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Graphical abstract 

 

 

 

Synopsis 

Calix[4]arene based [Mn
III

4Ln
III

4] clusters (Ln = Gd, Tb, Dy) act as molecular coolers or molecular 

magnets depending on the isotropy of the lanthanide ion employed in cluster formation. 

 

Keywords 

structural coordination chemistry; transition-metal; low-temperature; ground-state; Fe-III; complexes; 

refrigeration; calixarenes; capsules; alcohols 

 

Abstract 

The use of methylene-bridged calix[4]arenes in 3d/4f chemistry produces a family of clusters of 

general formula [Mn
III

4Ln
III

4(OH)4(C4)4(NO3)2(DMF)6(H2O)6](OH)2 (where C4 is calix[4]arene; Ln = 

Gd (1), Tb (2), Dy (3)). The molecular structure describes and square of Ln
III

 ions housed within a 

square of Mn
III

 ions. Magnetic studies reveal that 1 has a large number of molecular spin states that 

are populated even at the lowest investigated temperatures, whilst the ferromagnetic limit S = 22 is 

being approached only at the highest applied fields. This, combined with the high magnetic isotropy, 

enables the complex to be an excellent magnetic refrigerant for low-temperature applications. 

Replacement of the isotropic Gd
III

 ions with the anisotropic Tb
III

 and Dy
III

 ions “switches” the 

magnetic properties of the cluster so that they (2 and 3) behave as low-temperature molecular magnets 

displaying slow relaxation of the magnetisation.  
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Introduction 

Magnetic refrigeration constitutes one of the potential applications envisioned for polymetallic 

molecules.1 The Magneto-Caloric Effect (MCE) is based on the change of magnetic entropy upon 

application of a magnetic field and is of great technological importance since it can be used for 

cooling applications according to a process known as adiabatic demagnetisation.2,3 This energy-

efficient and environmentally friendly technique is particularly promising for refrigeration in the 

ultra-low-temperature region, providing for example a valid alternative to the use of 3He which is 

becoming rare and expensive.4 Recent studies have demonstrated that the MCE of selected molecular 

cluster compounds can be much larger than in the best, and conventionally studied, inter-metallic and 

lanthanide alloys, and magnetic nanoparticles. The recipe5 required for making such molecules 

requires them to have a negligible anisotropy which therefore permits easy polarization of the net 

molecular spin, leading to a large magnetic entropy change and the presence of degenerate or low-

lying excited spin states, since the so-added degrees of freedom result in extra magnetic entropy. In 

short, we must target high spin (ferromagnetic) isotropic clusters displaying weak intra-molecular 

magnetic exchange. The [Mn12] and [Fe8] molecular magnets were the first to be investigated for 

magnetic refrigeration because of their well-defined S = 10 ground states, and although they displayed 

relatively large ∆Sm values the large anisotropy present in both systems freezes the orientation of the 

molecular spins once the temperature is lowered below ~ 4K, limiting their applicability.1,6,7 The first 

isotropic molecular cluster studied was the heterometallic [Cr7Cd] wheel,8 but the problem in this case 

was the low value of the spin, S = 3/2. A huge step forward in the search for truly applicable 

molecular candidates was accomplished via the synthesis and study of highly-symmetric molecules 

with large values of the spin ground state. The first was [Fe14] with an S = 25 ground state,9 the second 

a ferromagnetic [Mn10] supertetrahedron with S = 22 displaying practically zero anisotropy,10 and the 

third a [Mn14] disc11 displaying a truly enormous enhancement of the MCE with values of ∆Sm as 

large as 20 Jkg-1K-1 for liquid-helium temperatures and ∆B = 6 T - almost a factor of two larger than 

that of [DyCo2] nanoparticles.12 One of our long-standing synthetic strategies for making high spin 

molecular clusters is the use of polyalkoxide ligands such as the tripodal 1,1,1-

tris(hydroxymethyl)ethane, 1,1,1-tris(hydroxymethyl)propane and pentaerythritol.13 The disposition of 

the three alkoxide arms of the tri-anions of RC(CH2OH)3 pro-ligands direct the formation of triangular 

[M3] units where each arm of the ligand bridges one edge of the triangle. These triangular building 

blocks then self-assemble to form elaborate architectures (M9 partial icosahedra,14 M10 

supertetrahdra,10 Mn32 truncated cubes15 
etc) whose topologies are dependent on reaction conditions 

and/or the presence of other bridging and/or terminal co-ligands such as carboxylates or β–diketonates 

etc.13 A natural extension of this strategy is the use of tetrapodal alkoxides such as calix[4]arenes. 

Calix[4]arenes are cyclic molecules that have been used extensively in the formation of 

supramolecular structures and in various fields of coordination chemistry.16 Calix[4]arene (C4, Figure 



Page 3 of 20 

1A) is a cyclic polyphenol that is synthetically accessible on a large scale via the parent p-tBu 

derivative (TBC4),17 and this molecule is the typical starting point for synthetic alteration to the 

general molecular framework.18 In a bowl-conformation, the calix[4]arene polyphenolic pocket at the 

lower-rim is an attractive feature for metal complexation.19 We,20 and others,21 have been using 

methylene bridged calix[4]arenes for the construction of polynuclear metal clusters possessing 

interesting magnetic properties. In addition, thia- and sulfonyl-bridged calix[4]arenes have also been 

used in this regard, but these molecules form distinctly different cluster motifs due to the bridging 

atoms taking part in the coordination chemistry of the resulting complexes.22 With methylene bridged 

TBC4, we have recently synthesised and characterised [MnIII
2MnII

2] Single-Molecule Magnets 

(SMMs, Figure 1B),20a enneanuclear CuII tri-capped trigonal prismatic clusters that act as versatile 

anion binding materials (Figure 1C)20b and a [MnIII
4GdIII

4] cluster that displays an enhanced MCE.20c 

This paper extends our original communication on the latter and describes the syntheses, structures 

and magnetic properties of a family of [MnIII
4LnIII

4] clusters, the first methylene bridged calix[n]arene 

based 3d-4f molecules, in which the replacement of one Ln(III) ion for another invokes dramatic 

changes in the observed magnetic properties in otherwise structurally analogous molecules.  

 

 

 

 

Figure 1. A) Calix[4]arene, C4. B) The [MnIII
2MnII

2] SMM formed with TBC4.20a C) View down the 

centre of a tri-capped trigonal prismatic enneanuclear CuII cluster formed with TBC4, and that binds 

two chloride anions (one above and below the cluster core).20b Figures not to scale. Hydrogen atoms 

omitted for clarity in A – C (except for lower-rim hydroxyl groups in A). Ligated solvent molecules 

and solvent of co-crystallization omitted for clarity in C. Colour code, Mn = purple; O = red; N = dark 

blue; C = grey; Cu = light blue; Cl = yellow. 
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Experimental details 

Mn(NO3)2
.4H2O (0.1 g, 0.39 mmol), Gd(NO3)2

.6H2O (0.1 g, 0.22 mmol) and C4 (0.1 g, 0.23 mmol) 

were dissolved in a mixture of DMF (10 cm3) and MeOH (10 cm3). Following 5 minutes of stirring, 

NEt3 (0.2 g, 1.97 mmol) was added dropwise, and the resulting purple solution was stirred for a 

further hour. X-ray quality crystals were obtained in good yield (40%) after slow evaporation of the 

mother liquor. Elemental analysis (%) calculated for (1), C130H140Mn4Gd4N8O40: C 47.27, H 4.27, N 

3.39; Found: C 47.02, H 4.14, N 3.27.  

Complexes 2 and 3 were made in an analogous manner using Tb(NO3)3
.6H2O and Dy(NO3)3

.6H2O in 

place of Gd(NO3)3
.6H2O. Elemental analysis (%) calculated for (2), C135H155Mn4Tb4N9O43: C 47.04, H 

4.53, N 3.66; Found: C 46.98, H 4.24, N 3.59. Elemental analysis (%) calculated for (3), 

C130H140Mn4Dy4N8O40: C 46.97, H 4.24, N 3.37; Found: C 46.51, H 4.18, N 3.25. 

 

General crystallographic details 

Data for 120c and 2 were collected on a Bruker Nonius X8 Apex II diffractometer operating with 

MoK radiation ( = 0.71073 Å) at T = 100(2) K. Data for 3 were collected on a Bruker Apex II CCD 

diffractometer operating with synchrotron radiation ( = 0.77490 Å)  at T = 100(2) K. The routine 

SQUEEZE was applied to the data for 1 – 3 due to the presence of badly disordered solvent 

molecules.23 In all cases, this had the effect of dramatically improving the agreement indices. Crystal 

data for 1:
20c

 C130H122Gd4Mn4N8O42, M = 3317.12, Black Block, 0.25  0.20  0.18 mm3, monoclinic, 

space group C2/c (No. 15), a = 34.41(3), b = 12.397(9), c = 32.15(4) Å, = 98.14(3)°, V = 13576(22) 

Å3, Z = 4, 2max = 46.8º, 56018 reflections collected, 9621 unique (Rint = 0.0831).  Final GooF = 

1.015, R1 = 0.0462, wR2 = 0.1217, R indices based on 7169 reflections with I >2sigma(I) (refinement 

on F2). Crystal data for 2: C135H155Mn4N9O43Tb4, M = 3447.12, Black Block, 0.40  0.32  0.28 

mm3, triclinic, space group P-1 (No. 2), a = 17.87(5), b = 19.62(5), c = 23.80(7) Å, = 102.46(4), = 

104.83(4), = 96.28(4)°, V = 7754(37) Å3, Z = 2, 2max = 46.5º, 143013 reflections collected, 21725 

unique (Rint = 0.0857).  Final GooF = 0.977, R1 = 0.0507, wR2 = 0.1290, R indices based on 14442 

reflections with I >2sigma(I) (refinement on F2). Crystal data for 3: C130H140Dy4Mn4N8O40, M = 

3324.26, Purple Plate, 0.20  0.06  0.02 mm3, triclinic, space group P-1 (No. 2), a = 17.805(2), b = 

19.781(2), c = 23.563(3) Å, = 102.752(2), = 104.586(2), = 96.203(2)°, V = 7714.9(15) Å3, Z = 2, 

Dc = 1.431 g/cm3, F000 = 3320, Bruker Apex II CCD Diffractometer, synchrotron radiation, = 

0.77490 Å,  T = 100(2)K, 2max = 51.1º, 64375 reflections collected, 22184 unique (Rint = 0.0609).  

Final GooF = 0.921, R1 = 0.0511, wR2 = 0.1219, R indices based on 15071 reflections with I 
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>2sigma(I) (refinement on F2), 1764 parameters, 147 restraints.  Lp and absorption corrections 

applied, = 2.877 mm-1. 

 

Magnetic Data and Analysis 

Magnetisation measurements down to 2 K and specific heat measurements using the relaxation 

method down to 0.3 K on powdered crystalline samples of (1)-(3) were carried out by means of 

commercial setups for the (0 – 9) T magnetic field range. Ac-susceptibility measurements were 

extended down to 80 mK with a homemade susceptometer, installed in a dilution refrigerator. 

 

Results and Discussion 

The reaction of Mn(NO3)2
.4H2O and Ln(NO3)3

.6H2O with C4 and NEt3 in a solvent cocktail of 

MeOH/DMF results in the formation of complexes with the general formula 

[MnIII
4LnIII

4(OH)4(C4)4(NO3)2(DMF)6(H2O)6](OH)2, where Ln = Gd (1), Tb(2), or Dy (3). Crystals of 

1 are in the monoclinic space group C2/c, whilst those of 2 and 3 are found to crystallise in the 

triclinic space group P-1. The C4 supported clusters in all three complexes are structurally analogous, 

differing only in the number of co-crystallised solvent molecules (which are badly disordered), and so 

for the sake of brevity we will limit our discussion to complex 1, highlighting any specific differences 

between the molecules at appropriate stages. The cluster (Figure 2) comprises a near-planar 

octametallic core describing a “square” of Mn(III) ions encasing a “square” of Gd(III) ions. The 

{Mn4} square has dimensions 6.591 x 7.042 Å and the {Gd4} square 3.915 x 3.929 Å, with the latter 

rotated approximately 45° with respect to the former. This is a very unusual motif, but has also been 

observed recently in the cluster [Mn4Nd4(OH)4(fcdc)2(Piv)8(bdea)4]·H2O (fcdc = ferrocene 

dicarboxylate; piv = pivalate or trimethyacetate; bdeaH2 = N-butyldiethanolamine ).24 The central 

[GdIII
4(OH)4(NO3)2] unit comprises the four Gd(III) ions connected to each other via four μ3-OH- ions 

(O12 and O16 and symmetry equivalents) and two η2, η2, μ3-NO3
- ions. The OH- ions also bridge to 

the four [MnIII(C4)(DMF)] corner units of the {Mn4} square. The μ3-TBC4 ligands are fully 

deprotonated with two oxygen atoms (O1, O4 and O7, O8 and symmetry equivalents) bonding 

terminally to the Mn(III) ions and two (O2, O3 and O6, O9 and symmetry equivalents) μ-bridging to 

the central {Gd4} square. The Mn ions lie in distorted octahedral geometries in {O6} coordination 

spheres with the Jahn-Teller axes (O10-Mn2, 2,225 Å, Mn2-O16, 2.218 Å; O5-Mn4, 2.261 Å, Mn4-

O12, 2.221 Å) described by the DMF-Mn-OH vectors; i.e. across the diagonal of the {Mn4} square. 

The Gd(III) ions are eight coordinate and are in distorted square antiprismatic geometries with their 

remaining coordination sites filled by a combination of terminal H2O molecules, which form intra-
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molecular H-bonds to the terminally bonded O-atoms of the C4 ligands (e.g. O8…O11, 2.642 Å) and 

inter-molecular H-bonds to hydroxide anions, and DMF molecules.  

 

Figure 2. Molecular structure of 1 showing the coordination environments around the MnIII and GdIII 

centres. Hydrogen atoms, hydroxide anions and co-crystallized DMF molecules omitted for clarity. 

Colour code as in Figure 1; Ln = green. 

 

Examination of the extended structures of 1 – 3 shows that symmetry equivalent clusters pack 

together to form two types of complex arrangement. Disorder is present in the solvent molecules co-

crystallised with the clusters in each of the crystal lattices, and this is severe enough to preclude 

detailed analysis of the inter-molecular interactions between all of the structural components in each 

crystal structure. The structure of 1 differs to those of 2 and 3 (isostructural), and packing of the 

asymmetric unit shows that four [Mn(III)-C4] sub-units assemble in a pseudo-capsule assembly to 

produce a DMF rich microenvironment between the corner units of nearest-neighbour clusters (Figure 

3A). These are reminiscent of hexameric calixarene based molecular capsules, and suggest that 

appropriately functionalized C4 molecules could be employed in cluster formation to invoke 

templated self-assembly into nanometer scale assemblies containing large internal volumes.16a,c,e The 

extended structures of isostructural 2 and 3 (Figure 3B) show the formation of a similar type of 

pseudo-capsule assembly. Three [Mn(III)-C4] sub-units assemble to produce a second type of DMF 

microenvironment, while the fourth neighbouring sub-unit points away from the centre of the capsule-

like assembly. Notably, the [Mn(III)-C4] sub-unit found in the [MnIII
2MnII

2] SMM shown in Figure 

1B is preserved in these new hybrid 3d-4f complexes. This indicates that this is indeed a favourable 

structural sub-unit (or “metalloligand”) for Mn(III), and that these moieties may well be exploited in 
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the formation of other complexes and supramolecular architectures, whose self-assembly may be 

governed by relatively small changes in reaction conditions. 

 

 

Figure 3. Partial extended structures of 1(A) and 2(and isostructural 3, B) showing the packing of 

[Mn(III)-C4] sub-units in each case. A) Four corner units of nearest-neighbour clusters form a 

pseudo-capsule assembly containing a DMF microenvironment that is reminiscent of other calixarene 

based molecular capsules.16a,c,e B) Three corner units of nearest-neighbour clusters form a related 

assembly, albeit with one pointing away from the DMF microenvironment relative to that shown in A. 

Figures not to scale. 

 

Magnetic Studies 
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We investigated the magnetic properties of 1 by dc-susceptibility experiments in the 300 5 K 

temperature range in an applied field B of 0.1 T (Figure 4). The room-temperature χT value of ~42.8 

cm3 K mol-1 is close to the spin-only (g = 2.0) value expected for an uncoupled [MnIII
4GdIII

4] unit of 

~43.5 cm3 K mol-1. The value stays essentially constant as the temperature is decreased until 

approximately 50 K, below which it increases, reaching a maximum of ~60.5 cm3 K mol-1 at 5 K. This 

behaviour is suggestive of very weak intra-molecular exchange and one would expect a nesting, and 

thus population of, several S states even at the lowest temperatures studied. This is reflected in the low 

temperature χT value, which is well below that expected for a ferromagnetically coupled cluster with 

an isolated S = 22 ground state (253 cm3 K mol-1), and can also be seen in the magnetisation versus 

field data (collected in the 2 – 7 K temperature range for applied fields up to 7 T, and plotted in the 

inset of Figure 4) which shows M increasing only slowly with B, rather than quickly reaching 

saturation as one would expect for an isolated spin ground state. This is indicative of the population of 

low lying levels with smaller magnetic moment, which only become depopulated with the application 

of a large field. This result suggests 1 to be an excellent candidate for magnetic refrigeration.15b To 

validate this statement, our preliminary studies focused on the determination of the magnetic entropy 

change ΔSm of 1 by analysing the experimental M(B) data of Figure 4. In an isothermal process of 

magnetisation, ΔSm can be derived from the Maxwell relations by integrating over the magnetic field 

change ΔB  = Bf  − Bi, i.e., ΔSm(T)B = [M(T,B)/T]BdB.1,2,5 The so-obtained ΔSm is depicted in 

Figure 5 for several field changes. It can be seen that ΔSm increases gradually with increasing B 

reaching a value of 19.0 J kg-1 K-1 at T = 4 K, achieved for the experimentally accessible maximum 

ΔB of 7 T. This is amongst the highest values ever reported for this temperature range.5 We also note 

that the observed magnetic entropy changes are much larger than the maximum allowable entropy for 

an isolated S = 22 spin ground state, i.e. R ln(2S + 1) = 3.8 R = 9.0 J kg-1 K-1. This demonstrates that 

the presence of low-lying excited spin states can have a strong and positive influence on the magneto-

caloric effect.5  
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Figure 5. Temperature dependencies of the magnetic entropy change of 1 for applied field changes B.  
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We next turn to the study of the magneto-caloric effect of 1 by means of heat capacity (C) 

experiments, emphasizing that the measurement of the heat capacity as a function of temperature in 

constant magnetic field provides the most complete characterisation of the MCE in magnetic 

materials.2,5 The top panel of Figure 6 depicts the experimental heat capacity curves of 1 in the 30 – 

0.3 K temperature range for several applied fields. It can be seen that the curves collected at 

temperatures below 1 K are strongly dependent on the applied field, and that they span over three 

orders of magnitude in units of R for the investigated field changes. The zero-field curve achieves a 

maximum of ~4 R for T = 0.8 K, whilst the field-independent lattice contribution has a value of 610-3 

R for the same temperature. The relevant feature is the broad specific heat anomaly that shifts towards 

higher temperatures on increasing applied field; we attribute this to the field-splitting of the spin 

multiplets of the molecule. We stress, however, that this behaviour cannot be reproduced by a simple 

model based on a well-defined S = 22 spin ground state (which would not exceed ~1 R). To explain 

the excess of experimental heat capacity, we need to invoke the contribution arising from the 

population of low-lying excited spin states, corroborating the previous magnetisation experiments. In 

the high-temperature range a large field-independent contribution appears that can be attributed to the 

lattice phonon modes of the crystal. The dashed line in the top panel of Figure 6 represents a fit to this 

contribution with the well-known low-temperature Debye function, yielding a value of D = 23 K for 

the Debye temperature,  typical for this class of cluster complex.1b     
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From the experimental heat capacity, the temperature dependence of the magnetic entropy Sm is 

obtained by integration, i.e., using Sm(T,B) = ∫ Cm/T dT, where the magnetic heat capacity Cm is 

obtained from C upon subtracting the lattice contribution. The so-obtained Sm is shown in the bottom 

panel of Figure 6 for the corresponding applied fields. As further evidence of the participation of 

excited spin states, we note that the experimental Sm(T) by far exceeds the value expected for an 

isolated S = 22 ground state, i.e. 3.8 R.  

It now becomes straightforward to obtain the magnetic entropy changes ΔSm of 1, whose temperature-

dependencies are depicted in the top panel of Figure 7 for several field changes. Any uncertainty in 

the determination of the field-independent lattice contribution is irrelevant for this calculation and 

cancels out since we are dealing with differences between entropies. The ΔSm(T,ΔB) curves are 

consistent with the preliminary estimates obtained in Figure 5, proving the validity of employing both 

the magnetization and heat capacity data in the analysis. Furthermore, we observe thatΔSm reaches 

the extremely very large value of 21.3 J kg-1 K-1 at liquid-helium temperature for the investigated field 

change B = (9 – 0) T. 

The analysis of the heat capacity data also permits us to estimate the adiabatic temperature change 

Tad by using Tad(T)B = [T(Sm)Bf – T(Sm)Bi]Sm directly from the experimental magnetic entropy Sm 

depicted in Figure 6 (bottom panel). The bottom panel of Figure 7 shows that the maximum in Tad 

gradually decreases and shifts to lower temperatures by decreasing the field change B. Indeed, it 

changes from Tad = 9.0 K for B = (9 – 0) T at T = 4.4 K to Tad = 2.0 K for B = (1 – 0) T at T = 

2.0 K. In other words the magnetic field dependence of the adiabatic temperature change increases 

from 1 to 2 K/T, respectively, making 1 one of the finest refrigerants in the liquid-helium temperature 

range.2,15b 
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We have stressed throughout the text that negligible anisotropy is a major requirement for achieving 

an enhanced magneto-caloric effect with polymetallic molecules. As is well established, a large 

magnetic anisotropy promotes single-molecule magnet (SMM) behaviour, for which slow relaxation 

of the net spin per molecule is obtained below a super-paramagnetic blocking temperature. The 

consequence is that the blocked molecular spins tend to lose thermal contact with the lattice at low 

temperatures,25 resulting in a lower magnetic entropy and therefore a lower MCE. The effect of the 

anisotropy on the efficiency of a polymetallic molecule in terms of magnetic refrigeration has already 

been demonstrated by means of simple numerical simulations, and experimentally using a large 

variety of molecules from the prototype Mn12 SMM to the [ideally] isotropic Mn10 supertetrahedron.5 

However, to the best of our knowledge, no example has yet been provided of a molecular refrigerant 

in which the degree of anisotropy can be experimentally and exclusively altered/tuned without 

structural alteration. The [MnIII
4LnIII

4] molecular cluster can provide such a playground since the 

identity of the Ln(III) can be easily changed. By replacing the zero-orbital moment GdIII ion (1) with 

the anisotropic TbIII (2) or DyIII (3) ion, one can expect to observe abrupt changes in the magneto-

thermal properties of these otherwise structurally analogous molecules.         
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Figure 8. Temperature dependence (5 – 300 K) of the dc-susceptibility for 2 (top) and 3 (bottom) 

collected in an applied field of 0.1 T. Insets: magnetisation of 2 (top) and 3 (bottom) versus applied 

field for T = 2, 5 and 20 K. 
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Figure 8 depicts the dc-susceptibility measurements for 2 and 3, collected in the 300 2 K 

temperature range for an applied field B of 0.1 T. Let us first examine complex 2; terbium(III) is a 

non-Kramers ion with a 7F6 ground state. The fit of the experimental (T) data to the Curie-Weiss law 

in the 300 – 5 K temperature range provides a small  = 0.16 K, suggesting that the metallic ions are 

only weakly magnetically correlated. The room-temperature χT value of 2 is ~55.5 cm3 K mol-1 in 

reasonable agreement with the spin-only (g = 2.0) value expected for an uncoupled [MnIII
4TbIII

4] unit 

of ~59.3 cm3 K mol-1. The value stays essentially constant as the temperature is decreased until 

approximately 150 K, below which it decreases smoothly down to 22 K reaching a value of ~52.3 cm3 

K mol-1. The 22 – 7 K temperature range is marked by an upward shift in the χT value that, 

considering the relatively large inter-cluster spacing, we associate to ferro- or ferrimagnetic intra-

molecular exchange. In the lowest temperature range, χT sharply decreases to ~43.5 cm3 K mol-1 at 2 

K, suggesting either antiferromagnetism or perhaps more likely the progressive depopulation of 

excited states of the lanthanide ions. A similar conclusion may be drawn by looking at the field 

dependence of the magnetisation (inset of Figure 8, top panel). On increasing field, the onset of a net 

molecular moment promotes a relatively quick increase of the magnetisation reaching 20.5 NB at B = 

1 T for T = 2 K, after which it increases linearly without saturating. Likewise for 3, we expect the 

crystal field to split the 6H15/2 ground state of dysprosium(III). Contrary to 2, the fit of the 

experimental (T) data to a Curie-Weiss law in the 300 – 5 K temperature range provides a very 

small, but positive value [ = 0.35 K] suggesting that the ferro- or ferrimagnetic component is 

relatively stronger in 3. The χT(T) value stays essentially constant from room temperature down to 

nearly 100 K, below which it experiences a small decrease to ~66.8 cm3 K mol-1 at T = 12.6 K. The 

lowest temperature range is then characterised by an abrupt increase in χT, which reaches ~79.5 cm3 

K mol-1 at T = 2 K, corroborating the presence of a stronger ferro- or ferrimagnetic interaction than 

observed in 2. This is also supported by the larger experimental values of the magnetisation, whose 

field dependence [qualitatively] is very similar to that of 2 (inset of Figure 8, bottom panel).   

Because of the anisotropy induced by the TbIII and DyIII ions, and the observation that each molecular 

unit develops a net magnetic moment at low temperatures, it is reasonable to expect super-

paramagnetic behaviour. We therefore investigated the dynamic properties of 2 and 3 by means of ac-

susceptibility experiments. Both complexes show out-of-phase signals (χ'') at temperatures above 2 K 

(Figure S1), indicative of either a phase transition or slow relaxation of the magnetisation. In order to 

discriminate between these two phenomena, we extended our experiments to the lower temperature 

region, obtaining the results depicted in Figure 9.  
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Figure 9. Temperature dependence of the in-phase (χ', top) and out-of-phase (χ'', bottom) ac-

susceptibility for 2 (left) and 3 (right), collected in zero-applied field and for the indicated excitation 

frequencies. Insets: semi-logarithmic plots of the (main) zero-field relaxation time. The straight lines 

are fits to the Arrhenius law. 
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The main feature is a cusp in the in-phase component ’ of the ac-susceptibility which occurs at 

approximately 0.9 K for both complexes, accompanied by a non-zero out-of-phase component (Figure 

9), with both maxima in ’ and ’’ being frequency (f) dependent. The experimental data suggest 

super-paramagnetic blocking of the molecular spins below TB corresponding to the temperature at 

maximum absorption. Using the average value TB = 0.9 K, the frequency shift of TB, nominally 

TB/(TBlogf), where TB is the change in TB for the given change in frequency logf, provides the 

values of 0.5 and 0.2 for 2 and 3, respectively, which are comparable to that of other super-

paramagnets. 26 The relaxation time for superparamagnets with an anisotropy barrier U is usually 

described with the Arrhenius law, typical of a thermal activation process:  = 0 exp (U/kBT), where  

= 1/f and 0 is an attempt frequency. We have fitted the cusp in the out-of-phase susceptibility with 

the above equation. The results are presented in Figure 9 (insets), affording 0 = 110-7 s and U/kB = 

3.0 K for 2, and 0 = 310-8 s and U/kB = 5.0 K for 3. Closer inspection of the low-temperature ac-

susceptibility (Figure  9) reveals that the magnetic relaxation in these materials is particularly 

complex, since other (secondary) relaxation pathways can be spotted besides the main one taking 

place at 0.9 K. Indeed, for both complexes, a rather broad frequency-dependent “shoulder” is 

observed in the 2 – 3 K temperature range. For 2, a secondary cusp is observed in ’’(T) at somewhat 

higher temperature than that of the main feature. For 3, the maximum absorption of a faster relaxation 

mechanism takes place below 80 mK, temperatures not experimentally accessible with our setup.             

The frequency dependence of the ac-susceptibility below 3 K suggests that both 2 and 3 are single-

molecule magnets. Therefore, it is not a surprise that heat capacity experiments performed on 2 and 3 

(Figure 10) can detect no sign of long-range magnetic order (in the form of a sharp lambda-like 

anomaly), a result also expected on the basis of structure considerations (see above). The complicated 

magnetic behaviour of these materials is also observed in Figure 10. For example the zero-field C 

curve of complex 2 shows a broad anomaly close to T = 3 K, followed by a second one at 1 K, and a 

third detected at the lowest investigated temperature, the latter being clearly visible in case of in-field 

measurements. 
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Figure 10. Temperature dependence of the heat capacity normalised to the gas constant R for 2 (top) 

and 3 (bottom) collected for B = 0, 1, 4 and 9 T, as labeled. 

 

The measurements of the heat capacity of 2 and 3 indicate that these molecules would not be suitable 

for use as molecular refrigerants. This is simply understood by looking at the field-dependent curves 

and their absolute values in units of R. By comparing the results of Figure 10 with that obtained with 

an excellent refrigerant such as 1 (Figure 6), it can be seen that the zero-field heat capacities of 2 and 

3 are notably smaller than that of 1 in the (magnetic dependent) low-temperature region. Furthermore, 

the change of applied field from 0 to 9 T causes the heat capacities of 2 and 3 to change by one-to-two 

orders of magnitude at best, i.e. more than an order of magnitude less than in 1. Likewise, the changes 

in the magnetic entropy follow the same trend, allowing us to conclude that the anisotropy of the 

lanthanide ion is of crucial importance for dictating the performance of this family of molecules as 

magnetic refrigerants.  

 

Conclusions 

To conclude, we have expanded our initial studies into [MnIII
4LnIII

4] cluster formation with 

calixarenes as supporting ligands so that we tailor these 3d/4f clusters of general formula 
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[MnIII
4LnIII

4(OH)4(C4)4(NO3)2(DMF)6(H2O)6](OH)2 to include either Gd, Tb or Dy as desired. 

Magnetic studies show that the [MnIII
4GdIII

4] cluster is an excellent magnetic refrigerant for low-

temperature applications. The molecular anisotropy added by replacing Gd with Tb or Dy results in 

(a) superparamagnetic behaviour of the [MnIII
4TbIII

4] and [MnIII
4DyIII

4] clusters with blocking 

temperatures in the temperature region below 1 K, and (b) poor performance of these clusters in terms 

of magnetic refrigeration. The [Mn(III)-C4] sub-unit is common to [MnIII
2MnII

2] SMMs and the 

[MnIII
4LnIII

4] clusters reported here, and we are currently exploring the use of this moiety in the 

formation of alternative cluster assemblies through variation in reaction conditions. The substitution 

of other lanthanides in the [MnIII
4LnIII

4] cluster motif is underway with a view to fully characterising 

the magnetic properties of the entire series of analogous clusters. 
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