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Abstract

Reprogramming of sensor networks is an important and chal-
lenging problem as it is often necessary to reprogram the sen-
sors in place. In this paper, we propose a multihop repro-
gramming service designed for Mica-2/XSM motes. One of
the problems in reprogramming is the issue of message colli-
sion. To reduce the problem of collision and hidden terminal
problem, we propose a sender selection algorithm that at-
tempts to guarantee that in a neighborhood there is at most
one source transmitting the program at a time. Further, our
sender selection is greedy in that it tries to select the sender
that is expected to have the most impact. We also use pipelin-
ing to enable fast data propagation. MNP is energy efficient
because it reduces the active radio time of a sensor node by
putting the node into “sleep” state when its neighbors are
transmitting a segment that is not of interest. Finally, we ar-
gue that it is possible to tune our service according to the
remaining battery level of a sensor, i.e., it can be tuned so
that the probability that a sensor is given the responsibility of
transmitting the code is proportional to its remaining battery
life.

Keywords: Sensor Networks, Network Reprogramming,
Code Dissemination

1 Introduction
Sensor networks have been proposed for a wide variety of
application areas. To be practically useful, a sensor network
must be able to operate unattended for long periods of time.
This requirement introduces several difficulties. First, the en-
vironment evolves over time. Predicting the whole set of ac-
tions that a sensor node might need to perform is impossible
in most applications. Second, requirements are also likely
to change. For example, with growing understanding of the
environment or with new technological advances, some as-
sumptions are found to be incorrect, and, hence, the specifi-
cation has to be modified accordingly. Thus, reprogramming
sensor nodes, i.e., changing the software running on sensor
nodes after deployment, is necessary for sensor networks.

Traditionally, reprogramming is done manually. For exam-
ple, in Mica-2 motes [1], program code is sent from PC di-
rectly to the program memory of a sensor node. Hence, sen-
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sor nodes are reprogrammed in a one-by-one fashion. How-
ever, as the size of sensor networks continues to grow, this
kind of manual reprogramming is no longer feasible. More-
over, even collecting the sensors from the field and repro-
gramming them using wireless reprogramming (typically in
small batches using the single-hop reprogramming (XNP) [2]
included in TinyOS 1.0) can be a daunting task. Therefore,
reprogramming needs to be performed without physical con-
tact with the sensor nodes.

Network reprogramming in sensor networks poses several
new challenges. First, network reprogramming requires 100
percent delivery, which includes two parts: every node in the
network must receive the program code, and the code image
must be received in its entirety. This is very different from
traditional sensor network applications, in which, occasional
loss of data is tolerable.

Second, high communication bandwidth is needed in network
reprogramming. For the vast majority of sensor network ap-
plications, the generated sensing data from an individual sen-
sor node is small, usually of the order of bytes, and thus eas-
ily fits the low wireless radio bandwidth. However, deliver-
ing the entire program image, of the order of kilobytes over
low-bandwidth wireless radio, as required in network repro-
gramming, requires significant bandwidth.

Third, the problem of concurrent senders needs to be ad-
dressed. In network reprogramming, code image is propa-
gated from one sensor node to another. Every node that has
the new code image is a potential sender. Thus, it is likely
that too many senders are transmitting at the same time. This
causes a lot of message collisions, congests the wireless chan-
nel, and possibly results in failure of reprogramming.

Fourth, energy efficiency is important. Because sensor nodes
have limited power supply, the amount of energy consumed
in network reprogramming may directly affect network life-
time. Some of the possible sources of energy inefficiency in-
clude message collision, overhearing, control message over-
head, and idle listening. Among these, idle listening is the
major source of energy waste [3]. Reducing the messages
sent and received is also important.

Further, memory requirements of network reprogramming
should be minimized. Memory is a scarce resource for sen-
sor nodes. For example, only 4k RAM and 128k program
memory (ROM) are available in Mica-2 [1] and XSM [4]
motes. Because network reprogramming is supposed to be
a service resident on every sensor node, high memory usage
would limit the available space for normal behavior of other
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applications.

With this motivation, in this paper, we present a multihop
network reprogramming protocol (MNP) which provides a
reliable service to propagate new program code to all sen-
sor nodes in the network over wireless radio. We implement
MNP on Mica-2 [1] and XSM [4] motes and simulate it using
TOSSIM [5].

Contributions of the paper.

1. We propose a sender selection mechanism, in which
source nodes compete with each other based on the num-
ber of distinct requests they have received. Through ex-
periments with Mica-2 motes, we show that even a sim-
ple greedy approach like this works very well, and has
effectively reduced the concurrent sender problem.

2. We use pipelining to enable fast data propagation.
Through simulation, we show the effectiveness of
pipelining in large scale networks. Moreover, we find
that the dynamic behavior reported in [6] (where the
propagation speed along the diagonal is significantly
less than the speed along the edge) does not exist in
MNP.

3. We reduce the active radio time of a sensor node by
putting the node into “sleep” state when its neighbors
are transmitting. This effectively reduces the idle listen-
ing problem and avoids overhearing.

4. We implement MNP in TinyOS Mica-2 and XSM mote
platforms, and evaluate its performance through simula-
tion (on TOSSIM) and experiments (on Mica-2 motes).

Organization of the paper. In Section 2, we identify the
requirements of the reprogramming problem. In Section 3,
we present our code dissemination protocol. We focus on
sender selection algorithm, pipelining, and reliability issues.
The evaluation results are presented in Section 4. We review
related work in section 5, and conclude in Section 6.

2 System Model and Problem Statement
We make no assumptions about the underlying network
topology. We require that all sensor nodes receive the exact
program image as long as the network is connected. Cur-
rently we only consider networks with stationary nodes. We
also assume that every node needs to be updated with the
same version of code.

In MNP, sensor nodes do not need to have any location infor-
mation or maintain neighbor status. Sensor nodes make local
decisions independently and, hence, the protocol is scalable.
We require that a code dissemination protocol meet the fol-
lowing requirements.

1. Reliability. This includes both accuracy requirement
and coverage requirement. By accuracy, we mean that
the exact program image is received by sensor nodes;
and by coverage, we mean that eventually every sen-
sor node in the network is reprogrammed with the new
code.

2. Autonomy. Code should be propagated automatically,
without human intervention.

3. Energy efficiency. The energy used in code dissemi-
nation should be low so as to affect the network lifetime
minimally.

4. Low memory usage. Code dissemination is supposed to
be an underlying service running together with other ap-
plications. Therefore, the memory and storage require-
ments should be minimized.

5. Speed. New program code should be propagated and
installed quickly (i.e., within a few minutes).

Among these requirements, reliability and autonomy are ba-
sic and essential requirements for the correctness of code dis-
semination mechanism. Other requirements are not necessary
to ensure correctness, but they are also important and cannot
be overlooked for the practical use of any system. Since it is
difficult, if not impossible, to fulfill all the design goals in a
system, tradeoff has to be made to assure the system’s overall
functional and performance goals.

3 MNP: Protocol Description
In this section, we present our code dissemination protocol,
MNP. We first present our sender selection protocol, which is
the core of MNP. We have two versions of the sender selec-
tion protocol. In Section 3.1, we first present the basic ver-
sion of the sender selection protocol. In this version, a node
becomes a source node (and starts advertising this fact in its
neighborhood) only if it gets the entire new program. This
essentially divides a multi-hop forwarding operation into a
series of single-hop transmissions. Then, we revise this pro-
tocol so that it can be used with pipelining. In Section 3.2,
we describe the sender-receiver behavior when a node is for-
warding code to its neighbors. In Section 3.3, we discuss the
reliability issues, including loss detection and recovery. In
Section 3.4, we describe the operation of the protocol as a
state machine. In Section 3.5, we discuss the problem when
the sensor nodes should reboot with the received program.

3.1 Sender Selection Protocol

In this section, we first present the basic version of our sender
selection protocol. Then we revise the protocol so that it can
be used with pipelining.

3.1.1 Basic Sender Selection Protocol

In this section, we assume that program is propagated in a
hop-by-hop fashion. In each neighborhood, a source node
sends program code to multiple receivers. When the receivers
get the full program image, they become source nodes, and
send the code in their neighborhood. We present our sender
selection protocol under this assumption.

Before discussing the protocol in detail, we describe it in the
context of an example. Towards this end, consider the ex-
ample of a sensor network in Figure 1. Suppose A transmits
the data object first and nodes B, C, D, E, and G receive this
object. Now, these nodes should not transmit simultaneously
as it will cause significant collisions. Moreover, the choice of
the sensor that transmits next is not uniform. For example, G
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is a better choice than D; some of the nodes that D can send
data to have already received the data from A.

A

JHG

FED

CB

Figure 1. Example sensor network

In our protocol, each source node maintains a variable ReqCtr
that indicates the number of distinct requests (from different
requesters) it has received so far. ReqCtr is set to zero when a
source starts advertising, and incremented by one every time
it receives a download request that is destined to it from a
“new” requester.

Two types of messages are used for sender selection: adver-
tisement and download request. An advertisement message
has information about the new program (program ID and
size) and the source node (source ID and ReqCtr value). It
has two goals: announcing the arrival of new program, and
preventing the source nodes that have fewer requesters from
becoming a sender.

When a node, say j, receives the advertisement message from
a source node, say k, if j needs the new code, then it sends a
download request to k. The download request also contains
the value of ReqCtr that k sent in the advertisement phase.
While the download request is intended (destined) for k, it is
sent as a broadcast message with k as one of the fields. Thus,
when another node, say l, receives the download request, l is
aware of the fact that k is a potential source. This allows us
to account for hidden terminal effect where l could not have
received the advertisement message from k. Moreover, by
including the value of ReqCtr in download request, we allow
l to be aware of the number of requesters of k. Hence, l can
utilize this information to determine who should transmit the
code first.

We note that a node sends a download request to all senders
that send the advertisement messages. This ensures that a
node is aware of all the requesters who are likely to receive
the code if it is chosen to transmit the code. However, if a
node, say k, loses to node l that has more requesters, then
whenever k attempts to advertise again (e.g., after l has trans-
mitted the code), k must reset its ReqCtr value to zero, and
recalculate its requesters. This is due to the fact that some of
old followers of k may have already received the code from
l.

After l finishes transmitting the code, it quits the competition
temporarily by “sleeping” for a while, so that other sources
have better chance to become senders. The purpose of this is
to distribute transmission load through the network. When l
wakes up and re-enters the “advertise” state, its ReqCtr value
is reset to zero, and a new round of sender selection starts.

Based on the above discussion, our sender selection protocol
can be described as two parts: source part and requester part.

Tasks for Source. In Figure 2, we present the tasks that
a source performs in the sender selection process. This part
contains the basic control logic and the actions in response to

the received messages.

A source node broadcasts an advertisement message every
random interval (we use random interval to avoid message
collision). Every time a source receives a download request
message, it checks to see if this message is destined to it. If
it is destined to it, and it is from a “new” requester that the
source has never seen before, it increments ReqCtr by one.
If the download request message is destined to some other
node and that node has a higher ReqCtr value, then it stops
advertising and goes to “sleep” state.

If a source node overhears an advertisement message from
another source node, it compares the ReqCtr value of that
node with its own. If the other node has more requesters than
it does, it gives up advertising and goes to “sleep” state. (Note
that this cannot cause deadlock, as the node with highest Re-
qCtr - with appropriate tie breaker on node ID - will succeed.)
Moreover, the “sleeping” period is proportional to the size of
the new program, and lasts for approximately the expected
code transmission time. For a “sleeping” sensor node, noth-
ing is active except a timer. When the “sleep” timer fires, the
source node wakes up and re-enters “advertise” state.

If S receives a “StartDownload” message or data packets, i.e.,
some node in the neighborhood has won this round of sender
competition, S stops advertising and goes to “sleep” state.

The advertising phase ends when a source node has sent
a given number of advertisements continuously (without
“sleeping”). At this point, if it has received one or more re-
quests, it will become a sender and start transmitting code.
Otherwise, it will advertise with reduced frequency (we ex-
ponentially increase the advertise interval if no request is re-
ceived). Applying different advertise frequencies enables fast
data propagation when the network is in active updating state,
and saves energy when the network is “stable”.

Tasks for Requester. In Figure 3, we show the tasks that
a requester performs in the sender selection process. If a
node hears an advertisement that announces the availability
of a new program, it broadcasts a download request message,
destined to the advertising node. As mentioned earlier, it also
puts the ReqCtr information of that advertising node in the
download request message.

3.1.2 Sender Selection with Pipelining
The sender selection algorithm in 3.1.1 is suitable for the
case where the program is small or where the network is
too small to take advantage of pipelining. For large net-
works where a large amount of data is sent, pipelining is de-
sirable.To achieve this pipelining, we divide a program into
segments, each of which contains a fixed number of packets.
Each segment is assigned a segment ID that is strictly increas-
ing. Nodes must receive the segments sequentially. We make
the following changes to the protocol in Figures 2 and 3.

1. Each advertisement/download request message contains
an additional field SegID (Segment ID).

2. When a node receives an advertisement for a segment
that it does not have, it sends a download request that
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Source: (in advertise state)

Broadcast an advertisement message every random interval
After advertising K times (without sleep):

if (my.ReqCtr > 0)
Become a sender, and start forwarding code

else
Restart advertising, with lower frequency

endif

During advertise interval:
(a)
if a download request message ReqMsg arrives

if (ReqMsg.DestID == my.ID)
if ( IsNew(ReqMsg.SourceID) )

my.ReqCtr ++
endif

else //the message is destined to some other node
if (ReqMsg.ReqCtr > 0) and
((ReqMsg.ReqCtr > my.ReqCtr ) or
(ReqMsg.ReqCtr == my.ReqCtr) and (ReqMsg.DestID>my.ID))

Stop advertising, go to “sleep” state, my.ReqCtr = 0
endif

endif
endif

(b)
if an advertisement message AdvMsg arrives

if (AdvMsg.ReqCtr > 0) and
((AdvMsg.ReqCtr > my.ReqCtr) or
(AdvMsg.ReqCtr == my.ReqCtr) and (AdvMsg.SourceID>my.ID))

Stop advertising, go to “sleep” state, my.ReqCtr = 0
endif

endif

(c)
if “StartDownload” message or data packets arrives

Stop advertising, go to “sleep” state, my.ReqCtr = 0
endif

Figure 2. Tasks of the source in sender selection mecha-
nism

Requester:

if an advertisement message AdvMsg arrives
if it is a “new” program

Prepare download request message ReqMsg:
ReqMsg.DestID = AdvMsg.SourceID
ReqMsg.ReqCtr = AdvMsg.ReqCtr

Send ReqMsg
endif

endif

Figure 3. Tasks of the requester in sender selection mech-
anism

contains the ID of the segment it expects to receive. For
example, it the advertisement is for segment 3, and the
node has received segment 1 in the past, it will ask for
segment 2.

3. Whenever a node receives a download request for seg-
ment y while advertising segment x, if y < x, then it
starts advertising segment y. This is true even if the
download request is not “destined” to this node.

4. When node l receives an advertisement for segment y
from node k while it is advertising segment x, if y < x,
and k has already received at least 1 download requests,
then node l should go to “sleep” state. (We give higher
priority to a lower segment.)

5. Timeouts are used so that a node can determine whether
it should advertise the current segment or the next seg-
ment.

3.2 Tasks in Downloading a Segment

When a node decides to become a sender, it broadcasts a
“StartDownload” message to announce this fact. Then, it
starts sending code packet by packet. A node will change
to “download” state once it hears a “StartDownload” mes-
sage with expected segment ID. As a node always receives
segments sequentially, the expected segment ID is the high-
est segment ID the node has received so far plus one. The
node in download state also sets the sender (the node that has
sent the “StartDownload” message) to be its parent (for that
segment).

We note that although the sender selection algorithm attempts
to keep only one active sender in a given neighborhood, it is
possible to have multiple active senders due to time-varying
link properties. Hence, a node may receive code from mul-
tiple senders. In our protocol, we allow a sensor node to re-
ceive data packets from its parent as well as other senders as
long as the segment ID matches.

When a node is in “download” state, it receives the data pack-
ets and stores them in EEPROM. At the same time, it keeps
track of missing packets. The download process ends when
the receiver receives an “EndDownload” message from its
parent. At this point, if the node has successfully received
the whole segment, it will go to “advertise” state. Other-
wise, there are two choices: the node can go to “fail” state
directly; or it can go to the query/update phase, during which
it requests for the missing packets from its parent. We will
discuss the query/update phase in the next section.

Parent-children relationship is one-directional: the child
knows who its parent is. However, the parent does not know
who its children are. It is possible that the receiver never gets
the “EndDownload” message. The reason can be the sender
dies as it is sending packets, or the “EndDownload” messages
collide with other messages. To avoid being stuck in “down-
load” state, the node in “download” state sets a timer when
it is waiting for the next packet from its parent. It will wait
for reasonably long time until it concludes that this download
process fails. Then it will go to “fail” state.

3.3 Reliability Issues: Loss Detection and Recovery

In MNP, each packet has a unique packet ID. Each receiver
is responsible for detecting its own loss. Since the size of the
segment is small and pre-determined, we maintain a bitmap
(which we call MissingVector) of the current segment in
memory. Each bit in MissingVector corresponds to a packet.
All the bits are initially set to 1. When it receives a packet,
the corresponding bit in MissingVector is set to 0. One addi-
tional advantage of this mechanism is that the packets do not
necessarily arrive in order. A sensor node can receive packets
in any order and from any node.

In MNP, each node has a ForwardVector, which is also a
bitmap of the advertised segment, and is an indicator of the
packets the node needs to send if it becomes a sender. When
a node sends a download request, it puts the loss information
(its MissingVector) in the download request message. When
the advertising node receives the download request, it marks
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its ForwardVector according to the loss information. There-
fore, an advertising node’s ForwardVector is the union of the
missing packets in the download request messages the node
has received. A node only sends the packets indicated in the
ForwardVector. In addition, we restrict the length of the seg-
ment to be no longer than 128 packets, so that the maximal
size of MissingVector is only 16 bytes, and thus fits into a ra-
dio packet. For the case where larger segments are used, for
example, in scenario where pipelining is not expected to be
beneficial (small networks), we provide a mechanism to use
EEPROM to keep track of lost packets. However, for reason
of space, we omit the implementation of that. A reader can
find the details in [7].

This algorithm is efficient in that a node will send a packet
only if there is some node requesting for it. When a node
receives a packet for the first time, it stores that packet in
EEPROM and sets the corresponding bit in MissingVector to
0. In this way, we guarantee that each packet in a segment is
written to EEPROM only once.

We also provide a query/update phase, after the sender has
finished transmitting the requested packets in the segment.
The parent-children relationship also applies in this phase.
The sender broadcasts a “query” message to its receivers,
which respond by requesting the packets they are missing.
A node’s request messages are unicast to its parent. When a
sender receives a request from one of its children, it broad-
casts the requested packet. The query/update phase is op-
tional. This option is desirable in cases where the number of
packets lost by the receiver is less than a given threshold.

3.4 The Big Picture

Figure 4 gives an overall picture of MNP. MNP operates
as a state machine. Since the query/update phase is op-
tional, we have two versions of the state machine, one with-
out query/update and one with query/update. Both state ma-
chines have 6 states in common: idle, download, advertise,
forward, sleep and fail. Fail state is used to avoid infinite
waiting. A node always sets a timer when it is waiting for
the next packet or the retransmitted packet from its parent. If
it does not receive any packet from its parent when the timer
fires, it will go to fail state. Fail state is a temporary state. A
node in fail state releases EEPROM resource, and switches
to idle state immediately. Note that in the state machine with
query/update, there are additional two states: query and up-
date, and the associated transitions. A node running MNP is
in one of these 8 states.

3.5 When to Reboot

When a sensor node receives all the segments of a program,
it can reboot with the new program. Reboot can happen auto-
matically. A node can reboot with the new program as soon
as it receives the entire program. In this case, the new pro-
gram should include the reprogramming service, so that the
node can continue serve as the source node after reboot. The
other choice is to let a node to decide the time to reboot based
on its local estimation of its neighbors. For example, if a
source node has sent K (a pre-determined parameter) adver-

Idle

Download

Receive Adv with
SegID>my.RvdSegID/

Send DL Req

Receive data packet /
Store packet, wait for

next packet

Advertise
Receive DL Req (to me)/

increase ReqCtr

Sleep
Receive Adv or DL Req (to
other node) that has higher

ReqCtr  /Set Sleep timer 

Sleep timer fires/
Set Adv timer,
reset ReqCtr

Receive "StartDownload" with
SegID=(my.RvdSegID+1)/

Set parent

Forward

Finish Adv N times &
ReqCtr>0/ Broadcast

"StartDownload"
Send segment

packet by packet/

(b) No more
repair request/
Set Sleep timer

Receive Adv with
SegID>my.RvdSegID/

Send DL Req

Fail

Receive "StartDownload" with
SegID=(my.RvdSegID+1)/

Set parent

Wait for next
packet time out/

Receive "EndDownload" from
parent &  No missing packets/

Set Adv timer, reset ReqCtr

Update

(b) Receive query from parent
& there are missing packets/

(b) Receive retransmitted
packet/ Store the packet and
request for the next missing

packet

(b) Wait for
retransmission

time out/

(b) No more missing packet/
Set Adv timer, reset ReqCtr

Query

(b) Finish forwarding
segment/ Send query

message

(b) Receive request for missing
packet/ Retransmit this packet

(a) Finish forwarding
segment/ Set Sleep timer

(a) Receive "EndDownload"
from parent &  There are

missing packets/

Figure 4. MNP: the state machine. (a) transitions for
MNP without query/update (b) transitions for MNP with
query/update

tisements of the highest segment ID and has received no re-
quests, it assumes that all its neighboring nodes have received
the whole program, and then reboots itself with the new pro-
gram. However, this local estimation of neighbors may be
inaccurate, because the messages can be lost or collided, or
the neighbors may be in “sleep” state, thus are unable to re-
spond.

Based on these concerns, we decide not to let sensor nodes
reboot automatically. A sensor node will reboot with the new
program only when it receives an external “start” signal. The
time when the signal is sent should be based on empirical
data from experiments. We can also send query messages to
individual nodes asking about their status before sending the
“start” signal.

4 Evaluation Results
Our target platform is TinyOS Mica-2/XSM motes, with
433MHz radio. A Mica-2/XSM mote has 128KB of program
memory, 4KB of RAM, a 7MHz 8-bit microcontroller, and
512KB external flash storage (EEPROM).

We fully implemented MNP on Mica-2 and XSM mote plat-
forms, and used two methods to evaluate the behavior of
MNP. The first method is to run the code on TinyOS hard-
ware, Mica-2 motes. We experimented in a classroom and on
a grass field in a grid topology. The purpose of these exper-
iments is to verify the correctness of the algorithm and ob-
serve the effectiveness of the sender selection protocol. Due
to the limitation on the number of available motes and the
space to perform experiments, we were unable to experiment
with networks of large scale. Therefore, the second method
is to use TOSSIM [5]. TOSSIM is a discrete event simulator
for TinyOS wireless sensor networks. We use TOSSIM to in-
vestigate the behavior of MNP when it is applied to a large
network.
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In the rest of this section, we first present the indoor and out-
door experiment results with Mica-2 motes. These results are
based on the basic version of MNP without pipelining. We
did not use pipelining because the number of motes and the
space for performing the experiments were relatively small,
and pipelining would be significantly helpful only when the
network is large and several non-overlapping communication
cells exist. In the second part, we present simulation results
using TOSSIM.

4.1 Experiments with Mica-2 Motes

TinyOS allows developers to specify the power level a Mica-2
mote uses for its radio communication. The range of power
level is from 1 to 255. In our indoor experiments, we use the
lowest power levels (1 and 2). In outdoor experiments, we
use power level 10 and default power level (255).

In these experiments, we place sensor nodes in a grid. The
base station, which has the new program image, is always
put in the upper-left corner of the grid. We expect that these
results would be valid if the number of sensors is increased 4
times and the base station is kept at the center.

We tested our algorithm in both indoor and outdoor envi-
ronments. Due to limitation of space for performing experi-
ments, we fixed the inter-node distance, i.e., the distance be-
tween two neighboring nodes, to 8 feet. We repeated our ex-
periments under the same setting with different power levels.
By using different power levels, we change the communica-
tion range of sensors, and thus the number of hops to propa-
gate the program through the network.

The goal of the experiments is to examine the behavior of
our sender selection protocol. For this purpose, each node
records the time when it gets the full program image (“get
code time”) and the ID of its parent (parent ID). Further, we
synchronize all the nodes before the experiment starts, so that
the time reported by each node is consistent. Note that this
synchronization is not used by the algorithm. Rather, it is
used to collect data consistently.

4.1.1 Indoor Experiments

We deployed 25 sensor nodes in a classroom area (approxi-
mately 32’ by 32’), in a 5 by 5 grid. In order to see multi-hop
effect, we chose the lowest power levels: power level 2 and
power level 1.

Figure 5(a) shows the parent-children relationship of the ex-
periment with power level 2. Each grey dot represents a sen-
sor node. From each node, there is an arrow pointing to its
parent. According to the “get code time” value and parent ID,
reported by each sensor, we can compute the order of sensors
becoming senders, which is marked on the figure. As we
can see in Figure 5(a), our sender selection protocol worked
pretty well, only two nodes, other than the base station, be-
came senders one after another. All other sensors that joined
the sender selection were put in “sleep” state.

In Figure 5(a), most of the sensors receive code directly from
the base station. When we reduce power level to 1, as shown
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Figure 5. Indoor experiments for 5 by 5 grid with (a) power
level = 2, time = 5 minutes; (b) power level = 1, time = 8
minutes. Program size: 1500 packets (33KB).
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Figure 6. Outdoor experiments for 7 by 7 grid with (a) full
power level, time = 25 minutes; (b) power level = 10, time =
35 minutes. Program size: 1500 packets (33KB).

in Figure 5(b), more sensors are not covered by the base sta-
tion, thus have to obtain code from other intermediate nodes.

4.1.2 Outdoor Experiments
We performed two sets of experiments on a grass field. In
the first set of experiments, we deployed 49 motes in a 7 by
7 grid, in a 48’ by 48’ area. In the second set of experiments,
we placed 50 motes in a 5 by 10 grid, in a 72’ by 32’ area.
The purpose of using this 5 by 10 grid topology is to better
examine multi-hop behavior in the code dissemination pro-
cess. We used two different power levels: full power level
(the default value in TinyOS), and power level 10. Figure 6
shows the parent-children relationship and the order of source
nodes becoming senders for 7 by 7 grid. Figure 7 shows the
results for 5 by 10 grid.

We notice that the nodes that are away from the base sta-
tion are more likely to become senders. This is desirable,
because these nodes have a larger number of nodes in their
neighborhood that are not covered by the base station. As
shown in Figure 5, 6 and 7, when nodes are working at a
lower power level, more nodes become senders, and each
sender has a smaller group of followers. Therefore, more
hops are involved in propagating code to the nodes that are
far away from the base station. In our experiments, we did
not observe the situation where two nearby nodes were trans-
mitting simultaneously. This shows that the sender selection
algorithm, although imperfect, achieves its goal of selecting
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Figure 7. Outdoor experiments for 5 by 10 grid with (a) full
power level, time = 35 minutes; (b) power level = 10, time =
45 minutes. Program size: 1500 packets (33KB).
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Table 1. Power required by various Mica operations
Operation nAh
Transmitting a packet 20.000
Receiving a packet 8.000
Idle listening for 1 millisecond 1.250
EEPROM Read Data 1.111
EEPROM Write Data 83.333

a sender with the largest impact and selecting at most one
sender in a neighborhood.

We repeated our experiments several times. We found that
the results are similar. Although the actual sensor nodes that
became sources differed from one run to another, the sender
selection algorithm ensured that two nearby sensors never
transmitted simultaneously. Moreover, in these experiments,
the sender selection algorithm selected nodes that were far-
ther from the base station (respectively, previous sources).

4.2 Simulation Results

In TOSSIM, the network is modelled as a directed graph.
Each vertex in the graph is a node. Each edge has a bit er-
ror probability, representing the probability a bit can be cor-
rupted if it is sent along this link. Asymmetric links exist in
this model since the bit-error rate for each edge is decided in-
dependently, based on empirical loss data gathered from real
world. Since TOSSIM does not capture energy consumption,
we calculate the energy consumption by counting the opera-
tions performed during reprogramming. In Table 1, we list
the costs of various operations from [3].

We note that the energy consumed in idle listening is compa-
rable to the energy consumed in transmitting/receiving, and it
is proportional to the active radio time. Reprogramming typ-
ically lasts from several minutes to several hours. If a node
keeps its radio on at all time, the vast majority of energy is
wasted in idle-listening. In MNP, a node turns off its radio
when it loses in the sender selection algorithm or one of its
neighbors is transmitting a segment in which it is not inter-
ested. In the following discussion, we count the active radio
time, as well as the completion time. The active radio time
is even more important than the completion time, because it
decides the amount of energy that a node actually consumes.

The number of messages sent and received is also an impor-
tant metric for energy consumption. We use sender selection
to address the message collision problem and try to select the
senders that tend to have the maximal effect. This effectively
reduces the number of transmissions and receptions. More-
over, by including the loss information in the download re-
quest messages, we further reduce the message transmission
by letting a sender send only the packets that are requested by
its neighbors. Finally, regarding EEPROM writes, we guar-
antee that each packet is written to EEPROM only once.

In this section, we first measure the active radio time of nodes
for propagating a given size program in a square topology.
Then we examine the number of transmissions and receptions
based on location and time. Finally, we show the code propa-
gation progress. In the current implementation, each segment
has 128 data packets and each data packet has 22 bytes data
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Figure 8. Active radio time of nodes in a 10 by 10 net-
work. Program size: 14KB (5 segments). Completion time:
24 minutes. Average active radio time: 949 seconds.

payload. The sensor nodes are deployed in a grid topology.
The distance between every two nodes is kept constant at 10
feet apart. We assume that initially only the base station, the
node at the bottom-left corner, has the new program.

4.2.1 Active Radio Time and Completion Time
In Figure 8, we show the active radio time distribution in a
10 by 10 network. The simulation starts by the base station
sending a 5 segment program (14KB). It takes approximately
24 minutes for the program to go through the whole network.
The active radio time for an average node is 949 seconds. In
this case, we save about 38% of energy spent on idle listening
by turning off radio. Figure 8 (a) shows the active radio time
of each node. Figure 8 (b) shows the same values based on
location of sensors. As shown in Figure 8, the active radio
time of a node in the network is closely related to its location.
The active radio time for the nodes in the center is approxi-
mately half (or even less) of those on the edges. Note that this
pattern is similar to the reception distribution, which we show
in Figure 11 (b). The nodes in the center receive many more
messages than the ones on the edge or at the corner, thus they
get the code and become source nodes earlier. Since there is
only one sender at a time in any neighborhood, after a node
has got the code, it spends most of the time in “sleeping”
state, during which the radio is off. On the other hand, a node
at the corner receives fewer messages than the center nodes,
and has to spend more time trying to get the code, during
which the radio is always on.

We also notice that the nodes that are far away from the base
station keep their radio on most of the time during reprogram-
ming. Initially, the radio is on. The nodes close to the base
station get the code immediately, while the nodes that are far
away from the base station have to wait until the “propaga-
tion wave” arrives, and the radio is always on when they are
waiting. To solve this problem, we can use a protocol such as
S-MAC [8] or SS-TDMA [9] that allows a node to synchro-
nize its wake up and sleep time with its neighbors. In this
case, a node could sleep for most of the time before the prop-
agation wave arrives. Hence, in Figure 9, we show the active
radio time after the node has received its first advertisement
message. As we can see, in this case, the active radio time of
all nodes is closer to each other than that in Figure 8.

In Figure 10, we show the completion time, the active radio
time, and the active radio time after the sensor has received its
first advertisement message, for various program size, from 1
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Figure 9. Active radio time of nodes without initial idle
listening in a 10 by 10 network. Program size: 14KB (5 seg-
ments). Completion time: 24 minutes. Average active radio
time: 862 seconds.

segment (2.8KB) to 10 segments (28.2KB). As we can see,
the completion time is linear with the program size, and the
active radio time is around 60% of the completion time.
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Figure 10. Completion time, active radio time and active
radio time without initial idle listening for various program
size in a 10 by 10 network. Program size is from 1 segment
(2.8KB) to 10 segments (28.2KB).

4.2.2 Transmissions and Receptions

In Figure 11, we show the transmission and reception distri-
bution in a 10 by 10 network. The size of the program is
14KB (5 segments). We note that the number of messages
sent by each node is low, on average 400 messages, includ-
ing all data and control (advertisements, requests, etc.) mes-
sages. The node sending the most number of messages is the
base station, since all the data messages are originated from
it. The nodes that are close to the base station get code ear-
lier than those that are far away from the base station. Thus
they become source nodes earlier and send more data packets.
In the reception distribution, the nodes in the center receive
many more messages than the ones on the edge or at the cor-
ner. This is due to the fact that a node in the center has more
neighbors than that at the corner.

In Figure 12, we show different types of messages transmit-
ted in the network in a one-minute window. The number of
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Figure 11. Transmission and reception distribution in a 10
by 10 network. (a) messages transmitted (b) messages re-
ceived. Program size: 14KB (5 segments).

data messages transmitted remains almost constant during the
entire process, indicating a smooth data propagation flow.
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Figure 12. Overall advertisements, download requests, and
data messages transmitted in a one-minute window in a 10 by
10 network. Program size: 14KB (5 segments).

4.2.3 Propagation Progress
Figure 13 shows the code propagation progress when we send
one segment (2.8KB) in a 14 by 14 network. The distance
between every two nodes is still 10 feet. As we can see, data
is propagated at a fairly constant rate from the base station to
the other end of the network.

5 Related Work
In this section, we discuss work in the areas of network re-
programming and suppression schemes.

Network reprogramming. The work on network re-
programming/data dissemination can be classified into two
types: entire code image delivery ( [2, 6, 10, 11]) and
difference-based application adjustment ( [12, 13]). Entire
code delivery provides the basic reprogramming function-
ality, while difference-based approach can be used to send
differences between versions. MNP follows the former ap-
proach. However, we note that our solution is complementary
to difference-based approaches. In other words, our sender
selection and loss recovery approaches can be used to im-
prove difference-based approaches as well.

The existing work on network reprogramming includes
TinyOS single-hop network reprogramming (XNP) [2],
MOAP (Multihop Over-the-Air Programming) [10], and Del-
uge [6]. All of them are entire code delivery approaches, and
are built on TinyOS platform.

TinyOS has included single-hop network reprogramming
support (XNP) for Mica-2 motes since the release of version
1.0. In XNP, one source node (the base station) broadcasts
the code image to all the nodes within its radio range.

MOAP is a multihop network reprogramming approach.
MOAP disseminates code in a hop-by-hop fashion, that is,
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Figure 13. Code propagation progress for sending one seg-
ment (2.8KB) in a 14 by 14 network (a) 30% of time (b) 60%
of time (c) 90% of time

8

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05) 

1063-6927/05 $20.00 © 2005 IEEE 

Authorized licensed use limited to: MIT Libraries. Downloaded on January 8, 2010 at 12:30 from IEEE Xplore.  Restrictions apply. 



a node has to receive the entire program image before start-
ing advertising. MOAP uses a simple publish-subscribe inter-
face for reducing the number of senders. No sender selection
mechanism is considered. If a loss is detected, a NAK is uni-
cast to the sender requesting for retransmission. To keep track
of loss information, a sliding window approach is proposed.

Deluge is another multihop network reprogramming ap-
proach. MNP shares many ideas with Deluge, such as
advertise-request-data handshaking (based on SPIN [14]), di-
viding a code image into equally sized pages, pipelining the
transfer of pages, and using a bit vector to keep track of loss
within a page. In contrast to MNP, Deluge (as well as XNP
and MOAP) requires that radio is always on during repro-
gramming. Therefore a node’s idle listening time is the same
as the completion time. Since the energy spent on idle listen-
ing is the major source of energy consumption, we compare
the average active radio time in MNP with the completion
time in Deluge. As reported in [6], for Deluge, the time for
sending 240 packets (5KB) through a 10 by 10 network is
more than 700 seconds. In MNP, it takes about 24 minutes to
send 640 packets (14KB) through a 10 by 10 network. The
active radio time in average is about 930 seconds (or 862 sec-
onds without the initial idle listening). Therefore we send
almost 3 times the data using 30% more time. If we consider
a program of similar size, that is, sending 2 segments (256
packets, 5.6KB) through a 10 by 10 network. It takes 577 sec-
onds to complete. The active radio time is only 352 seconds
(or 273 seconds without the initial idle listening). Therefore,
MNP saves energy by turning off a node’s radio when it is
not supposed to transmit or receive.

In [6], the dynamic behavior of Deluge is investigated. It is
found that when the network is dense, the propagation speed
along the diagonal is significantly less than the speed along
the edge. One of the main causes of this behavior is the hid-
den terminal problem, which occurs when two senders out of
range of each other transmit packets to the same receiver at
the same time, thus causing collisions at the receiver. In MNP,
we solve the message collision problem using the sender se-
lection protocol. And we address the hidden terminal prob-
lem by including “requester counter” information of a source
node in download request messages. Hence, we did not ob-
serve this kind of behavior (as shown in Figure 13).

To address the very resource constrained nature of sensor
nodes, Maté [12], and its successor, Bombilla, is included
in TinyOS. Bombilla is a stack-based virtual machine. Pro-
grams are represented as one or a few capsules (current im-
plementation allows at most eight capsules), of up to 24 in-
structions. Each capsule fits in a packet and can be propa-
gated to other nodes. In this way, Bombilla allows new pro-
grams to be forwarded and installed quickly through a net-
work. However, there is severe limitation on the sort of ap-
plications that can be built.

The approaches we mentioned so far use CSMA-based MAC
protocol. We can also build up a reprogramming service
based on TDMA (e.g., [8, 9]). A TDMA-based protocol pro-
vides the advantages that a node transmits messages only in

its assigned time slots, so that message collision is avoided
and the node can turn off its radio when it is not transmitting
or receiving. However, TDMA requires the time synchro-
nization service, and it is only applicable when the network
topology is well defined (e.g., a grid).

Suppression schemes. Message implosion or broadcast
storm problem [15] exists in both wired and wireless net-
works. Suppression schemes normally fall into two cate-
gories: aggregation based, deferred feedback based. Aggre-
gation based suppression is usually used in large sensor net-
works. Data is aggregated at intermediate nodes on the way to
the destination node. This approach, called in-network aggre-
gation, was proposed in Directed Diffusion [16], and broadly
used in almost all flat structured or cluster-based protocols,
such as LEACH [17], SINA [18].

In deferred feedback based suppression, each node defers its
sending of response for a certain period of time, during which
it may cancel its response if it hears an identical one from its
neighbors, or it may send response probabilistically based on
the number of identical replies it has heard. Two examples
of deferred feedback based suppression are Scalable Reliable
Multicast (SRM) [19] and Trickle [20].

Our sender selection protocol is also delay based. We use
“number of requesters” as the criteria to choose sender. Our
goal is to find the “good” senders who have many “follow-
ers”.

6 Conclusion and Future Work
In this paper, we presented a multihop network reprogram-
ming protocol, MNP, that is targeted at Mica-2/XSM motes.
MNP uses a sender selection protocol to reduce message col-
lision and to address the hidden terminal problem. When
multiple sensor nodes compete for being the potential sender,
the sender selection algorithm attempts to find a node whose
transmission of the program code is likely to have the most
impact. Based on the experiments presented in Section 4, our
protocol ensures that at a time at most one sender is active
in any neighborhood. Also, MNP propagates the code in a
pipelined fashion.

We evaluated MNP through experiments on Mica-2 motes
and simulation on TOSSIM. In our experiments and simu-
lation, we kept the base station at the corner. Hence, we ex-
pect that this algorithm can be easily extended to the case
where the network size is 4 times larger (twice the length
and breadth) and the base station is in the center. MNP was
demonstrated in the DARPA NEST team meeting in Colum-
bus, OH, May 2004 and during the ExScal project demon-
stration in Avon Park, FL, December 2004 [21]. In the first
demonstration, we deployed 50 Mica-2 sensors on a grass
field and reprogrammed all the sensors with Lites code [22].
In the second demonstration, we showed that MNP scaled
well in a larger network of 100 XSM sensors.

In MNP, some nodes are selected to transmit the code
whereas others can “sleep” to save power and to prevent inter-
ference. This effectively reduces the idle listening problem.
We showed that this approach helps us in significantly reduc-
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ing the energy usage. Moreover, we can adjust the power
level used in the advertisement message based on the remain-
ing battery level. Thus, a node whose battery level is low
(e.g., if it became a sender in previous reprogramming) ad-
vertises with lower power level. Therefore, it is likely to have
only a small number of followers and, hence, it will lose in
the sender selection. It follows that with this modification,
the probability that sensor forwards the code to others de-
pends on its remaining battery level. With this modification,
the responsibility of transmitting the code will be evenly di-
vided among the sensors.

Our simulation focused on the energy consumption during re-
programming process, of which idle listening and messages
transmissions and receptions are the two major sources. We
showed that by turning off a node’s radio when it is not trans-
mitting or receiving, we can greatly reduce the idle listening
time. Further, because our sender selection protocol reduces
message collisions as well as the hidden terminal problem,
we did not observe the dynamic behavior (reported in [6])
where the propagation speed in the center is less than that
along the edge.

Nodes running MNP are put into “sleep” state occasionally
and wake up when the sleeping timer fires. Deciding the
sleeping period is a trade off. If a node wakes up frequently, a
lot of energy is wasted on idle listening and turning on and off
radio. But if a node sleeps for too long time, it may miss the
advertisements sent by its neighbors. One promising option
is to combine MNP with time scheduling mechanisms such
as TDMA, so that each node can sleep and wake up at pre-
defined time slots, and a node will send the advertisements
only when its neighbors are awake.

Although MNP was designed as a code dissemination proto-
col, it can be used to disseminate any sort of data. By dividing
the data into small segments, we allow incremental data up-
dates. Moreover, in the scenario that several subsets of the
network exist, rather than sending the data to the entire net-
work, we can send different types of data to several disjoint or
non-disjoint subsets of the network. In this case, our sender
selection algorithm needs to be extended to take into account
all these messages types, for example, giving different prior-
ities to different types of messages.
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