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Abstract

MNP is a publicly available R package that fits the Bayesian multinomial probit model
via Markov chain Monte Carlo. The multinomial probit model is often used to analyze the
discrete choices made by individuals recorded in survey data. Examples where the multi-
nomial probit model may be useful include the analysis of product choice by consumers
in market research and the analysis of candidate or party choice by voters in electoral
studies. The MNP software can also fit the model with different choice sets for each in-
dividual, and complete or partial individual choice orderings of the available alternatives
from the choice set. The estimation is based on the efficient marginal data augmentation
algorithm that is developed by Imai and van Dyk (2005).
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1. Introduction

This paper illustrates how to use MNP, a publicly available R (R Development Core Team
2005) package, in order to fit the Bayesian multinomial probit model via Markov chain Monte
Carlo. The multinomial probit model is often used to analyze the discrete choices made by
individuals recorded in survey data. Examples where the multinomial probit model may be
useful include the analysis of product choice by consumers in market research and the analysis
of candidate or party choice by voters in electoral studies. The MNP software can also fit the
model with different choice sets for each individual, and complete or partial individual choice
orderings of the available alternatives from the choice set. We use Markov chain Monte Carlo
(MCMC) for estimation and computation. In particular, we use the efficient marginal data
augmentation MCMC algorithm that is developed by Imai and van Dyk (2005).

MNP can be installed in the same way as other R packages via the install.packages("MNP")
command. Appendix A gives instructions for obtaining R and installing MNP on Windows,
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Mac OS X, and Linux/UNIX platforms. Only three commands are necessary to use the MNP

software; mnp() fits the multinomial probit model, summary() summarizes the MCMC output,
and predict() gives posterior prediction based on the fitted model. To run an example script,
start R and run the following commands:

library(MNP) # loads the MNP package

example(mnp) # runs the example script

Details of the example script are given in Sections 3 and 4. Three appendices describe
installation, the commands, and version history. We begin in Section 2 with a brief description
of the multinomial probit model that MNP is designed to fit.

2. The method

MNP implements the marginal data augmentation algorithms for posterior sampling in the
multinomial probit model. The MCMC algorithm we implement here is fully described in
Imai and van Dyk (2005); we use Scheme 1 of their Algorithm 1.

2.1. The multinomial probit model

Suppose we have a dataset of size n with p > 2 choices and k covariates. Here, choices
refer to the number of classes in the multinomial model. The word “choices” is used because
the model is often used to describe how individuals choose among a number of alternatives,
e.g., how a voter chooses which candidate to vote for among four candidates running for
a particular office. We focus on the case when p > 2 because when p = 2, the model
reduces to the standard binomial probit model, which can be fit via the glm(, family =

binomial(probit)) command in R. The multinomial probit model differs from the ordinal
probit model in that the former does not assume any inherent ordering on the choices. Thus,
although the individuals may have preferences among the available alternatives these ordering
are individual specific rather than being characteristics of the alternatives themselves. The
ordinal probit model can be fitted via an MCMC algorithm in R by installing a package called
MCMCpack (Martin and Quinn 2004).

Under the multinomial probit model, we assume a multivariate normal distribution on the
latent variables, Wi = (Wi1, . . . ,Wi,p−1).

Wi = Xiβ + ei, ei ∼ N(0, Σ), for i = 1, . . . , n, (1)

where Xi is a (p − 1) × k matrix of covariates, β is k × 1 vector of fixed coefficients, ei is
(p−1)×1 vector of disturbances, and Σ is a (p−1)× (p−1) positive definite matrix. For the
model to be identified, the first diagonal element of Σ is constrained, σ11 = 1. The response
variable, Yi, is the index of the choice of individual i among the alternatives in the choice set
and is modeled in terms of this latent variable, Wi, via

Yi(Wi) =

{

0 if max(Wi) < 0
j if max(Wi) = Wij > 0

, for i = 1, . . . , n, and j = 1, . . . , p − 1, (2)

where Yi equal to 0 corresponds to a base category.
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The matrix Xi may include both choice-specific and individual-specific variables. A choice-
specific variable is a variable that has a value for each of the p choices, and these p values
may be different for each individual (e.g., the price of a product in a particular region where
an individual lives). Choice-specific variables are recorded relative to the baseline choice and
thus there are p− 1 recorded values for each individual. In this way a choice-specific variable
is tabulated as a column in Xi. Individual-specific variables, on the other hand, take on
a value for each individual, but are constant across the choices, e.g., the age or gender of
the individual. These variables are tabulated via their interaction with each of the choice
indicator variables. Thus, an individual-specific variable corresponds to p − 1 columns of Xi

and p − 1 components of β.

2.2. The multinomial probit model with ordered preferences

In some cases, we observe a complete or partial ordering of p alternatives. For example, we
may observe the preferences of each individual among different brands of a product. We
denote the outcome variable in such situations by Yi = {Yi1, . . . ,Yip} where i = 1, . . . , n

indexes individuals and j = 1, . . . , p represent alternatives. If Yij > Yij′ for some j 6= j′, we
say j is preferred to j′. If Yij = Yij′ for some j 6= j′, we say individual i is indifferent to the
choice between alternatives j and j′, but treat the data as if the actual ordering is unknown.
In other words, formally we insist on strict inequalities among the preferences, but allow for
some inequalities to be unobserved. The preference ordering is assumed to satisfy the usual
axioms of preference comparability. Namely, preference is connected: For any j and j′, either
Yij ≤ Yij′ or Yij ≥ Yij′ . Preference also must be transitive: for any j,j′, and j′′, Yij ≤ Yij′

and Yij′ ≤ Yij′′ imply Yij ≤ Yij′′ . For notational simplicity and without loss of generality, we
assume that Yij takes an integer value ranging from 0 to p − 1. We emphasize that we have
not changed the model from Section 2.1. Rather, we simply have more observed data: the
index of the choice of the individual i, Yi, can be computed from Yi. Thus, we continue to
model the preference ordering, Yi, in terms of a latent (multivariate normal) random vector,
Wi = (Wij , . . . ,Wi,p−1), via

Yij(Wi) = #{Wij′ : Wij′ < Wij} for i = 1, . . . , n, and j = 1, . . . , p, (3)

where Wip = 0, the distribution of Wi is specified in equation 1, and #{· · · } indicates the
number of elements in a finite set. This model can be fitted via a slightly modified version of
the MCMC algorithm in Imai and van Dyk (2005). In particular, we need only modify the
way in which Wij is sampled and use a truncation rule based on Equation 3.

2.3. Prior specification

Our prior distribution for the multinomial probit model is

β ∼ N(0, A−1) and p(Σ) ∝ |Σ|−(ν+p)/2
[

trace(SΣ−1)
]

−ν(p−1)/2
, (4)

where A is the prior precision matrix of β, ν is the prior degrees of freedom parameter for Σ,
and the (p − 1) × (p − 1) positive definite matrix S is the prior scale for Σ; we assume the
first diagonal element of S is one. The prior distribution on Σ is proper if ν ≥ p−1, the prior
mean of Σ is approximately equal to S if ν > p− 2, and the prior variance of Σ increase as ν
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decreases as long as this variance exists. We also allow for an improper prior on β, which is
p(β) ∝ 1 (i.e., A = 0).1

Alternate prior specifications were introduced by McCulloch and Rossi (1994) and McCul-
loch, Polson, and Rossi (2000). The relative advantage of the various prior distributions are
discussed by McCulloch et al. (2000), Nobile (2000), and Imai and van Dyk (2005). We prefer
our choice because it allows us to directly specify the prior distribution on the identifiable
model parameters, allows us to specify an improper prior distribution on regression coefficient,
and results in a Monte Carlo sampler that is relatively quick to converge. An implementation
of of the sampler proposed by McCulloch and Rossi (1994) has recently been released in the
R package bayesm (Rossi and McCulloch 2005).

2.4. Prediction under the multinomial probit model

Predictions of individual preferences given particular values of the covariates can be useful in
interpreting the fitted model. Consider a value of the (p − 1) × k matrix of covariates, X⋆,
that may or may not correspond to the values for one of the observed individuals. We are
interested in the distribution of the preferences among the alternatives in the choice set given
this value of the covariates. Let Y ⋆ be the preferred choice and Y⋆ = (Y⋆

1 , . . . ,Y⋆
p ) indicate

the ordering of the preferences among the available alternatives. As an example, one might be
interested in Pr(Y ⋆ = j | X⋆) for some j. By varying X⋆, one could explore how preferences
are expected to change with covariates. Similarly, one might be interested in how relative
preferences such as Pr(Y⋆

j > Y⋆
j′ | X⋆) are expected to change with the covariates.

In the context of a Bayesian analysis, such predictive probabilities are computed via the
posterior predictive distribution. This distribution conditions on the observed data, Y =
(Y1, . . . , Yn) or Y = (Y1, . . . ,Yn), but averages over the uncertainty in the model parameters.
For example,

Pr(Y ⋆ = j | X⋆, Y ) =

∫

Pr(Y ⋆ = j | X⋆, β,Σ, Y ) p(β,Σ | Y ) d(β,Σ). (5)

Thus, the posterior predictive distribution accounts for both variability in the response vari-
able given the model parameters (i.e., the likelihood or sampling distribution) and the un-
certainty in the model parameters as quantified in the posterior distribution. Monte Carlo
evaluation of the posterior predictive distribution is easy once we obtain a Monte Carlo sam-
ple of the model parameters from the posterior distribution: We simply sample according
to the likelihood for each Monte Carlo sample from the posterior distribution. This involves
sampling the latent variable under the model in (1) and computing the preferred choice using
(2) or the ordering of preferences using (3).

3. Example 1: Detergent brand choice

In this and the next section, we describe the details of two examples of MNP. In this section
we use a market research dataset to illustrate the fitting of the multinomial probit model. In
Section 4 we fit the multinomial probit model with ordered preference to a Japanese election

1Algorithm 2 of Imai and van Dyk (2005) allows for a non zero prior mean for β. Because the update for
Σ in this sampler is not exactly its complete conditional distribution, however, this algorithm may exhibit
undesirable convergence properties in some situations.
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dataset. We also describe how to perform convergence diagnostics of the MCMC sampler and
analysis of the Monte Carlo output of MNP using an existing R package. Additional examples
of MNP can be found in Imai and van Dyk (2005).

3.1. Preliminaries

Our first example analyzes a typical dataset in market research. The dataset contains infor-
mation about the brand and price of the laundry detergent purchased by 2657 households
originally analyzed by Chintagunta and Prasad (1998). The dataset contains the log prices
of six detergent brands – Tide, Wisk, EraPlus, Surf, Solo, and All – as well as the brand
chosen by each household (see Appendix C for details about the dataset). We are interested
in estimating the correlation between price and consumer choice.

We fit the multinomial probit model by using choice as the outcome variable and the other
six variables as choice-specific covariates. After loading the MNP package, this can be ac-
complished using the following three commands,

data(detergent)

res <- mnp(choice ~ 1, choiceX = list(Surf=SurfPrice, Tide=TidePrice,

Wisk=WiskPrice, EraPlus=EraPlusPrice,

Solo=SoloPrice, All=AllPrice),

cXnames = c("price"), data = detergent, n.draws = 10000,

burnin = 2000, thin = 3, verbose = TRUE)

summary(res)

The first command loads the example dataset and stores it as the data frame called detergent.
The second command fits the multinomial probit model. The default base category in this case
is All. (The default base category in MNP is the first factor level of the outcome variable, Y .)
Each household chooses among the six brands of laundry detergent, i.e., p = 6. We specify
the choice-specific variables, choiceX, using a named list. The elements of the list are the log
price of each detergent brand and they are named after the levels of factor variable, choice.
We also name the coefficient for this set of choice-specific variables by using cXnames. The
argument data allows us to specify the name of the data frame where the data are stored.
The model estimates five intercepts and the price coefficient as well as 14 parameters in the
covariance matrix, Σ.

We use the default prior distribution; an improper prior distribution for β and a diffuse prior
distribution for Σ with ν = p = 6 and S = I. We sample 10,000 replications of the parameter
from the resulting posterior distribution, saving every fourth sample after discarding the first
2,000 samples as specified by the arguments, n.draws, thin, and burnin. The argument
verbose = TRUE specifies that a progress report and other useful messages be printed while
the MCMC sampler is running. The summary(res) command gives a summary of the output
including the posterior means and standard deviations of the parameters. The summary is
based on the single MCMC chain produced with this call of MNP. Before we can reliably draw
conclusions based on these results, we must be sure the chain has converged. Convergence
diagnostics are discussed and illustrated in Section 3.2. The result of the call of summary(res)
are as follows.
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Call:

mnp(formula = choice ~ 1, data = detergent, choiceX = list(Surf = SurfPrice,

Tide = TidePrice, Wisk = WiskPrice, EraPlus = EraPlusPrice,

Solo = SoloPrice, All = AllPrice), cXnames = c("price"),

n.draws = 10000, burnin = 2000, thin = 3, verbose = TRUE)

Coefficients:

mean std.dev. 2.5% 97.5%

(Intercept):EraPlus 2.567 0.238 2.123 3.03

(Intercept):Solo 1.722 0.247 1.248 2.25

(Intercept):Surf 1.572 0.163 1.259 1.91

(Intercept):Tide 2.716 0.252 2.269 3.22

(Intercept):Wisk 1.620 0.162 1.328 1.96

price -82.102 8.952 -99.896 -66.32

Covariances:

mean std.dev. 2.5% 97.5%

EraPlus:EraPlus 1.00000 0.00000 1.00000 1.00

EraPlus:Solo 0.82513 0.26942 0.31029 1.36

EraPlus:Surf 0.17021 0.16115 -0.15810 0.48

EraPlus:Tide 0.24872 0.12956 0.00253 0.52

EraPlus:Wisk 0.88170 0.16614 0.54500 1.20

Solo:Solo 2.56481 0.68678 1.53276 4.25

Solo:Surf 0.45246 0.34572 -0.28018 1.13

Solo:Tide 0.50836 0.32706 -0.09069 1.22

Solo:Wisk 1.46997 0.44596 0.65506 2.45

Surf:Surf 1.69005 0.50978 0.92334 2.82

Surf:Tide 0.80762 0.30381 0.34019 1.44

Surf:Wisk 1.01614 0.36503 0.44121 1.85

Tide:Tide 1.32024 0.41669 0.62898 2.25

Tide:Wisk 1.05396 0.30137 0.59323 1.74

Wisk:Wisk 2.58761 0.55076 1.68773 3.82

Base category: All

Number of alternatives: 6

Number of observations: 2657

Number of stored MCMC draws: 2000

We emphasize that these results are preliminary because convergence has not yet been as-
sessed. Thus, we delay interpretation of the fit until Section 3.3, after we discuss convergence
diagnostics in Section 3.2.

3.2. Using coda for convergence diagnostics and output analysis

It is possible to use coda (Plummer, Best, Cowles, and Vines 2005), to perform various
convergence diagnostics, as well as to summarize results. The coda package requires a matrix
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of posterior draws for relevant parameters to be saved as an mcmc object. Here, we illustrate
how to use coda to calculate the Gelman-Rubin convergence diagnostic statistic (Gelman and
Rubin 1992). This diagnostic is based on multiple independent Markov chains initiated at
over-dispersed starting values. Here, we obtain these chains by independently running the
mnp() command three times, specifying different starting values for each time. This can be
accomplished by typing the following commands at the R prompt,

data(detergent)

res1 <- mnp(choice ~ 1, choiceX = list(Surf=SurfPrice, Tide=TidePrice,

Wisk=WiskPrice, EraPlus=EraPlusPrice,

Solo=SoloPrice, All=AllPrice),

cXnames = c("price"), data = detergent, n.draws = 50000,

verbose = TRUE)

res2 <- mnp(choice ~ 1, choiceX = list(Surf=SurfPrice, Tide=TidePrice,

Wisk=WiskPrice, EraPlus=EraPlusPrice,

Solo=SoloPrice, All=AllPrice),

coef.start = c(1, -1, 1, -1, 1, -1)*10,

cov.start = matrix(0.5, ncol=5, nrow=5) + diag(0.5, 5),

cXnames = c("price"), data = detergent, n.draws = 50000,

verbose = TRUE)

res3 <- mnp(choice ~ 1, choiceX = list(Surf=SurfPrice, Tide=TidePrice,

Wisk=WiskPrice, EraPlus=EraPlusPrice,

Solo=SoloPrice, All=AllPrice),

coef.start=c(-1, 1, -1, 1, -1, 1)*10,

cov.start = matrix(0.9, ncol=5, nrow=5) + diag(0.1, 5),

cXnames = c("price"), data = detergent, n.draws = 50000,

verbose = TRUE)

where we save the output of each chain separately as res1, res2, and res3. The first chain is
initiated at the default starting values for all parameters; i.e., a vector of zeros for β and an
identity matrix for Σ. The second chain is run starting from a vector of three 10’s and three
−10’s for β and a matrix with all diagonal elements equal to 1 and all correlations equal to
0.5 for Σ. Finally, the third chain is run starting from a permutation of the starting value
used for β in the second chain, and a matrix with all diagonal elements equal to 1 and all
correlations equal to 0.9 for Σ. We again use the default prior specification and obtain 50,000
draws for each chain.

We store the output from each of the three chains as an object of class mcmc, and then combine
them into a single list using the following commands,

library(coda)

res.coda <- mcmc.list(chain1=mcmc(res1$param[,-7]),

chain2=mcmc(res2$param[,-7]),

chain3=mcmc(res3$param[,-7]))

where the first command loads the coda package2 and the second command saves the results

2If you have not used the coda package before, you must install it. At the R prompt, type in-
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as an object of class mcmc.list, which is called res.coda. We exclude the 7th column of each
chain, because this column corresponds to the first diagonal element of the covariance matrix
which is always equal to 1. The following command computes the Gelman-Rubin statistic
from these three chains,

gelman.diag(res.coda, transform = TRUE)

where transform = TRUE applies log or logit transformation as appropriate to improve the
normality of each of the marginal distributions. Gelman, Carlin, Stern, and Rubin (2004)
suggest computing the statistic for each scalar estimate of interest, and to continue to run
the chains until the statistics are all less than 1.1. Inference is then based on the Monte
Carlo sample obtained by combining the second half of each of the chains. The output of the
coda command lists the value and a 97.5% upper limit of the Gelman-Rubin statistic for each
parameter.

Potential scale reduction factors:

Point est. 97.5% quantile

(Intercept):EraPlus 1.01 1.02

(Intercept):Solo 1.03 1.08

(Intercept):Surf 1.01 1.05

(Intercept):Tide 1.01 1.02

(Intercept):Wisk 1.01 1.04

price 1.01 1.02

EraPlus:Solo 1.02 1.03

EraPlus:Surf 1.02 1.04

EraPlus:Tide 1.03 1.08

EraPlus:Wisk 1.04 1.13

Solo:Solo 1.01 1.04

Solo:Surf 1.01 1.02

Solo:Tide 1.02 1.07

Solo:Wisk 1.00 1.00

Surf:Surf 1.00 1.00

Surf:Tide 1.01 1.04

Surf:Wisk 1.02 1.06

Tide:Tide 1.02 1.06

Tide:Wisk 1.02 1.08

Wisk:Wisk 1.01 1.04

Multivariate psrf

1.07+0i

The Gelman-Rubin statistics are all less than 1.1, suggesting satisfactory convergence has been
achieved. (Note that the 97.5conservative user might want to obtain a set of longer Markov
chains and recompute the Gelman-Rubin statistics.) It may also be useful to examine the

stall.packages("coda").
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Figure 1: The Gelman-Rubin Statistic Computed with Three Independent Markov Chains
for Selected Parameters in the Detergent Example. The first row represents three coefficients,
the second row represents three covariances, and the third row represents three variance
parameters.

change in the value of the Gelman-Rubin statistic over the iterations. The following commands
produce a graphical summary of the progression of the statistics over iterations.

gelman.plot(res.coda, transform = TRUE, ylim = c(1,1.2))

where ylim = c(1,1.2) specifies the range of the vertical axis of the plot. The results appear
in Figure 1, as a cumulative evaluation of the Gelman-Rubin statistic over iterations for nine
selected parameters. (Three coefficients appear in the first row; three covariance parameters
appear in the second row; and three variance parameters appear in the third row.)

The coda package can also be used to produce univariate time-series plots of the three chains
and univariate density estimate of the posterior distribution. The following commands create
these graphs for the price coefficient.
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Figure 2: Time-series Plot of Three Independent Markov Chains (Left Panel) and A Density
Estimate of the Posterior Distribution of the Price Coefficient (Right Panel). The time-series
plot overlays the three chains, each in a different color. A lowess smoothed line is also plotted
for each of the three chains. The density estimate is based on all three chains.

res.coda <- mcmc.list(chain1=mcmc(res1$param[25001:50000, "price"], start=25001),

chain2=mcmc(res2$param[25001:50000, "price"], start=25001),

chain3=mcmc(res3$param[25001:50000, "price"], start=25001))

plot(res.coda, ylab = "price coefficient")

Figure 2 presents the resulting plots. The left panel overlays the time-series plot for each chain
with a different color representing each chain. The right panel shows the kernel-smoothed
density estimate of the posterior distribution. One can also apply an array of other functions
to res.coda. See the coda homepage, , for details.

3.3. Final analysis and conclusions

In the final analysis, we combine the second half of each of the three chains. This is accom-
plished using the following command that saves the last 25,000 draws from each chain as an
mcmc object and combines the mcmc objects into a list,

res.coda <- mcmc.list(chain1=mcmc(res1$param[25001:50000,-7], start=25001),

chain2=mcmc(res2$param[25001:50000,-7], start=25001),

chain3=mcmc(res3$param[25001:50000,-7], start=25001))

summary(res.coda)

The second command produces the following summary of the posterior distribution for each
parameter based on the combined Monte Carlo sample.

Iterations = 25001:50000

Thinning interval = 1

Number of chains = 3

Sample size per chain = 25000
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1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

(Intercept):EraPlus 2.5398 0.2300 0.0008400 0.014332

(Intercept):Solo 1.7218 0.2227 0.0008131 0.012972

(Intercept):Surf 1.5634 0.1663 0.0006072 0.010462

(Intercept):Tide 2.6971 0.2374 0.0008670 0.015153

(Intercept):Wisk 1.6155 0.1594 0.0005822 0.010221

price -80.9097 8.4292 0.0307791 0.556483

EraPlus:Solo 0.8674 0.2954 0.0010787 0.021698

EraPlus:Surf 0.1226 0.1991 0.0007269 0.014043

EraPlus:Tide 0.2622 0.1525 0.0005568 0.009833

EraPlus:Wisk 0.9062 0.1912 0.0006982 0.012893

Solo:Solo 2.6179 0.7883 0.0028785 0.055837

Solo:Surf 0.5348 0.4307 0.0015728 0.030113

Solo:Tide 0.5570 0.3544 0.0012941 0.024548

Solo:Wisk 1.5442 0.4643 0.0016954 0.031574

Surf:Surf 1.6036 0.4758 0.0017374 0.031269

Surf:Tide 0.7689 0.2992 0.0010926 0.020253

Surf:Wisk 0.9949 0.3548 0.0012955 0.022963

Tide:Tide 1.2841 0.3660 0.0013364 0.024095

Tide:Wisk 1.0658 0.3147 0.0011492 0.020229

Wisk:Wisk 2.5801 0.5523 0.0020167 0.034974

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

(Intercept):EraPlus 2.09105 2.38514 2.5321 2.6926 3.0022

(Intercept):Solo 1.28315 1.57316 1.7219 1.8705 2.1639

(Intercept):Surf 1.24132 1.45272 1.5583 1.6701 1.9023

(Intercept):Tide 2.23562 2.53443 2.6886 2.8544 3.1721

(Intercept):Wisk 1.31120 1.50841 1.6104 1.7191 1.9429

price -97.62406 -86.61736 -80.7783 -75.1013 -64.9720

EraPlus:Solo 0.32811 0.65755 0.8480 1.0694 1.4666

EraPlus:Surf -0.24159 -0.01596 0.1131 0.2507 0.5491

EraPlus:Tide -0.02109 0.16081 0.2571 0.3527 0.5957

EraPlus:Wisk 0.54089 0.77643 0.9035 1.0331 1.2917

Solo:Solo 1.37468 2.02720 2.5225 3.0985 4.4160

Solo:Surf -0.31143 0.25493 0.5251 0.8180 1.3880

Solo:Tide -0.05172 0.30518 0.5297 0.7740 1.3106

Solo:Wisk 0.74682 1.21192 1.5131 1.8380 2.5445

Surf:Surf 0.86883 1.25552 1.5377 1.8834 2.6935

Surf:Tide 0.30606 0.55218 0.7285 0.9413 1.4556

Surf:Wisk 0.40231 0.74907 0.9579 1.1957 1.8026

Tide:Tide 0.69841 1.02206 1.2396 1.4999 2.1100

Tide:Wisk 0.51732 0.84824 1.0411 1.2556 1.7579

Wisk:Wisk 1.60662 2.18760 2.5407 2.9238 3.7722
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The output shows the mean, standard deviation, and various percentiles of the posterior
distributions of the coefficients and the elements of the variance-covariance matrix. The base
category is the detergent All. Separate intercepts are estimated for each detergent. The price
coefficient is negative and highly statistically significant, agreeing with the standard economic
expectation that consumers are less likely to buy more expensive goods.

MNP also allows one to calculate the posterior predictive probabilities of each alternative
being most preferred given a particular value of the covariates. For example, one can calculate
the posterior predictive probabilities using the covariate values of the first two observations
by using the predict() command,

predict(res1, newdata = detergent[1:2,],

newdraw = rbind(res1$param[25001:50000,],

res2$param[25001:50000,],

res3$param[25001:50000,]), type = "prob")

where res1 is the output object from the mnp() command, and we set newdata to the first two
observations of the detergent data set and newdraw to the combined draws from the second
half of three chains. Setting type = "prob" causes the function predict() to return the
posterior predictive probabilities. It is also possible to return a Monte Carlo sample of the
the alternative that is most preferred (type = "choice"), a Monte Carlo sample of the latent
variables (type = "latent"), or a Monte Carlo sample of the preference-ordered alternatives
(type = "order"). (See Appendix B or type help(predict.mnp) in R for more details about
the predict() function in MNP.) The above command yields the following output,

All EraPlus Solo Surf Tide Wisk

[1,] 0.01281333 0.1946400 0.12292 0.46208000 0.1401733 0.06737333

[2,] 0.04649333 0.1262133 0.05996 0.03169333 0.3589867 0.37665333

The result indicates that the posterior predictive probability of purchasing Surf is the largest
for households with covariates equal to those in the first household in the data set. Under the
model, approximately 46% of such households will purchase Surf. On the other hand, All is
the brand least likely to be purchased by these households. The households with covariates
equal to the second household are most likely to buy Wisk. Also, they are almost equally
likely to purchase Tide. (The posterior predictive probabilities of buying Wisk and Tide are
both around 0.35)

4. Example 2: Voters’ preference of political parties

Our second example illustrates how to fit the multinomial probit model with ordered prefer-
ences (see Section 2.2).

4.1. Preliminaries

We analyze a survey dataset describing the preferences of individual voters in Japan among
the political parties. Political scientists may be interested in using the gender, age and
education level of voters to predict their party preferences (see Appendix C for details about
the dataset). The outcome variable is a vector of relative preferences for each of the four
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parties, i.e., p = 4. Each of 418 voters is asked to give a score between 0 and 100 to each
party. For example, the first voter in the dataset has the following preferences.

LDP NFP SKG JCP

80 75 80 0

That is, this voter prefers LDP and SKG to NFP and JCP, and between the latter two, she
prefers NFP to JCP. Although LDP and SKG have the same preference, we do not constrain the
estimated preferences to be the same for these two alternatives. Under the Gaussian random
utility model, the probability that the two alternatives having exactly the same preferences
is zero. Therefore, inequality constraints are respected, but equality constraints are not.

Furthermore, we only preserve the ranking, not the relative numerical values. Therefore, the
following coding of the variables, for our purposes, is equivalent to that given above,

LDP NFP SKG JCP

3 2 3 1

Finally, it is possible to have non-response for one of the categories; e.g., no candidate from
a particular party may run in a certain district. If NFP = NA, we have no information about
the relative ranking of NFP.

LDP NFP SKG JCP

3 NA 3 1

In this case, there is no constraint when estimating the preference for this alternative; only
the inequality constraint, (LDP, SKG) > JCP, is imposed.

All three covariates – gender, education, and age of voters – are individual-specific variables
rather than choice-specific ones. The model estimates three intercepts and 9 coefficients along
with 6 parameters in the covariance matrix. The following commands fit the model,

data(japan)

res <- mnp(cbind(LDP, NFP, SKG, JCP) ~ gender + education + age, data = japan,

n.draws = 10000, verbose = TRUE)

summary(res)

The first command loads the dataset, and the second command fits the model. The base
category is JCP, which is the last column of the outcome matrix. The default prior distribution
is used as in the previous example: an improper prior distribution for β and a diffuse prior
distribution for Σ with ν = p = 4 and S = I. 10,000 draws are obtained with no burnin or
thinning. The final command summarizes the Monte Carlo sample and gives the following
output,
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Call:

mnp(formula = cbind(LDP, NFP, SKG, JCP) ~ gender + education + age,

data = japan, n.draws = 10000, verbose = TRUE)

Coefficients:

mean std.dev. 2.5% 97.5%

(Intercept):LDP 0.615184 0.517157 -0.386151 1.61

(Intercept):NFP 0.689753 0.568109 -0.419521 1.79

(Intercept):SKG 0.133961 0.455960 -0.758883 1.02

gendermale:LDP 0.099748 0.152323 -0.194786 0.40

gendermale:NFP 0.216824 0.166103 -0.102108 0.54

gendermale:SKG 0.132661 0.134605 -0.127145 0.40

education:LDP -0.107038 0.074792 -0.253483 0.04

education:NFP -0.107222 0.082324 -0.270127 0.05

education:SKG -0.003728 0.066429 -0.132496 0.13

age:LDP 0.013518 0.006122 0.001492 0.03

age:NFP 0.006948 0.006783 -0.006572 0.02

age:SKG 0.009653 0.005431 -0.000812 0.02

Covariances:

mean std.dev. 2.5% 97.5%

LDP:LDP 1.0000 0.0000 1.0000 1.00

LDP:NFP 1.0502 0.0585 0.9373 1.16

LDP:SKG 0.7070 0.0622 0.5822 0.82

NFP:NFP 1.4068 0.1359 1.1682 1.70

NFP:SKG 0.7452 0.0864 0.5800 0.91

SKG:SKG 0.6913 0.0874 0.5296 0.87

Base category: JCP

Number of alternatives: 4

Number of observations: 418

Number of stored MCMC draws: 10000

4.2. Convergence diagnostics, final analysis, and conclusions

In order to evaluate convergence of the MCMC sampler, we again obtain three independent
Markov chains by running the mnp() command three times with three sets of different starting
values. We use starting values that are relatively dispersed given the preliminary analysis of
the previous section. Note that when fitting the multinomial probit model with ordered
preferences, the algorithm requires the starting values of the latent variable to respect the
order constraints of equation (3). Therefore, the starting values of the parameters cannot
be too far away from the posterior mode. The following commands fits the model with the
default starting value and two sets of overdispersed starting values,

res1 <- mnp(cbind(LDP, NFP, SKG, JCP) ~ gender + education + age, data = japan,

n.draws = 50000, verbose = TRUE)
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res2 <- mnp(cbind(LDP, NFP, SKG, JCP) ~ gender + education + age, data = japan,

coef.start = c(1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1),

cov.start = matrix(0.5, ncol=3, nrow=3) + diag(0.5, 3),

n.draws = 50000, verbose = TRUE)

res3 <- mnp(cbind(LDP, NFP, SKG, JCP) ~ gender + education + age, data = japan,

coef.start = c(-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1),

cov.start = matrix(0.9, ncol=3, nrow=3) + diag(0.1, 3),

n.draws = 50000, verbose = TRUE)

We follow the commands used in Section 3.2 and compute the Gelman-Rubin statistic for
each parameter. Upon examination of the resulting statistics, we determined that satisfactory
convergence has been achieved. For example, the value of the Gelman-Rubin statistic is less
than 1.01 for all the parameters. Hence, we base our final analysis on the combined draws
from the second half of the three chains (i.e., a total of 75,000 draws using 25,000 draws from
each chain). Posterior summaries can be obtained using the coda package as before,

Iterations = 25001:50000

Thinning interval = 1

Number of chains = 3

Sample size per chain = 25000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

(Intercept):LDP 0.60167 0.51421 1.88e-03 8.05e-03

(Intercept):NFP 0.68294 0.56867 2.08e-03 7.95e-03

(Intercept):SKG 0.12480 0.45680 1.67e-03 7.25e-03

gendermale:LDP 0.10668 0.15448 5.64e-04 2.95e-03

gendermale:NFP 0.22240 0.16983 6.20e-04 2.91e-03

gendermale:SKG 0.13897 0.13753 5.02e-04 2.70e-03

education:LDP -0.10517 0.07643 2.79e-04 1.35e-03

education:NFP -0.10634 0.08448 3.08e-04 1.28e-03

education:SKG -0.00258 0.06766 2.47e-04 1.18e-03

age:LDP 0.01361 0.00617 2.25e-05 9.90e-05

age:NFP 0.00698 0.00680 2.48e-05 1.01e-04

age:SKG 0.00972 0.00547 2.00e-05 9.13e-05

LDP:NFP 1.05535 0.05508 2.01e-04 1.15e-03

LDP:SKG 0.71199 0.06125 2.24e-04 1.59e-03

NFP:NFP 1.41860 0.13540 4.94e-04 2.45e-03

NFP:SKG 0.75391 0.08262 3.02e-04 2.12e-03

SKG:SKG 0.70007 0.08488 3.10e-04 2.16e-03
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2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

(Intercept):LDP -0.405757 0.25198 0.60033 0.9476 1.6172

(Intercept):NFP -0.428421 0.30016 0.68058 1.0657 1.7981

(Intercept):SKG -0.769018 -0.18476 0.12335 0.4303 1.0258

gendermale:LDP -0.197199 0.00328 0.10643 0.2105 0.4096

gendermale:NFP -0.110730 0.10856 0.22135 0.3361 0.5566

gendermale:SKG -0.131661 0.04702 0.13905 0.2307 0.4096

education:LDP -0.254631 -0.15718 -0.10519 -0.0533 0.0447

education:NFP -0.271657 -0.16329 -0.10654 -0.0496 0.0595

education:SKG -0.135829 -0.04833 -0.00248 0.0429 0.1306

age:LDP 0.001591 0.00941 0.01361 0.0177 0.0257

age:NFP -0.006336 0.00240 0.00697 0.0115 0.0203

age:SKG -0.000947 0.00603 0.00967 0.0134 0.0206

LDP:NFP 0.944577 1.01919 1.05564 1.0924 1.1623

LDP:SKG 0.587135 0.67120 0.71364 0.7544 0.8266

NFP:NFP 1.181667 1.32454 1.40803 1.5028 1.7125

NFP:SKG 0.590798 0.69778 0.75463 0.8104 0.9125

SKG:SKG 0.538858 0.64219 0.69806 0.7564 0.8711

Here, one of the findings is that older voters tend to prefer LDP as indicated by the statistically
significant positive age coefficient for LDP. This is consistent with the conventional wisdom of
Japanese politics that the stronghold of LDP is elderly voters.

To further investigate the marginal effect of age, we calculate the posterior predictive prob-
abilities of party preference under two scenarios. First, we choose the 10th individual in the
survey data and compute the predictive probability that a voter with this set of covariates
prefers each of the parties. This can be accomplished by the following commands,

japan10a <- japan[10,]

predict(res1, newdata = japan10a,

newdraw = rbind(res1$param[25001:50000,],

res2$param[25001:50000,],

res3$param[25001:50000,]), type = "prob")

where the first command extracts the 10th observation from the Japan data, and the second
command computes the predictive probabilities. Note that this individual has the following
attributes,

gender education age

male 4 50

The resulting posterior predictive probabilities of being the most preferred party are,

JCP LDP NFP SKG

[1,] 0.107707 0.359267 0.324613 0.208413



Journal of Statistical Software 17

The result indicates that under the model, we should expect 36% of voters with these co-
variates to prefer LDP, 32% to prefer NFP, 21% to prefer SKG, and 11% to prefer JCP. Next,
we change the value of the age variable of this voter from 50 to 75, while holding the other
variables constant. We then recompute the posterior predictive probabilities and examine
how they change. This can be accomplished using the following commands,

japan10b <- japan10a

japan10b[,"age"] <- 75

predict(res1, newdata = japan10b,

newdraw = rbind(res1$param[25001:50000,],

res2$param[25001:50000,],

res3$param[25001:50000,]), type = "prob")

where the first two commands recode the age variable for the voter and the second command
makes the prediction. We obtain the following results,

JCP LDP NFP SKG

[1,] 0.06548 0.485467 0.249667 0.199387

The comparison of the two results shows that changing the value of the age variable from 50
to 75 increases the estimated posterior predictive probability of preferring LDP most and by
more than 10 percentage points. Interestingly, the predictive probability for SKG changes very
little, while that of NFP decreases significantly. This suggests that older voters tend to prefer
LDP over NFP.
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A. Installation

To use MNP, you must install the statistical software R (if it is not already installed) as well
as the MNP package.

A.1. Windows systems

1. Installing the latest version of R. You may skip this step if the latest version
of R is already installed on your system. If R is not installed on your system, go to
the Comprehensive R Archive Network (CRAN) website () and download the latest
R installer for Windows. Double-click on the .exe file to launch the installer. We
recommend that you accept the default installation options.

2. Installing MNP. Start R and type at the prompt:

install.packages("MNP")

A.2. Unix/Linux systems

1. Installing the latest version of R. You may skip this step if the latest version of R

is already installed on your system. If R is not installed on your system, it may either
be installed locally (e.g., in an individual user’s bin directory) or globally (e.g., in the
/bin directory). The latter requires administrative privileges. In either case, the latest
release of R may be downloaded from the CRAN website ().

2. Installing MNP.

(a) Create a local library directory if it does not exist already. Here, we use ~/Rlib/library
but you can specify a different directory. This directory can be created by typing
the following command at the command prompt,

mkdir ~/Rlib ~/Rlib/library

(b) Open the ~/.Renviron file in your home directory (or create it if it does not exist)
and add the following line,

R_LIBS="~/Rlib/library"

Alternatively, one can define the environmental variable. For example, add the
following line to your Bourne shell startup file (e.g., .bashrc file if you are using
a bash shell),

export R_LIBS="$HOME/Rlib/library"

(c) Start R and type at the prompt:

install.packages("MNP", lib="~/Rlib/library/")
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A.3. MacOS X systems

1. Installing the latest version of R. You may skip this step if the latest version of
R is already installed on your system. If R is not installed on your system, you may
download it from the CRAN website ().

2. Installing MNP. If you are using RAqua, typing the following command at the prompt,

install.packages("MNP")

will install MNP into the default local library directory, ~/Library/R/library.

If you are using the command line R, then the installation of the MNP package can be
done exactly in the same way as in Unix/Linux systems. You might want to set R_LIBS
to ~/Library/R/library so that the command line R and RAqua can share the same
local library directory.
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B. Command references

This section gives the command references which detail all the available options. Users can also
access these references by typing help(mnp), help(summary.mnp), and help(predict.mnp)

at the R prompt.

mnp Fitting the Multinomial Probit Model via Markov chain Monte
Carlo

Description

mnp is used to fit (Bayesian) multinomial probit model via Markov chain Monte Carlo.
mnp can also fit the model with different choice sets for each observation, and complete
or partial ordering of all the available alternatives. The computation uses the efficient
marginal data augmentation algorithm that is developed by Imai and van Dyk (2005a).

Usage

mnp(formula, data = parent.frame(), choiceX = NULL, cXnames = NULL,

base = NULL, latent = FALSE, n.draws = 5000, p.var = "Inf",

p.df = n.dim+1, p.scale = 1, coef.start = 0, cov.start = 1,

burnin = 0, thin = 0, verbose = FALSE)

Arguments

formula A symbolic description of the model to be fit specifying the response vari-
able and covariates. The formula should not include the choice-specific
covariates. Details and specific examples are given below.

data An optional data frame in which to interpret the variables in formula

and choiceX. The default is the environment in which mnp is called.

choiceX An optional list containing a matrix of choice-specific covariates for each
category. Details and examples are provided below.

cXnames A vector of the names for the choice-specific covariates specified in choiceX.
The details and examples are provided below.

base The name of the base category. For the standard multinomial probit
model, the default is the lowest level of the response variable. For the
multinomial probit model with ordered preferences, the default base cat-
egory is the last column in the matrix of response variables.

latent logical. If TRUE, then the latent variable W will be returned. See Imai
and van Dyk (2005) for the notation. The default is FALSE.
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n.draws A positive integer. The number of MCMC draws. The default is 5000.

p.var A positive definite matrix. The prior variance of the coefficients. A scalar
input can set the prior variance to the diagonal matrix whose diagonal
element is equal to that value. The default is "Inf", which represents an
improper noninformative prior distribution on the coefficients.

p.df A positive integer greater than n.dim-1. The prior degrees of freedom
parameter for the covariance matrix. The default is n.dim+1, which is
equal to the total number of alternatives.

p.scale A positive definite matrix whose first diagonal element is set to 1. The
prior scale matrix for the covariance matrix. The first diagonal element
is set to 1 if it is not equal to 1 already. A scalar input can be used to
set the scale matrix to a diagonal matrix with diagonal elements equal
to the scalar input value, except that the first diagonal element is set to
one. The default is 1.

coef.start A vector. The starting values for the coefficients. A scalar input sets the
starting values for all the coefficients equal to that value. The default is
0.

cov.start A positive definite matrix whose first diagonal element is set to 1. The
starting values for the covariance matrix. The first diagonal element is
set to 1 if it is not equal to 1 already. A scalar input can be used to set
the starting value to a diagonal matrix with diagonal elements equal to
the scalar input value, except that the first diagonal element is set to one.
The default is 1.

burnin A positive integer. The burnin interval for the Markov chain; i.e., the
number of initial Gibbs draws that should not be stored. The default is
0.

thin A positive integer. The thinning interval for the Markov chain; i.e., the
number of Gibbs draws between the recorded values that are skipped.
The default is 0.

verbose logical. If TRUE, helpful messages along with a progress report of the
Gibbs sampling are printed on the screen. The default is FALSE.

Details

To fit the multinomial probit model when only the most preferred choice is observed,
use the syntax for the formula, y ~ x1 + x2, where y is a factor variable indicating the
most preferred choice and x1 and x2 are individual-specific covariates. The interactions
of individual-specific variables with each of the choice indicator variables will be fit.

To specify choice-specific covariates, use the syntax, choiceX=list(A=cbind(z1, z2),

B=cbind(z3, z4), C=cbind(z5, z6)), where A, B, and C represent the choice names of
the response variable, and z1 and z2 are each vectors of length n that record the values
of the two choice-specific covariates for each individual for choice A, likewise for z3, . . .,
z6. The corresponding variable names via cXnames=c("price", "quantity") need to
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be specified, where price refers to the coefficient name for z1, z3, and z5, and quantity

refers to that for z2, z4, and z6.

If the choice set varies from one observation to another, use the syntax, cbind(y1, y2,

y3) ~ x1 + x2, in the case of a three choice problem, and indicate unavailable alterna-
tives by NA. If only the most preferred choice is observed, y1, y2, and y3 are indicator
variables that take on the value one for individuals who prefer that choice and zero oth-
erwise. The last column of the response matrix, y3 in this particular example syntax, is
used as the base category.

To fit the multinomial probit model when the complete or partial ordering of the available
alternatives is recorded, use the same syntax as when the choice set varies (i.e., cbind(y1,
y2, y3, y4) ~ x1 + x2). For each observation, all the available alternatives in the re-
sponse variables should be numerically ordered in terms of preferences such as 1 2 2 3.
Ties are allowed. The missing values in the response variable should be denoted by NA.
The software will impute these missing values using the specified covariates. The resulting
uncertainty estimates of the parameters will properly reflect the amount of missing data.
For example, we expect the standard errors to be larger when there is more missing data.

Value

An object of class mnp containing the following elements:

param A matrix of the Gibbs draws for each parameter; i.e., the coefficients and
covariance matrix. For the covariance matrix, the elements on or above
the diagonal are returned.

call The matched call.

x The matrix of covariates.

y The vector or matrix of the response variable.

w The three dimensional array of the latent variable, W. The first dimension
represents the alternatives, and the second dimension indexes the obser-
vations. The third dimension represents the Gibbs draws. Note that the
latent variable for the base category is set to 0, and therefore omitted
from the output.

alt The names of alternatives.

n.alt The total number of alternatives.

base The base category used for fitting.

p.var The prior variance for the coefficients.

p.df The prior degrees of freedom parameter for the covariance matrix.

p.scale The prior scale matrix for the covariance matrix.

burnin The number of initial burnin draws.

thin The thinning interval.
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//www.princeton.edu/~kimai; Jordan R. Vance, Princeton University; David A. van
Dyk, Department of Statistics, University of California, Irvine dvd@uci.edu, http://

www.ics.uci.edu/~dvd.

References

Imai, Kosuke and David A. van Dyk. (2005a) “A Bayesian Analysis of the Multinomial
Probit Model Using the Marginal Data Augmentation,” Journal of Econometrics, Vol.
124, No. 2 (February), pp.311-334.

Imai, Kosuke and David A. van Dyk. (2005b) “MNP: R Package for Fitting the Multino-
mial Probit Models,” Journal of Statistical Software, Vol. 14, No. 3 (May), pp.1-31.

See Also

predict.mnp, summary.mnp; MNP home page at http://www.princeton.edu/~kimai/

research/MNP.html

Examples

###

### NOTE: this example is not fully analyzed. In particular, the

### convergence has not been assessed. A full analysis of these data

### sets appear in Imai and van Dyk (2005b).

###

## load the detergent data

data(detergent)

## run the standard multinomial probit model with intercepts and the price

res1 <- mnp(choice ~ 1, choiceX = list(Surf=SurfPrice, Tide=TidePrice,

Wisk=WiskPrice, EraPlus=EraPlusPrice,

Solo=SoloPrice, All=AllPrice),

cXnames = "price", data = detergent, n.draws = 500, burnin = 100,

thin = 3, verbose = TRUE)

## summarize the results

summary(res1)

## calculate the predicted probabilities for the first 5 observations

predict(res1, newdata = detergent[1:3,], type="prob", verbose = TRUE)

## load the Japanese election data

data(japan)

## run the multinomial probit model with ordered preferences

res2 <- mnp(cbind(LDP, NFP, SKG, JCP) ~ gender + education + age, data = japan,

http://www.princeton.edu/~kimai
http://www.princeton.edu/~kimai
http://www.ics.uci.edu/~dvd
http://www.ics.uci.edu/~dvd
http://www.princeton.edu/~kimai/research/MNP.html
http://www.princeton.edu/~kimai/research/MNP.html
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verbose = TRUE)

## summarize the results

summary(res2)

## calculate the predicted probabilities for the 10th observation

predict(res2, newdata = japan[10,], type = "prob")

predict.mnp Posterior Prediction under the Bayesian Multinomial Probit
Models

Description

Obtains posterior predictions under a fitted (Bayesian) multinomial probit model. predict
method for class mnp.

Usage

## S3 method for class ✬mnp✬:

predict(object, newdata = NULL, newdraw = NULL,

type = c("prob", "choice", "order", "latent"), verbose = FALSE, ...)

Arguments

object An output object from mnp.

newdata An optional data frame containing the values of the predictor variables.
Predictions for multiple values of the predictor variables can be made
simultaneously if newdata has multiple rows. The default is the original
data frame used for fitting the model.

newdraw An optional matrix of MCMC draws to be used for posterior predictions.
The default is the original MCMC draws stored in object.

type The type of posterior predictions required. There are four options: type
= "prob" returns the predictive probabilities of being the most preferred
choice among the choice set. type = "choice" returns the Monte Carlo
sample of the most preferred choice, type = "order" returns the Monte
Carlo sample of the ordered preferences, and type = "latent" returns
the Monte Carlo sample of the predictive values of the latent variable.
The default is to return all four types of posterior predictions.

verbose logical. If TRUE, helpful messages along with a progress report on the
Monte Carlo sampling from the posterior predictive distributions are
printed on the screen. The default is FALSE.
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... further arguments passed to or from other methods.

Details

The posterior predictive values are computed using the Monte Carlo sample stored in the
mnp output (or other sample if newdraw is specified). Given each Monte Carlo sample
of the parameters and each vector of predictor variables, we sample the vector-valued
latent variable from the appropriate multivariate Normal distribution. Then, using the
sampled predictive values of the latent variable, we construct the most preferred choice as
well as the ordered preferences. Averaging over the Monte Carlo sample of the preferred
choice, we obtain the predictive probabilities of each choice being most preferred given
the values of the predictor variables. Since the predictive values are computed via Monte
Carlo simulations, each run may produce somewhat different values. The computation
may be slow if predictions with many values of the predictor variables are required and/or
if a large Monte Carlo sample of the model parameters is used. In either case, setting
verbose = TRUE may be helpful in monitoring the progress of the code.

Value

predict.mnp yields a list containing at least one of the following elements:

o A three dimensional array of the Monte Carlo sample from the posterior
predictive distribution of the ordered preferences. The first dimension
corresponds to the alternatives in the choice set, the second dimension
corresponds to the rows of newdata (or the original data set if newdata
is left unspecified), and the third dimension indexes the Monte Carlo
sample.

p A matrix of the posterior predictive probabilities for each alternative in
the choice set being most preferred. The rows correspond to the rows of
newdata (or the original data set if newdata is left unspecified) and the
columns correspond to the alternatives in the choice set.

y A matrix of the Monte Carlo sample from the posterior predictive distri-
bution of the most preferred choice. The rows correspond to the rows of
newdata (or the original data set if newdata is left unspecified) and the
columns index the Monte Carlo sample.

w A three dimensional array of the Monte Carlo sample from the poste-
rior predictive distribution of the latent variable. The first dimension
corresponds to the alternatives in the choice set, the second dimension
corresponds to the rows of newdata (or the original data set if newdata
is left unspecified), and the third dimension indexes the Monte Carlo
sample.



Journal of Statistical Software 27

Author(s)

Kosuke Imai, Department of Politics, Princeton University kimai@Princeton.Edu

See Also

mnp; MNP home page at http://www.princeton.edu/~kimai/research/MNP.html

summary.mnp Summarizing the results for the Multinomial Probit Models

Description

summary method for class mnp.

Usage

## S3 method for class ✬mnp✬:

summary(object, CI=c(2.5, 97.5), ...)

## S3 method for class ✬summary.mnp✬:

print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

object An output object from mnp.

CI A 2 dimensional vector of lower and upper bounds for the credible in-
tervals used to summarize the results. The default is the equal tail 95
percent credible interval.

x An object of class summary.mnp.

digits the number of significant digits to use when printing.

... further arguments passed to or from other methods.

Value

summary.mnp yields an object of class summary.mnp containing the following elements:

call The call from mnp.

http://www.princeton.edu/~kimai/research/MNP.html
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n.alt The total number of alternatives.

base The base category used for fitting.

n.obs The number of observations.

n.draws The number of Gibbs draws used for the summary.

coef.table The summary of the posterior distribution of the coefficients.

cov.table The summary of the posterior distribution of the covariance matrix.

This object can be printed by print.summary.mnp

Author(s)

Kosuke Imai, Department of Politics, Princeton University kimai@Princeton.Edu

See Also

mnp; MNP home page at http://www.princeton.edu/~kimai/research/MNP.html

http://www.princeton.edu/~kimai/research/MNP.html
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C. Dataset references

The following descriptions of the datasets can also be obtained by typing help(detergent)

and help(japan) at the R prompt.

detergent Detergent Brand Choice

Description

This dataset gives the laundry detergent brand choice by households and the price of each
brand.

Usage

data(detergent)

Format

A data frame containing the following 7 variables and 2657 observations.

choice factor a brand chosen by each household
TidePrice numeric log price of Tide
WiskPrice numeric log price of Wisk
EraPlusPrice numeric log price of EraPlus
SurfPrice numeric log price of Surf
SoloPrice numeric log price of Solo
AllPrice numeric log price of All

References

Chintagunta, P. K. and Prasad, A. R. (1998) “An Empirical Investigation of the ‘Dy-
namic McFadden’ Model of Purchase Timing and Brand Choice: Implications for Market
Structure”. Journal of Business and Economic Statistics vol. 16 no. 1 pp.2-12.
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japan Voters’ Preferences of Political Parties in Japan (1995)

Description

This dataset gives voters’ preferences of political parties in Japan on the 0 (least preferred)
- 100 (most preferred) scale. It is based on the 1995 survey data of 418 individual voters.
The data also include the sex, education level, and age of the voters. The survey allowed
voters to choose among four parties: Liberal Democratic Party (LDP), New Frontier Party
(NFP), Sakigake (SKG), and Japanese Communist Party (JCP).

Usage

data(japan)

Format

A data frame containing the following 7 variables for 418 observations.

LDP numeric preference for Liberal Democratic Party 0 - 100
NFP numeric preference for New Frontier Party 0 - 100
SKG numeric preference for Sakigake 0 - 100
JCP numeric preference for Japanese Communist Party 0 - 100
gender factor gender of each voter male or female
education numeric levels of education for each voter
age numeric age of each voter
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D. What’s new?

version date changes
2.2 − 3 05.12.05 minor changes to the documentation;

version published in Journal of Statistical Software
2.2 − 2 05.09.05 minor changes to the documentation
2.2 − 1 05.01.05 stable release for R 2.1.0; The observations with missing values in X

will be deleted in mnp() and predict() (thanks to Natasha Zharinova).
2.1 − 2 03.22.05 added an option, newdraw, for predict() method
2.1 − 1 02.25.05 improved predict() method; documentation enhanced and edited
2.0 − 1 02.12.05 added predict() method (thanks to Xavier Gerard and Saleem Shaik)
1.4 − 1 12.16.04 improved error handling (thanks to Kjetil Halvorsen)
1.3 − 2 11.17.04 stable release for R 2.0.1; minor updates of the documentation
1.3 − 1 10.09.04 stable release for R 2.0.0; updating vector.c
1.2 − 1 09.26.04 optionally stores the latent variable (thanks to Colin McCulloch)
1.1 − 2 09.14.04 minor fix in mnp() (thanks to Ken Shultz)
1.1 − 1 08.28.04 major and minor changes: namespace implemented
1.0 − 4 07.14.04 users can interrupt the C process within R (thanks to Kevin Quinn)
1.0 − 3 06.30.04 bug fix in xmatrix.mnp() (thanks to Andrew Martin)
1.0 − 2 06.29.04 removed p.alpha0 parameter
1.0 − 1 06.23.04 official release
0.9 − 13 05.28.04 bug fix in ymatrix.mnp()

0.9 − 12 05.23.04 updating the documentation and help files
0.9 − 11 05.08.04 bug fix in cXnames() (thanks to Liming Wang)
0.9 − 10 05.03.04 first stable version; bug fix in labeling
0.9 − 9 05.02.04 bug fix in sampling of W;

added summary.mnp() and print.summary.mnp()

0.9 − 8 04.29.04 improving sampling of W, replace printf() with Rprintf()

0.9 − 7 04.27.04 missing data allowed for all models, varying choice sets allowed.
0.9 − 6 04.26.04 missing data allowed in the response variable for standard MNP;

a major bug fixed for MoP (thanks to Shigeo Hirano)
0.9 − 5 04.25.04 improper prior handled by algorithm 1
0.9 − 4 04.21.04 bug fix in MoP, R 1.9.0 compatible, changes in mprobit.R
0.9 − 3 04.10.04 rWish() modified with an improved algorithm
0.9 − 2 03.22.04 first public beta version
0.9 − 1 03.20.04 first beta version
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