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ABSTRACT  

We have measured the X-ray absorption and X-ray magnetic circular dichroism (XMCD) 

at the Mn L3,2 edges in ferromagnetic Ga1-xMnxP for 0.018 ≤ x ≤ 0.042.  Large XMCD 

asymmetries at the L3 edge indicate significant spin-polarization of the density of states at 

the Fermi energy.  The temperature dependence of the XMCD and moment per Mn of 

2.67±0.45 µB calculated using sum rules are consistent with magnetometry values.  The 

spectral shapes of the X-ray absorption and XMCD are nearly identical with those for 

Ga1-xMnxAs indicating that the hybridization of Mn d and anion p states is similar in the 

two materials. 
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The discovery that conventional III-V semiconductors such as GaAs exhibit 

ferromagnetism when doped with a few atomic percent of Mn has led to unique 

possibilities for combined non-volatile information storage and processing [1].  Inter-Mn 

exchange is mediated in these ferromagnetic semiconductors by holes provided by 

substitutional manganese acceptors.  In Ga1-xMnxAs, the mediating holes occupy valence 

band-like states having some localized character.  However, the nature of inter-Mn 

exchange across the Ga-Mn-pnictide series remains unresolved.  We recently 

demonstrated the synthesis of a carrier-mediated ferromagnetic phase in Ga1-xMnxP using 

ion implantation and pulsed-laser melting (II-PLM) [2-4].  At 0.4 eV above the valence 

band edge, the Mn acceptor ground state in GaP [5] is significantly deeper than that in 

GaAs (0.11 eV) [6] leading to significantly more localized hole states.  Despite this a 

ferromagnetic Curie temperature, TC, above 60 K has been observed [3].  Ga1-xMnxP is 

thus an important medium for probing the interplay between electronic structure, 

localization and carrier-mediated exchange. 

Characterization of the magnetic properties and spin-polarized band structure of 

Ga1-xMnxP is not only of scientific interest but also essential for assessing its potential for 

use as a source or detector of spin-polarized currents.  Such information can be obtained 

from measurement of X-ray magnetic circular dichroism (XMCD) at the Mn L3,2 

absorption edges.  Right or left circularly polarized light preferentially excites either spin 

down or up electrons from the spin-orbit split p1/2 and p3/2 Mn core states depending on 

the relative orientation of the spin and photon helicity vectors.  These “spin rich” baths of 

electrons serve as a probe for the spin-polarized Mn 3d contribution to the hole density of 

states at the Fermi energy (EF) [7].  Further quantitative analysis can be carried out in 
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conjunction with the X-ray absorption spectra of the Mn L3,2 edge by applying the XMCD 

sum rules [8,9] to calculate the spin and orbital magnetic moments. 

In this Letter we report X-ray absorption spectroscopy (XAS) and XMCD 

measurements of ferromagnetic Ga1-xMnxP.  XMCD spectra show asymmetries as high as 

70% revealing strong spin polarization of mediating carriers and significant 

ferromagnetic coupling between Mn atoms.  The XAS and XMCD spectra from Ga1-

xMnxP are nearly identical in shape to those from Ga1-xMnxAs suggesting that the charge 

state and local environment of Mn atoms in the two materials are very similar. 

Thin films of Ga1-xMnxP were synthesized by II-PLM [10].  GaP (001) wafers 

doped n-type with S (1-6x10
16 

/cm
3
) were implanted with 50 keV Mn

+
 to doses between 

4.5x10
15

 and 2.0x10
16

 /cm
2
.  Samples measuring approximately 5 mm on a side were 

cleaved along <110> directions and irradiated in air with a single 0.44 J/cm
2
 pulse from a 

KrF (λ=248 nm) excimer laser having FWHM of 18 ns.  The beam was homogenized to a 

spatial uniformity of ±5% by a crossed-cylindrical lens homogenizer.  Prolonged (24 

hours) etching in concentrated HCl was used to remove a highly-twinned layer as well as 

any surface oxide phases.  After processing the Ga1-xMnxP films were approximately 100 

nm thick and characterized by a Mn concentration that reaches a maximum between 20 

and 30 nm below the surface as determined by secondary ion mass spectrometry (SIMS).  

The concentrations of substitutional manganese, MnGa, were determined by the 

combination of SIMS and ion beam analysis.  We define x as the peak MnGa 

concentration by analogy to Ga1-xMnxAs as studies of this material formed by II-PLM 

have shown that its magnetic properties are governed by the film region with the 

maximum MnGa concentration [4].   
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DC magnetization was measured by SQUID magnetometry.  The films studied 

had x=0.018, 0.029, 0.034, 0.038, and 0.042 with corresponding TCs of 17, 35, 43, 52, 

and 60 K (±2K for all x), respectively.  Room temperature XAS was performed at 

beamline 8.0 at the Advanced Light Source (ALS).  Low-temperature XAS and XMCD 

measurements were carried out between 17 and 52 K in the vector magnetometer 

endstation at beamline 4.0 at the ALS in applied fields in the range of ±5.4 kOe [11].  

Data were collected with the field and beam oriented 30º from the plane of the samples 

along a <110> in-plane direction with 90% circular polarization of the incident X-rays. 

 The main panel of Fig. 1 presents XAS data at the Mn L3,2 edge taken in total 

electron yield (TEY) mode from a sample having x=0.042 before and after etching with 

HCl for 24 hours.  The pre-edge absorption intensities have been normalized to unity and 

the main Mn
2+

 absorption peak in the unetched sample has been calibrated to fall at an 

energy of 640.0 eV.  The spectrum before HCl etching shows multiple sharp peaks 

characteristic of the unhybridized atomic Mn d
5 

absorption spectrum similar to that seen 

for the Mn-rich surface oxide phases on Ga1-xMnxAs, which obscured early XAS and 

XMCD measurements in Ga1-xMnxAs [12].  The atomic multiplets and higher energy 

peaks disappear after etching, resulting in the smoother Mn absorption spectrum 

characteristic of the orbital mixing between MnGa d states and phosphorus p states.  

Furthermore, the L3 absorption peak shifts to a lower energy by approximately 0.5 eV, 

which is characteristic of the spectral change from atomic to hybridized Mn [13].  

Corresponding effects can be seen at the oxygen K-edge, as demonstrated in the inset to 

Fig. 1.  After etching the signal from oxygen is reduced by an order of magnitude 

demonstrating the removal of surface oxide phases.  Therefore, the following XAS and 
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XMCD signals obtained at low temperature arise from Mn in the GaP matrix and not 

from surface oxide phases. 

 The main panel of Fig. 2 presents Mn L3,2 TEY XAS spectra taken at 17 K with 

the field and photon helicity parallel (I
+
) and antiparallel (I

-
) for a sample having 

x=0.034.  The XMCD ( ) ( )( )−+−+ +− IIII /  spectrum is also shown.  Linear backgrounds 

fit to the pre-edge region were subtracted from the raw data, and the data were 

normalized to the main L3 peak.   Strong XMCD is present at both the L3 and L2 edges 

indicating strong magnetization of Mn and a large spin polarization of states derived from 

Mn d levels at EF.  Very similar spectra were obtained for all of the samples having 

different compositions as was reported for Ga1-xMnxAs [14]. 

While TEY mode probes depths of under 10 nm the total fluorescence yield 

(TFY) mode can probe depths on the order of tens of nanometers [15].  Thus, TFY 

XMCD is a better probe of the bulk magnetic properties of these films.  The magnitude of 

the XMCD at 639.5 eV and 17 K is plotted as a function of Mn composition for both 

TEY and TFY modes in the inset of Fig. 2.  When corrected for incident angle and 

photon polarization, the TFY data exhibit a maximum asymmetry value of around 

0.70±0.04 in all samples except for the one having x=0.018.  This is primarily because 

the TC of 18 K of this film is very close to the measurement temperature, and thus its 

magnetic order is disrupted by thermal fluctuations.  The near-constant value of the TFY 

XMCD at the higher compositions indicates that at the measurement field and 

temperature the magnetization per Mn and spin polarization in the hole density of states 

is nearly constant [14].  The TEY data are generally lower than the TFY data, which is 

consistent with lower Mn concentration and magnetic coupling near the surface of the 
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films.  The only exception to this trend is the sample with x=0.018, which we attribute to 

a difference in the Mn incorporation and regrowth after the pulsed laser melting for low 

implant doses. 

 Spin, orbital, and total magnetic moments were calculated following the sum rule 

analysis method in Ref. 16 assuming a d electron count of 5.1 and a correction factor for 

the spin magnetic moment of 1.47 [14].  The nearly identical XAS and XMCD spectral 

shapes obtained for Ga1-xMnxP in this study and for Ga1-xMnxAs [14] support the use of 

these parameters.  Only the TEY spectra were analyzed due to the significantly lower 

signal-to-noise ratio for TFY.  The orbital and spin moments were calculated to be 

0.12±0.01 µB/Mn and 2.55±0.45 µB/Mn, respectively, over the entire dose series resulting 

in a total magnetic moment of 2.67±0.45 µB/Mn and a ratio of orbital to spin moments of 

0.048± 0.007.  This total magnetic moment is consistent with the values of 3-4 µB/MnGa 

obtained by SQUID magnetometry [3].  The magnetic moment calculated from TEY data 

is probably an underestimate of the magnetization due to the lower concentration of Mn 

in the near-surface region. 

Figure 3 compares the film magnetization measured by SQUID magnetometry, 

MSQUID, and normalized XMCD TEY and TFY signals as a function of temperature for a 

sample with x=0.034.  The magnetization data obtained with a measuring field of 50 Oe 

yield a film TC of 43± 2K.  In a measuring field of 5 kOe, corresponding to the measuring 

field with which XMCD spectra were taken, sample magnetization (dashed line) persists 

at temperatures above TC.  This explains the stronger than expected spin polarization 

above TC when the sample in nominally paramagnetic.  The identical temperature 
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dependencies of magnetization and XMCD demonstrate that these two techniques are 

measuring the same magnetic phase even though the characteristic probe depths differ. 

The similarity between the XAS and XMCD lineshapes for Ga1-xMnxP and those 

reported for Ga1-xMnxAs [12, 14] is remarkable.  Because XAS and XMCD lineshapes 

are strongly influenced by the hybridization of the t2-symmetric Mn d orbitals with the 

neighboring anion p orbitals, this suggests that the bonding and p-d exchange between 

Mn and As or P in dilute alloys are substantially similar [17].  This experimentally 

confirms electronic structure calculations, which generally show very similar densities of 

states near EF for Ga1-xMnxAs and Ga1-xMnxP [18-20].  In dilute GaAs:Mn, the consensus 

view is that the isolated Mn acceptor has a quasi-hydrogenic d
5
+bound hole ground state 

for which the hole states are composed primarily of As p states, which form the valence 

band.  In GaN:Mn the d
4
 configuration is more stable, and hole states have a dominant d-

like character [21].  In GaP:Mn conflicting results have been reported, and electronic 

structure calculations show a very small difference in energy between the d
4
 and d

5
 

configurations [20, 22-23].  For the Ga1-xMnxP alloy, the hole states at EF are expected to 

have more localized Mn d (t2) character than for Ga1-xMnxAs but still contain substantial 

phosphorus p character, leading to a stronger tendency for a non-zero, spin-polarized 

density of states separated by a gap from the valence band [18-20].  Thus, the scenario we 

have proposed whereby ferromagnetism in Ga1-xMnxP (x up to 0.042) is mediated by 

localized holes in a Mn-derived band [3] is consistent with the X-ray measurements 

reported herein. 
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FIGURE CAPTIONS 

 

Figure 1 – Room temperature XAS spectra before and after etching in HCl for 24 hrs for 

a Ga1-xMnxP sample with x=0.042 at the Mn L3,2 edge (main) and oxygen K edge (inset).   

 

Figure 2 – (main) Mn L3,2 TEY XAS spectra for magnetization and helicity parallel (I
+
) 

and antiparallel (I
-
) as well as the difference (XMCD) spectrum for a Ga1-xMnxP sample 

with x=0.034 measured at 17 K.  (inset) TEY and TFY XMCD magnitude for the Mn L3 

peak at 639.5 eV versus x.  The raw XMCD data have been corrected for non-unity X-ray 

polarization and incident angle by multiplying by 1.283. 

 

Figure 3 – Temperature dependence of magnetization (MSQUID) measured at fields of 

0.05 (solid line) and 5 kOe (dashed line) and normalized XMCD signals from TEY 

(squares) and TFY (circles) taken at 5 kOe for a Ga1-xMnxP sample with x=0.034.  

Sample magnetization was measured along an in-plane <110> direction. 
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