
diction) with the CA1 activity pattern measured when viewing the probe image on
each trial (the sensory evidence). We reasoned that the difference between the
representation of the mnemonic prediction and that of the sensory evidence can be
interpreted as a mnemonic prediction error. We averaged this value across all the
trials within each number of changes (0–4), and separately in each task, and Fisher-
transformed these correlation values for statistical analysis. If indeed participants
retrieved the intact image on each trial, we predicted a decrease in similarity, or
increased prediction error, as number of changes increased, reflecting larger
divergence between the retrieved memory and the sensory evidence.

Statistical tests for the functional connectivity analysis. In the group-level
analysis of the functional connectivity data (beta-series correlation), Fisher-
transformed r values in each pair of ROIs were entered to a five (Changes: 0–4) by
two (Task: Furniture/Layout) repeated-measures ANOVA. We saw no interaction
between Task and Changes in CA1 connectivity with either CA3 or entorhinal
cortex. Thus, for CA1–CA3 and CA1–entorhinal, for each participant in each
number of changes, we collapsed across tasks to obtain an average beta-series
correlation value. Since previous univariate findings do not show consistent
lateralization39,40,42,48 (see also ref. 104), we reasoned to look at each hemisphere
separately. Thus, we first conducted an ANOVA of Hemisphere (left/right) by
Changes (0–4) by ROI (CA3 vs. entorhinal). To preview, this analysis indeed
revealed a three-way interaction of Hemisphere by Changes by ROI (see Results).
We thus tested our hypotheses regrading a shift in CA1 connectivity in each
hemisphere separately. To directly test our main hypothesis that mnemonic pre-
diction errors modulate CA1 connectivity with CA3 vs. entorhinal cortex, we
conducted a five (Changes: 0–4) by 2 (ROI: CA3 vs. entorhinal) repeated-measures
ANOVA in each hemisphere. Where a Changes by ROI interaction was observed,
we tested how Changes (0–4) influenced connectivity separately in each pair of
ROIs (CA1–CA3, CA1–entorhinal), using a one-way repeated-measures ANOVA.
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Although we had no specific hypothesis regarding the shape of the increase or
decrease in connectivity, we sought to further characterize connectivity changes.
We asked whether connectivity changed linearly with number of changes, or,
alternatively, whether changes may reflect a binary match–mismatch signal,
whereby any level of change is different from no changes at all, with no or little
difference between level of changes. To that end, we defined a linear contrast by
allocating for each number of changes (0,1,2,3,4) linear-trend values (−2, −1, 0, 1,
2) correspondingly. The match <mismatch contrast was defined as by coding the
0-changes condition as −1, whereas the 1–4-changes conditions were coded 0.25
each. We directly compared the linear-trend contrast to the match < mismatch
contrast by using a mixed-effects model approach as implemented by lmer function
in R105. We included both contrasts as explanatory variables in the same model
(the beta-series correlation value per participant per number of changes was the
explained variable) and then compared this full model to either a model including
only the linear-trend contrast, or only the match < mismatch contrast (match <
mismatch was treated as a factor, an intercept per participant was included in all
models). This analysis thus examines whether one contrast significantly explains
variance above and beyond the other contrast.

We further sought to control for univariate effects in regions CA1, CA3, and
entorhinal cortex. To that end, we first evaluated whether there were any
differences in univariate activation between level of changes, aiming to reproduce
the results reported in the original publication of these data43. Thus, we followed
the same approach as in that previous study43, and conducted a linear-trend
analysis, whereby a linear contrast is computed per participant (by coding level of
changes as −2, −1, 0, 1, 2) and these contrast scores are tested against zero at the
group level using one-sample two-tailed t test. We then further estimated simple
effects between level of changes using paired-sample two-tailed t tests.

To statistically control for any univariate effects in our main connectivity
analysis, we adopted a mixed-level modeling approach. This control analysis was
only conducted in the left hemisphere, were we found connectivity effects (see
Results). For each regions-pair (CA1–CA3/CA1–entorhinal), a model was
constructed (using lmer function in R105), including connectivity in each level of
changes per each participant as our explained variable. As explaining variables, we
included univariate activity in each level of changes per participant for both regions
of the pair, as well as their interaction. As our explaining variable of interest, for the
left CA1–entorhinal connectivity, we took either the linear contrast, or the match <
mismatch contrast, as both explained variance in connectivity between these
regions (although the match < mismatch was preferable). In CA1–CA3, we only
took the linear contrast, as the match <mismatch contrast did not significantly
explain variance in the main analysis. A random intercept was included per
participant in all models. Model comparison was used to estimate the models: we
compared a full model, with the contrast of interest and univariate activity as
detailed above, to a model that included only the univariate activity. If the full
models including our contrast of interest and univariate activation explain
significantly more variance than the models including only univariate activation,
we can conclude that our connectivity findings are unlikely to be attributed to
univariate activation differences.

Statistical tests for the prediction strength and mnemonic prediction-error

analyses. The significance of the prediction strength (namely, room-specific
memory reinstatement: the difference between the similarity of the cue to the
corresponding intact room image, and the similarity of the cue to intact room
images of other rooms) was tested with a paired-sample two-tailed t test.

For the mnemonic prediction-error analysis, we first entered the Fisher-
transformed similarity values to a five (Changes: 0–4) by two (Task: Furniture/
Layout) repeated-measures ANOVA. To preview, since there was no interaction
between Changes and Task in CA1, we collapsed across Task in all further analyses.
Like in the functional connectivity analysis, we then estimated this decrease using a
linear-trend analysis, as well as a match < mismatch analysis. We calculated a
contrast score per participant using the same contrasts as described above, and
tested these contrasts against zero using a two-tailed, one-sample t test.

Reproducibility. This is a single fMRI experiment. We did not repeat the
experiment and no replication attempts have been made to date.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Minimally processed data and single-trial t-statistic maps that support the findings of this

study, along with the stimuli used in the task, are available online (https://osf.io/re2wd/).

A reporting summary for this Article is available as a Supplementary Information file.

Additional data are available from the corresponding author upon reasonable

request. Source data are provided with this paper.

Code availability
The costume code that was used for data analysis in this study is available at https://

github.com/odedbein/Ticky_public.
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