

University of Wollongong Research Online

Australian Institute for Innovative Materials - Papers

Australian Institute for Innovative Materials

2017

# Mo2C/CNT: An Efficient Catalyst for Rechargeable Li–CO2 Batteries

Yuyang Hou University of Wollongong, yh879@uowmail.edu.au

Jiazhao Wang University of Wollongong, jiazhao@uow.edu.au

Lili Liu University of Wollongong, ll422@uowmail.edu.au

Yuqing Liu University of Wollongong, yl037@uowmail.edu.au

Shulei Chou University of Wollongong, shulei@uow.edu.au

See next page for additional authors

#### **Publication Details**

Hou, Y., Wang, J., Liu, L., Liu, Y., Chou, S., Shi, D., Liu, H., Wu, Y., Zhang, W. & Chen, J. (2017). Mo2C/CNT: An Efficient Catalyst for Rechargeable. Advanced Functional Materials, 27 1700564-1-1700564-8.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

# Mo2C/CNT: An Efficient Catalyst for Rechargeable Li–CO2 Batteries

#### Abstract

The rechargeable Li-CO2 battery is a novel and promising energy storage system with the capability of CO2 capture due to the reversible reaction between lithium ions and carbon dioxide. Carbon materials as the cathode, however, limit both the cycling performance and the energy efficiency of the rechargeable Li-CO2 battery, due to the insulating Li2CO3 formed in the discharge process, which is difficult to decompose in the charge process. Here, a Mo2C/carbon nanotube composite material is developed as the cathode for the rechargeable Li-CO2 battery and can achieve high energy efficiency (77%) and improved cycling performance (40 cycles). A related mechanism is proposed that Mo2C can stabilize the intermediate reduction product of CO2 on discharge, thus preventing the formation of insulating Li2CO3. In contrast to insulating Li2CO3, this amorphous Li2C2O4-Mo2C discharge product can be decomposed below 3.5 V on charge. The introduction of Mo2C provides an effective solution to the problem of low round-trip efficiency in the Li-CO2 battery.

#### Keywords

catalyst, rechargeable, mo2c/cnt:, efficient

#### Disciplines

Engineering | Physical Sciences and Mathematics

#### **Publication Details**

Hou, Y., Wang, J., Liu, L., Liu, Y., Chou, S., Shi, D., Liu, H., Wu, Y., Zhang, W. & Chen, J. (2017). Mo2C/ CNT: An Efficient Catalyst for Rechargeable. Advanced Functional Materials, 27 1700564-1-1700564-8.

#### Authors

Yuyang Hou, Jiazhao Wang, Lili Liu, Yuqing Liu, Shulei Chou, Dongqi Shi, Hua-Kun Liu, Yu-Ping Wu, Weimin Zhang, and Jun Chen

#### DOI: 10.1002/((please add manuscript number))

#### Mo<sub>2</sub>C/CNT - An Efficient Catalyst for Rechargeable Li-CO<sub>2</sub> Batteries

Yuyang Hou<sup>1</sup>, Jiazhao Wang<sup>2,\*</sup>, Lili Liu<sup>2</sup>, Yuqing Liu<sup>1</sup>, Shulei Chou<sup>2</sup>, Dongqi Shi<sup>2</sup>, Huakun Liu<sup>2</sup>, Yuping Wu<sup>3</sup>, Weimin Zhang<sup>4</sup>, Jun Chen<sup>1,\*</sup>

Y. Hou, Y. Liu, Prof. J. Chen Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science University of Wollongong Wollongong, NSW 2522, Australia E-mail: junc@uow.edu.au

Dr. L. Liu, Dr. S. Chou, Dr. D. Shi, Prof. H. Liu, Prof. J. Wang Institute for Superconducting and Electronic Materials University of Wollongong Wollongong, NSW 2522, Australia E-mail: Jiazhao@uow.edu.au

Prof. Y. Wu School of Energy Science and Engineering & Institute of Electrochemical Energy Storage Nanjing Tech University Nanjing 211816, Jiangsu Province, China

Associate Prof. W. Zhang Shanghai Electrochemical Energy Devices Research Center School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240, China

**Keywords**: molybdenum carbide, cathode materials, interface reaction, electrocatalysis, Li-CO<sub>2</sub> batteries.

#### Abstract

The rechargeable Li-CO<sub>2</sub> battery is a novel and promising energy storage system with the capability of CO<sub>2</sub> capture due to the reversible reaction between lithium ions and carbon dioxide. Carbon materials as cathode, however, limit both the cycling performance and the energy efficiency of the rechargeable Li-CO<sub>2</sub> battery, due to the insulating Li<sub>2</sub>CO<sub>3</sub> formed in the discharge process, which is difficult to decompose in the charge process. Herein, Mo<sub>2</sub>C/carbon nanotube (CNT) composite material is developed as the cathode for the rechargeable Li-CO<sub>2</sub> battery, which can achieve high energy efficiency (77%) and improved cycling performance (40 cycles). The related mechanism is proposed, that Mo<sub>2</sub>C can stabilize the intermediate reduction product of CO<sub>2</sub> on discharge, thus preventing the formation of insulating Li<sub>2</sub>CO<sub>3</sub>. In contrast to insulating Li<sub>2</sub>CO<sub>3</sub>, this amorphous Li<sub>2</sub>C<sub>2</sub>O<sub>4</sub>-Mo<sub>2</sub>C discharge product could be decomposed below 3.5 V on charge. The introduction of Mo<sub>2</sub>C provides an effective solution to the problem of low round-trip efficiency in the Li-CO<sub>2</sub> battery.

#### 1. Introduction

Due to the increasingly serious greenhouse effect on the global climate, the increasing  $CO_2$ content in the atmosphere has received significant attention in recent years. As a result, a number of technologies, including CO<sub>2</sub> capture, conversion, and electrochemical reduction, have been developed to control the concentration of CO<sub>2</sub> in the atmosphere.<sup>[1-4]</sup> To find a method to utilize CO<sub>2</sub>, the strategy of enhancing the discharge capacity of the Li-air battery by combining CO<sub>2</sub> with oxygen was proposed.<sup>[5]</sup> The formation of Li<sub>2</sub>CO<sub>3</sub> during the discharge process can be seen as a novel method to capture and utilize CO<sub>2</sub>, but the difficult electrochemical decomposition of Li<sub>2</sub>CO<sub>3</sub> has limited its use as a secondary battery. In the light of this, a primary Li-CO<sub>2</sub> battery was reported as a novel method for CO<sub>2</sub> capture and utilization, which showed a tremendous enhancement at 100 °C compared with its performance at low temperature.<sup>[6]</sup> Recently, Lim et al. found that the electrochemical activation of CO<sub>2</sub> within the high dielectric medium of dimethyl sulfoxide (DMSO) led to Li<sub>2</sub>CO<sub>3</sub> as a side product of Li-O<sub>2</sub> batteries, which was formed and decomposed reversibly.<sup>[7]</sup> On the basis of this reversible reaction of Li<sub>2</sub>CO<sub>3</sub>, a rechargeable Li-CO<sub>2</sub> battery was first proposed as a novel battery and CO<sub>2</sub> conversion device.<sup>[8]</sup> The utilization of this greenhouse gas in electrochemical energy storage systems provides a promising environmental friendly strategy for reducing fossil fuel energy consumption and slowing global warming.<sup>[9-11]</sup> Moreover, this kind of metal-CO<sub>2</sub> battery has the potential to become the energy source for scientific exploration and future immigration to Mars in the long run, since the atmosphere of Mars is composed mostly of carbon dioxide.<sup>[11]</sup> In addition, with the presence of CO<sub>2</sub> in ambient air, it is still a challenge to develop Li-air batteries, since Li<sub>2</sub>CO<sub>3</sub> is formed upon discharge as the side product. Only through a better understanding of the mechanism of the Li-CO<sub>2</sub> battery can we hope realize expansion of the application of the Li-O<sub>2</sub> battery to the Liair battery.<sup>[12]</sup>

Carbon materials have been extensively utilized as the cathode materials in the rechargeable Li-CO<sub>2</sub> batteries investigated so far, mainly because of their adequate electrical conductivity and large surface area.<sup>[8,13,14]</sup> According to previous experimental results, rechargeable Li-CO<sub>2</sub> batteries were realized based on the reversible reaction:  $4Li + 3CO_2 \leftrightarrow 2Li_2CO_3 + C$ .<sup>[6,8]</sup> This electrochemical reaction shows that lithium ions combine with electrons and CO<sub>2</sub> to form Li<sub>2</sub>CO<sub>3</sub> and carbon during discharge in the forward reaction, and Li<sub>2</sub>CO<sub>3</sub> combines with carbon to release lithium ions, electrons and CO<sub>2</sub> during charge in the backward reaction. It was also calculated that the theoretical potential is about 2.8 V, based on the formula E = - $\Delta_{\rm r}G/nF$ , in which  $\Delta_{\rm r}G$  represents the change in Gibbs free energy, n is the electron transfer number, and F is the Faraday constant.<sup>[6]</sup> Unfortunately,  $Li_2CO_3$  is a wide band-gap insulator and insoluble in this aprotic system. As a result, Li<sub>2</sub>CO<sub>3</sub> is deposited on the cathode and accumulates upon discharge, leading to an increase in the impedance up to a "sudden death", similar to the case of Li<sub>2</sub>O<sub>2</sub> deposits during discharge in the aprotic Li-O<sub>2</sub> battery, which causes a high overpotential for  $Li_2O_2$  decomposition during charge process. Therefore, it is essential to develop new cathode materials to reduce this high charge potential plateau and to improve the round-trip efficiency.

Molybdenum carbide (Mo<sub>2</sub>C) has been widely studied due to its excellent catalytic behavior, similar to that of metals in group VIII, and has attracted extensive attention for methane reforming,<sup>[15]</sup> the water gas shift reaction,<sup>[16]</sup> the hydrogen evolution reaction (HER),<sup>[17,18]</sup> and the CO<sub>2</sub> reduction reaction.<sup>[19]</sup> Compared with Mo, the high activity of Mo<sub>2</sub>C originates from the electronic properties introduced by the carbon, which affects the Mo–C binding energy and the reactivity of adsorbates. Most recently, as the catalyst for Li-O<sub>2</sub> batteries, Mo<sub>2</sub>C showed high electrical efficiency and reversibility due to its partially oxidized surface.<sup>[20]</sup> In this work, we employed Mo<sub>2</sub>C/carbon nanotube (CNT) as the cathode for rechargeable Li-CO<sub>2</sub> batteries. With its three-dimensional (3D) network of uniformly dispersed Mo<sub>2</sub>C nanoparticles as catalysis sites and CNTs as the conductive matrix, this cathode material has

reduced the charge plateau below 3.5 V and could be reversibly discharged and charged for 40 cycles. Through a series of ex-situ characterizations, we found that the reversible formation and decomposition of the amorphous discharge product  $Li_2C_2O_4$ -Mo<sub>2</sub>C can reduce charge overpotential and improve the round-trip efficiency of the rechargeable Li-CO<sub>2</sub> battery. The introduction of Mo<sub>2</sub>C has set a good example for guiding new catalyst design to improve the energy efficiency of Li-CO<sub>2</sub> batteries.

#### 2. Results and discussion

#### 2.1 Physical Characterization

Molybdenum carbide/carbon nanotube (Mo<sub>2</sub>C/CNT) was prepared by the carbothermal reduction of a ball-milled mixture of molybdenum trioxide (MoO<sub>3</sub>) and CNT. The ball-milled mixture consists of MoO<sub>3</sub> with particle size in the range of of 200-500 nm and CNTs with a diameter of 10-20 nm (Figure 1a). During the carbothermal reduction, MoO<sub>3</sub> was reduced by the CNT to form Mo<sub>2</sub>C. The as-prepared Mo<sub>2</sub>C/CNT features a 3D network with uniformly dispersed 50 nm Mo<sub>2</sub>C nanoparticles in a CNT framework (Figure 1b), where the Mo<sub>2</sub>C particles could serve as catalysis active sites and the CNT matrix could improve the electrical conductivity of the electrode. The crystalline phase compositions of the products were examined by X-ray diffraction (XRD) (Figure 1c). The characteristic peaks of Mo<sub>2</sub>C at 34.4, 38.0, 39.4, 52.1, 61.5, 69.6, and 74.6 ° are attributed to the diffractions of the (002), (020), (211), (221), (203), (231), and (223) lattice planes, respectively, which confirms the conversion of MoO<sub>3</sub> into Mo<sub>2</sub>C during the carbothermal reduction The carbon peak is substantially diminished when the carbon is consumed. This transition process was also proved by the Raman spectra, which are consistent with the XRD results: the characteristic peaks of Mo<sub>2</sub>C/MoO<sub>3</sub> increased while the carbon D-band and G-band peaks were reduced in the Raman spectra (Figure 1d), indicating that CNT was continously consumed during the carbothermal reduction. High-resolution transmission electron microscopy (HRTEM) images

reveal that prepared Mo<sub>2</sub>C/CNT holds high crystallinity and well-defined atomic planes (Figure S1, Supporting Information). The planar d (0.149 nm and 0.227 nm) of product is consistent with the (110) and (101) planes of  $\beta$ -Mo<sub>2</sub>C, respectively. The CNT and Mo<sub>2</sub>C contents of the as-prepared Mo<sub>2</sub>C/CNT were further investigated using thermogravimetric analysis (TGA) (Figure S2, Supporting Information), in which CNT was determined to be 5.2% and Mo<sub>2</sub>C was determined to be 94.8% Although the molecular ratio of the precursors before carbothermal reduction was strictly adjusted according to the chemical reaction, CNTs still resided in the Mo<sub>2</sub>C/CNT, since the efficiency of reduction cannot be 100%. This very low CNT content is not expected to contribute capacity and reactivity with CO<sub>2</sub> at any significant level, although it is still important in suppressing the growth in size of Mo<sub>2</sub>C nanoparticles and supplying sufficient electrical conductivity.

#### 2.2 Electrochemical Studies with Mo<sub>2</sub>C/CNT

Cyclic voltammetry and galvanostatic cycling were conducted to evaluate battery performance and CO<sub>2</sub> electrode reversibility. The test cells were assembled as described in the Supporting Information (Experimental). Cyclic voltammetry tests were carried out between 2.5 V and 4.2 V (vs. Li/Li<sup>+</sup>) at a scan rate of 0.1 mV s<sup>-1</sup>. As revealed in Figure 2a, Mo<sub>2</sub>C/CNT shows a cathodic peak starting from 2.8 V and an anodic peak appearing between 3.4-3.5 V under CO<sub>2</sub>. To exclude the background current from the reaction of Mo<sub>2</sub>C/CNT in this voltage range, the corresponding test was also conducted under N<sub>2</sub>. We found that t no additional Faradic current could be observed, indicating that this pair of peaks observed under CO<sub>2</sub> corresponds to the CO<sub>2</sub> reduction reaction and the CO<sub>2</sub> evolution reaction, respectively. CNT electrode was tested as a comparison, and it shows a cathodic peak and an anodic peak under CO<sub>2</sub> starting from 2.8 V and 4.0 V, respectively, which is a typical response for carbon based electrodes.<sup>[14]</sup> It is worth noting that the current began to tail off as the potential went above 3.7-3.8 V when Mo<sub>2</sub>C/CNT was used as cathode under either N<sub>2</sub> or CO<sub>2</sub>, which may be ascribed to the reaction of Mo<sub>2</sub>C at such a high voltage. The galvanostatic discharge and

charge of Mo<sub>2</sub>C/CNT was tested at the current of 20 µA, in a potential window of 2.0 V- 3.8 V under CO<sub>2</sub>. It delivered a reversible capacity of 1150 µAh during discharge and charge, showing that this discharge product can be decomposed below 3.8 V. On the contrary, Mo<sub>2</sub>C delivers only 41 µAh under N<sub>2</sub>, which indicates that the capacity delivered under CO<sub>2</sub> is related to the reversible CO2 reduction and evolution process. CNT delivered the capacity of ~2850 µAh during discharge under CO<sub>2</sub>, but no capacity was observed under charge process even above 4.0 V, implying that this discharge product cannot be decomposed below 4.0 V. The first cycle galvanostatic discharge-charge curves of CNT electrode and Mo<sub>2</sub>C/CNT electrode with a fixed capacity of 100 µAh at the current of 20 µA are presented in Figure 2c, and the round-trip efficiency could be obtained to be 77% when Mo<sub>2</sub>C/CNT was used as cathode in Li-CO<sub>2</sub> cells, compared with 60% for the pure CNT electrode. Moreover, the Mo<sub>2</sub>C/CNT showed good cycling performance, which lasted for 40 cycles, when it was galvanostatically discharged and charged to 100 µAh at the current of 20 µA (Figure 2d). It was reported that Mo<sub>2</sub>C is unstable in Li-O<sub>2</sub> batteries, as it reacts to form a surface layer of MoO<sub>2</sub> on discharge, which appears to result in low charge overpotential, but, in fact, it forms soluble Li<sub>x</sub>MoO<sub>3</sub> and leads to electrode degradation.<sup>[21]</sup> By detecting the change in the separator, we attempted to verify the relation between the discharge/charge process and the stability of Mo<sub>2</sub>C in Li-CO<sub>2</sub> batteries. Consistent with the cyclic voltammetry (CV) results, Mo<sub>2</sub>C showed stability during discharge and charge to 3.8 V, but it started to dissolve and the separator became dark blue when it was charged above 3.8 V (Figure S3). This finding implies that the soluble species arise from the dissolution of Mo<sub>2</sub>C at high voltage, not from the decomposition of the discharge product. By limiting the charge cut-off voltage to 3.65 V, Mo<sub>2</sub>C/CNT was fully discharged and charged for three cycles, which showed stable charge potential and good reversibility (Figure S4).

#### 2.3 Ex-situ studies of Mo<sub>2</sub>C/CNT electrodes

To understand the different performances of CNT and Mo<sub>2</sub>C/CNT in CV and galvanostatic discharge/charge, CNT and Mo<sub>2</sub>C/CNT electrodes in different discharge/charge stages were investigated via ex-situ characterizations. It is important to analyse the discharge product and its charging behaviour, which can provide essential insight into the mechanism of rechargeable Li-CO<sub>2</sub> batteries. To obtain the CNT and Mo<sub>2</sub>C/CNT materials after discharge, Li-CO<sub>2</sub> cells were discharged to 2.0 V at the current of 20 μA. Typically the cathode was extracted from coin cells in an Ar-filled glove box and rinsed with TEGDME solvent to remove residual LiCF<sub>3</sub>SO<sub>3</sub> salt. The electrode was then sealed in Kapton tape for protection against air contamination. Based on XRD (Figure S5), SEM (Figure S6), and Raman spectroscopy (Figure S7), the CNT cathode was passivated by crystalline Li<sub>2</sub>CO<sub>3</sub> during discharge, which is consistent with previous reports.<sup>16,8,13,141</sup> Unlike CNT electrode, the XRD pattern of discharged Mo<sub>2</sub>C/CNT electrode, indicating that some amorphous product was formed on the surface of Mo<sub>2</sub>C/CNT, but not crystalline Li<sub>2</sub>CO<sub>3</sub> (Figure S8).

To probe this amorphous discharge product, ex-situ analyses of the surfaces of electrodes at different stages (pristine, discharged, and charged) via SEM, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were carried out. As shown in Figure 3a, the pristine  $Mo_2C/CNT$  electrode shows a porous structure, which has the same morphology of  $Mo_2C/CNT$  powders. After discharge to 2.0 V, the cathode pores were filled with some film-like material, indicating the formation of an amorphous discharge product on the surface of the  $Mo_2C/CNT$  electrode. This film-like product disappeared after the cell was fully charged, indicating the decomposition of this amorphous discharge product. The amorphous morphology and low charge potential may well be linked to a similar phenomenon in the Li- $O_2$  battery, where it was reported that amorphous peroxide is more ionically conductive than the crystalline phase, and also that there is some superoxide-rich surface which lowers the charge potential.<sup>[22,23]</sup> To verify the reversible formation and decomposition of the amorphous

product, Raman spectroscopy was carried out to elucidate the electrode compositions and the chemical bonds that are formed and broken (Figure 3b). Two bands of pristine Mo<sub>2</sub>C/CNT electrode at 1325 cm<sup>-1</sup> and 1575 cm<sup>-1</sup> are respectively assigned to the disorder band (D band) and the graphitic band (G band) of carbon,<sup>[24]</sup> where the D band and the G band represent the  $sp^3$  C–C single bond and the  $sp^2$  C=C double bond, respectively. After discharge, there is a new peak that appears at 897 cm<sup>-1</sup>, indicating the formation of a new Mo–O  $sp^3$  hybridization bond.<sup>[25]</sup> This stretching peak disappears after charge, indicating the breaking of the Mo–O bond. This would suggest that oxygen in CO<sub>2</sub> may combine with molybdenum in Mo<sub>2</sub>C to form the amorphous product upon discharge, and this amorphous product releases CO<sub>2</sub> when the Mo–O bond breaks upon charge step. It seems that this strong coupling and the resulting electron delocalisation in the special pair plays a pivotal role in stabilizing such reduced compounds, which can be seen as the Mo–O coupling intermediate.

XPS analysis was further carried out to analyse the oxidation states and composition of the surface of Mo<sub>2</sub>C/CNT electrodes in different discharge/charge stages, which was intensively applied to explore the catalysis mechanism, especially for  $\beta$ -Mo<sub>2</sub>C.<sup>[17–19]</sup> The Mo 3d spectra are fitted into 3d<sub>5/2</sub> and 3d<sub>3/2</sub> peaks because of the spin-orbital coupling feature, and the fitting parameters of XPS are shown in Table S1. As shown in Figure 3c, the peak fitting suggests that there are four oxidation states for Mo (Mo<sup>2+</sup>, Mo<sup>3+</sup>, Mo<sup>5+</sup>, Mo<sup>6+</sup>) on the surface of pristine Mo<sub>2</sub>C/CNT electrode. Mo–C bonds in Mo<sub>2</sub>C can explain the Mo<sup>2+</sup> and low oxidation states of Mo<sup>3+</sup>. Previous studies indicated that the surface of Mo<sub>2</sub>C would be contaminated with MoO<sub>2</sub> and MoO<sub>3</sub> when it is exposed to air, which can explain the existence of Mo<sup>5+</sup> and Mo<sup>6+,[17,18]</sup> After discharge, the shares of the Mo<sup>2+</sup>, Mo<sup>3+</sup>, and Mo<sup>5+</sup> states were steeply decreased, while that of the Mo<sup>6+</sup> state rapidly increased, indicating the oxidation of Mo in the low valence state to the high valence state. Consistent with the Raman spectra, the oxidation of Mo in the low valence. The outer electrons of Mo have been transferred to strong electron accepting materials, a role

which should be ascribed to the O atoms in some  $CO_2$  reduction product. Upon charge, the proportions of  $Mo^{2+}$ ,  $Mo^{3+}$ ,  $Mo^{5+}$ , and  $Mo^{6+}$  returned to the initial stage, indicating that the delocalized electrons return to Mo during this reversible charge process. The C 1s spectra (shown in Figure 3d) also show that the C–O peak at 286.6 eV increases after discharge and is reduced after charge, indicating  $CO_2$  capture and release during the discharge/charge process. It is worth noting that no peak related to O–C=O could be observed, indicating that no carbonate radicals are formed during discharge.

#### 2.4 Mechanism of stabilizing the intermediate product by Mo<sub>2</sub>C

Compared with the intensive research on the rechargeable Li-O<sub>2</sub> battery, research on the rechargeable Li-CO<sub>2</sub> battery is still an ongoing task. Therefore, some results reported for the Li-O<sub>2</sub> battery may shed light on exploring the mechanism of this new system. It is generally accepted that the reduction in an aprotic Li-O<sub>2</sub> battery proceeds through the general steps shown in Table 1.<sup>[26,27]</sup> Equations (1-4) show one-electron reduction of O<sub>2</sub> to form O<sub>2</sub><sup>-</sup> at the beginning stage, and then a lithium ion combines with O<sub>2</sub><sup>-</sup> to form LiO<sub>2</sub>, followed by the chemical disproportionation reaction in which LiO<sub>2</sub> disproportionates to Li<sub>2</sub>O<sub>2</sub> and O<sub>2</sub>, or LiO<sub>2</sub> combines with a lithium ion and an electron to form Li<sub>2</sub>O<sub>2</sub>. The decomposition of Li<sub>2</sub>O<sub>2</sub> will induce high overpotential in the charge process, since it is typically insoluble and electronically insulating. Similarly, in the Li-CO<sub>2</sub> battery, when carbon materials are used as cathode for Li-CO<sub>2</sub> batteries, the discharge product is proved to be Li<sub>2</sub>CO<sub>3</sub>, and the total reaction can be proposed as:<sup>[6,13,14]</sup> 4Li<sup>+</sup> + 4e<sup>-</sup> + 3CO<sub>2</sub>  $\rightarrow$  2Li<sub>2</sub>CO<sub>3</sub> + C. Although the pathway is still unclear, based on lithium carbonate and carbon as the discharge product, as well as the proved disproportionation of LiO<sub>2</sub> in the Li-O<sub>2</sub> battery, it would be plausibly assumed that some disproportionation reaction takes place in the Li-CO<sub>2</sub> battery, as shown in Table 1.

**Table 1.** Mechanism of discharge process in the Li-O<sub>2</sub> battery and possible mechanism of discharge process in the Li-CO<sub>2</sub> battery.

| Li-O <sub>2</sub> battery                                            |     | Li-CO <sub>2</sub> battery                                                           |     |
|----------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------|-----|
| $O_2 + e^- \rightarrow O_2^-$                                        | (1) | $2\mathrm{CO}_2 + 2\mathrm{e}^- \to \mathrm{C}_2\mathrm{O}_4^{2-}$                   | (5) |
| $Li^+ + O_2^- \rightarrow LiO_2$                                     | (2) | $C_2O_4^{2-} \rightarrow CO_2^{2-} + CO_2$                                           | (6) |
| $2\text{LiO}_2 \rightarrow \text{Li}_2\text{O}_2 + \text{O}_2$       | (3) | $CO_2^{2^-} + C_2O_4^{2^-} \rightarrow 2CO_3^{2^-} + C$                              | (7) |
| $\text{LiO}_2 + \text{Li}^+ + e^- \rightarrow \text{Li}_2\text{O}_2$ | (4) | $2\mathrm{Li}^{+} + \mathrm{CO}_{3}^{2-} \rightarrow \mathrm{Li}_{2}\mathrm{CO}_{3}$ | (8) |

Equation (5) shows the one-electron reduction of  $CO_2$  to  $C_2O_4^{2-}$  on the surface of carbon materials, for which the open circuit voltage could be calculated to be 3.0 V.<sup>[28]</sup> It is probable that unstable  $C_2O_4^{2-}$  disproportionates through two steps to  $CO_3^{2-}$  and C, as shown in Equations (6) and (7). Once crystalline Li<sub>2</sub>CO<sub>3</sub> has formed in Equation (8), it is difficult to decompose below 4.0 V.

In the Li-O<sub>2</sub> battery, to reduce charge overpotential, metals in Group VIII such as Ru and Ir were utilized in Li-O<sub>2</sub> battery electrodes.<sup>[29-31]</sup> It was confirmed that the partial oxidation of the ruthenium facilitates stabilizing the highly unstable peroxide/superoxide ions in the Li<sub>2</sub>,  $_xO_2$  phase, and thus reduces the overpotential for Li extraction from the Li<sub>2</sub>O<sub>2</sub>.<sup>[30]</sup> Also, the use of Ir-based electrode could absorb and stabilize LiO<sub>2</sub> to become the product of the reaction rather than an intermediate, which dramatically reduces the charge overpotential down to 3.2 V.<sup>[31]</sup> As it is known to have similar catalytic effects to these metals in Group VIII, Mo<sub>2</sub>C probably stabilizes the intermediate product C<sub>2</sub>O4<sup>2-</sup> on discharge to form an amorphous product, which can be decomposed at low charge potential in the Li-CO<sub>2</sub> battery. Based on experimental results and the similar phenomenon in the Li-O<sub>2</sub> battery are summarized in the following two equations:

$$2CO_2 + 2e^- \to C_2O_4^{2-}$$
(5)  
11

$$C_2O_4^{2-} + 2 Li^+ + Mo_2C \rightarrow Li_2C_2O_4 - Mo_2C$$
 (9)

Equation (5) represents the one-electron reduction of CO<sub>2</sub> to C<sub>2</sub>O<sub>4</sub><sup>2-</sup>, and the open circuit voltage is calculated to be 3.0 V.<sup>[28]</sup> In the presence of Mo<sub>2</sub>C, some metal-oxygen coupling between Mo in Mo<sub>2</sub>C and O in C<sub>2</sub>O<sub>4</sub> stabilizes this unstable C<sub>2</sub>O<sub>4</sub><sup>2-</sup> through coordinative electron transfer.<sup>[32]</sup> This can prevent the formation of insulating Li<sub>2</sub>CO<sub>3</sub> and thus easily release CO<sub>2</sub> and Li<sup>+</sup> through uncoupling of the Mo-O chemical bond during charge, which can reduce the charge potential below 3.5 V, as shown in Figure 2b. These reactions can be summarized by the schematic illustration shown in Figure 4. The characteristics that make Mo<sub>2</sub>C suitable for this stabilizing function are due to the low valence of molybdenum in Mo<sub>2</sub>C, which can promote the transfer of outer electrons to oxygen in the Li<sub>2</sub>C<sub>2</sub>O<sub>4</sub> intermediate product and prevent its disproportionation to Li<sub>2</sub>CO<sub>3</sub>. So, in the charge process, only amorphous Li<sub>2</sub>C<sub>2</sub>O<sub>4</sub>-Mo<sub>2</sub>C releases lithium ions and CO<sub>2</sub> below 3.5 V. If crystalline Li<sub>2</sub>CO<sub>3</sub> is formed, it cannot be decomposed below 4.0 V. Therefore, Mo<sub>2</sub>C is assumed to play an important role in stabilizing the C<sub>2</sub>O<sub>4</sub><sup>2-</sup> as intermediate product, to prevent its further disproportionation reaction.

Moreover, most reported Li-air batteries are actually operated under a pure O<sub>2</sub> atmosphere, while CO<sub>2</sub> and moisture in ambient air can significantly affect the cycling performance when this kind of battery applied in real utilization. As Mo<sub>2</sub>C/CNT has been reported as catalyst in Li-O<sub>2</sub> battery,<sup>[20]</sup> and also has the potential to be used as catalyst with high round-trip efficiency in Li-CO<sub>2</sub> battery, this material may reduce the deleterious impact of CO<sub>2</sub> contamination from air on the cell processes. Thus, although a membrane to avoid moisture is still needed for such an open system, Mo<sub>2</sub>C/CNT may hold promise for utilization of Li-air battery under ambient air.

#### 3. Conclusions

In summary, Mo<sub>2</sub>C/CNT was prepared via a carbothermal reduction process and applied as the catalyst for Li-CO<sub>2</sub> batteries. This composite material shows a high round-trip efficiency of 77%, as well as a good cycling performance. Through a series of characterizations of pure CNT and the as-prepared Mo<sub>2</sub>C/CNT, it is clearly shown that CO<sub>2</sub> reduction in the presence of Mo<sub>2</sub>C follows a different route that avoids the formation of insulating Li<sub>2</sub>CO<sub>3</sub>, so to reduce potential plateau on charge and improve round-trip efficiency of rechargeable Li-CO<sub>2</sub> battery. Raman and XPS analysis revealed that the amorphous discharge intermediate product, Li<sub>2</sub>C<sub>2</sub>O<sub>4</sub>-Mo<sub>2</sub>C, is deposited and decomposed during discharge/charge when Mo<sub>2</sub>C/CNT is used as cathode for Li-CO<sub>2</sub> batteries, and it could be well decomposed below 3.5 V. Although further studies using in-situ characterizations are still needed to provide direct evidence for understanding the mechanism behind this reversible reaction, we expect that such an effective catalyst can represent a good example to solve the problems of low electrical efficiency and poor cyclability in Li-CO<sub>2</sub> batteries.

#### 4. Experimental

#### 4.1 Synthesis of Mo<sub>2</sub>C/CNT materials:

Molybdenum carbide (Mo<sub>2</sub>C)/carbon nanotube (CNT) composite material was prepared via carbothermic reduction of a mixture of molybdenum trioxide (MoO<sub>3</sub>) and CNTs. In a typical procedure, the starting materials (MoO<sub>3</sub> and CNTs) were accurately weighed according to the stoichiometric amounts for the equation  $2MoO_3 + 7C = Mo_2C + 6CO$  and mixed by ball milling for 24 h. The rotation speed and ball-to-powder weight ratio were 300 rpm and 20:1, respectively. To protect the materials from oxidation, the milling operation was carried out under high purity Ar atmosphere. After that, the mixture was heated at 950 °C for 1 h under Ar at the heating rate of 10 °C min<sup>-1</sup>.

#### 4.2 Preparation of Li-CO<sub>2</sub> batteries:

Mo<sub>2</sub>C/CNT (or pure CNT) materials were mixed in N-methyl-2-pyrrolidone (NMP) liquid with a polyvinylidene fluoride binder (PVDF), with a weight ratio of active materials to PVDF of 8:2. The slurry was pasted onto carbon paper disks (diameter of 14 mm) and dried for 12 hours at 120 °C under vacuum to remove the residual solvent. The loading of electrodes was ~4 mg. Electrochemical tests were carried out using coin cells containing the active material working electrode, a lithium metal anode, and electrolyte (1 M LiCF<sub>3</sub>SO<sub>3</sub> in tetraethylene glycol dimethyl ether (TEGDME) impregnated into a glass fiber separator (Whatman GF/D microfiber filter paper, 2.7  $\mu$ m pore size). All cell assembly procedures were conducted in an argon-filled glovebox (oxygen and water contents less than 0.1 ppm). Tests were carried out in an CO<sub>2</sub>-filled chamber, and before testing, the cells were placed in this CO<sub>2</sub>-filled chamber to allow stabilization for 3 hours.

#### 4.3 Physical characterizations

#### 4.3.1 XRD and Microscopy

Powder X-ray diffraction (XRD) was performed on a GBC MMA XRD ( $\lambda = 1.54$  Å), with the voltage and current kept at – 40 kV and 25 mA, respectively. Scanning electron microscopy (SEM) images were obtained from a JEOL JSM-7500FA field emission SEM, in which the accelerating voltage was set at 5.0 kV and the emission current was 10 mA. Transmission electron microscopy (TEM) investigations were performed using a 200 kV JEOL ARM-200F instrument.

#### 4.3.2 Raman Spectroscopy

Raman spectroscopy was carried out on a Jobin-Yvon Horiba 800 with a 10 mW helium/neon laser at 632.81 nm excitation.

#### 4.3.3 TGA

Thermogravimetric analysis (TGA) was carried out in air using a Q500 (TA Instruments), with data analysis carried out using the Q Series software V. 2.5.0.255. The temperature range studied was between room temperature and 1000 °C, with heating at the rate of 10 °C min<sup>-1</sup>.

#### 4.3.4 XPS

X-ray photoelectron spectroscopy (XPS) measurements were performed on a VG Scientific ESCALAB 2201XL instrument configured with Al K $\alpha$  X-ray radiation. All spectra were fitted with Gaussian-Lorentzian functions and a Shirley-type background using CasaXPS software. For the analysis of Mo 3d spectra, constraints were used on the fitting for component pairs: peak area ratio of 2:3 for  $3d_{5/2}$  :  $3d_{3/2}$  and a maximum 0.2 eV difference in the full width half maximum (FWHM). The binding energy values were calibrated using the adventitious C 1s peak at 284.6 eV.

#### **Supporting Information**

Supporting Information is available from the Wiley Online Library or from the author.

#### Acknowledgements

Financial support from an Australian Research Council (ARC) Discovery Project (DP140100401) is gratefully acknowledged. The authors would like to thank the Australian National Fabrication Facility – Materials node and the UOW Electron Microscopy Centre for equipment use, with particular thanks to Dr. Prof Wu would appreciate financial support from National Materials Genome Project (2016YFB0700600), Nation1 Distinguished Young Scientists Program (51425301) and NSFC (21374021 and U1601214). David Mitchell. Many thanks also go to Dr. Tania Silver for critical reading of the manuscript.

Received: ((will be filled in by the editorial staff))

Revised: ((will be filled in by the editorial staff))

Published online: ((will be filled in by the editorial staff))

#### References

- T. M. McDonald, J. A. Mason, X. Kong, E. D. Bloch, D. Gygi, A. Dani, V. Crocellà, F. Giordanino, S. O. Odoh, W. S. Drisdell, B. Vlaisavljevich, A. L. Dzubak, R. Poloni, S. K. Schnell, N. Planas, K. Lee, T. Pascal, L. F. Wan, D. Prendergast, J. B. Neaton, B. Smit, J. B. Kortright, L. Gagliardi, S. Bordiga, J. A. Reimer, J. R. Long, *Nature* 2015, *519*, 303.
- [2] J. Liu, P. K. Thallapally, B. P. McGrail, D. R. Brown, J. Liu, *Chem. Soc. Rev.* **2012**, *41*, 2308.
- [3] W. Choi, K. Min, C. Kim, Y. S. Ko, J. W. Jeon, H. Seo, Y.-K. Park, M. Choi, *Nat. Commun.* **2016**, *7*, 12640.
- [4] S. Gao, X. Jiao, Z. Sun, W. Zhang, Y. Sun, C. Wang, Q. Hu, X. Zu, F. Yang, S. Yang, L. Liang, J. Wu, Y. Xie, Angew. Chemie - Int. Ed. 2016, 55, 698.
- [5] K. Takechi, T. Shiga, T. Asaoka, Chem. Commun. 2011, 47, 3463.
- [6] S. Xu, S. K. Das, L. Archer, *RSC Adv.* **2013**, *3*, 6656.
- [7] H.-K. Lim, H.-D. Lim, K.-Y. Park, D.-H. Seo, H. Gwon, J. Hong, W. A. Goddard, H. Kim, K. Kang, J. Am. Chem. Soc. 2013, 135, 9733.
- [8] Y. Liu, R. Wang, Y. Lyu, H. Li, L. Chen, *Energy Environ. Sci.* 2014, 7, 677.
- [9] X. Li, S. Yang, N. Feng, P. He, H. Zhou, *Chinese Journal of Catalysis*. 2016, 37, 1016.
- [10] X. Zhang, X.-G. Wang, Z. Xie, Z. Zhou, Green Energy & Environment 2016, 1, 4.
- [11] Z. Xie, X. Zhang, Z. Zhang, Z. Zhou, Adv. Mater. 2017, 1605891.
- [12] S. Yang, P. He, H. Zhou, *Energy Environ. Sci.* 2016, 9, 1650.
- [13] X. Zhang, Q. Zhang, Z. Zhang, Y. Chen, Z. Xie, J. Wei, Z. Zhou, Chem. Commun. 2015, 51, 14636.
- [14] Z. Zhang, Q. Zhang, Y. Chen, J. Bao, X. Zhou, Z. Xie, J. Wei, Z. Zhou, *Angew. Chemie Int. Ed.* **2015**, *54*, 6550.
- [15] K. Oshikawa, M. Nagai, S. Omi, J. Phys. Chem. B 2001, 105, 9124.
- [16] N. M. Schweitzer, J. A. Schaidle, O. K. Ezekoye, X. Pan, S. Linic, L. T. Thompson, *J. Am. Chem. Soc.* **2011**, *133*, 2378.
- [17] C. Wan, Y. N. Regmi, B. M. Leonard, Angew. Chemie Int. Ed. 2014, 53, 6407.
- [18] H. Vrubel, X. Hu, Angew. Chemie Int. Ed. 2012, 51, 12703.
- [19] M. D. Porosoff, X. Yang, J. A. Boscoboinik, J. G. Chen, Angew. Chemie Int. Ed. 2014, 53, 6705.
- [20] W. Kwak, K. C. Lau, C. Shin, K. Amine, L. A. Curtiss, Y. Sun, *ACS Nano* **2015**, *9*, 4129.
- [21] D. Kundu, R. Black, B. Adams, K. Harrison, K. Zavadil, L. F. Nazar, *J. Phys. Chem. Lett.* **2015**, *6*, 2252.
- [22] Y. Zhang, Q. Cui, X. Zhang, W. C. McKee, Y. Xu, S. Ling, H. Li, G. Zhong, Y. Yang, Z. Peng, Angew. Chemie - Int. Ed. 2016, 55, 10717.
- [23] J. Yang, D. Zhai, H.-H. Wang, K. C. Lau, J. A. Schlueter, P. Du, D. J. Myers, Y.-K. Sun, L. A. Curtiss, K. Amine, *Phys. Chem. Chem. Phys.* **2013**, *15*, 3764.
- [24] J.-S. Li, Y. Wang, C.-H. Liu, S.-L. Li, Y.-G. Wang, L.-Z. Dong, Z.-H. Dai, Y.-F. Li, Y.-Q. Lan, *Nat. Commun.* **2016**, *7*, 11204.
- [25] R. H. Busey, O. L. Keller, J. Chem. Phys. 1964, 41, 215.
- [26] L. Johnson, C. Li, Z. Liu, Y. Chen, S. Freunberger, P. C. Ashok, B. B. Praveen, K. Dholakia, J.-M. Tarascon, P. G. Bruce, *Nat. Chem.* **2014**, *6*, 1091.
- [27] J. S. Hummelshøj, A. C. Luntz, J. K. Nørskov, J. Chem. Phys. 2013, 138, 0.
- [28] K. Németh, G. Srajer, *RSC Adv.* 2014, *4*, 1879.
- [29] J. Jiang, P. He, S. Tong, M. Zheng, Z. Lin, X. Zhang, Y. Shi, H. Zhou, NPG Asia Materials **2016**, 8, e239.

- [30] Y. Wang, Z. Liang, Q. Zou, G. Cong, Y. C. Lu, J. Phys. Chem. C 2016, 120, 6459.
- [31] J. Lu, Y. Jung Lee, X. Luo, K. Chun Lau, M. Asadi, H.-H. Wang, S. Brombosz, J. Wen, D. Zhai, Z. Chen, D. J. Miller, Y. Sub Jeong, J.-B. Park, Z. Zak Fang, B. Kumar, A. Salehi-Khojin, Y.-K. Sun, L. A. Curtiss, K. Amine, *Nature* 2016, 529, 1.
- [32] R. Angamuthu, P. Byers, M. Lutz, A. L. Spek, E. Bouwman, Science 2010, 327, 313.



**Figure 1** (a) Scanning electron microscope (SEM) image of precursor mixture of MoO<sub>3</sub> and CNT after ball milling (scale bar: 200 nm); (b) SEM image of as-prepared Mo<sub>2</sub>C/CNT after carbothermal reduction (scale bar: 200 nm); (c) XRD patterns of the precursor mixture of MoO<sub>3</sub> and CNT, pure CNT, and as-prepared Mo<sub>2</sub>C/CNT; (d) Raman spectra of the precursor mixture of MoO<sub>3</sub> and CNT, pure CNT, and as-prepared Mo<sub>2</sub>C/CNT.



**Figure 2.** (a) Cyclic voltammograms (CV) of Mo<sub>2</sub>C/CNT electrodes under N<sub>2</sub> and CO<sub>2</sub>, and CNT electrode under CO<sub>2</sub>. Counter and reference electrodes: Li metal. Scan rate: 0.1 mV s<sup>-1</sup>. Voltage window: 2.5 V - 4.2 V vs. Li/Li<sup>+</sup>. (b) Galvanostatic discharge-charge profiles of Mo<sub>2</sub>C/CNT electrodes under N<sub>2</sub> and CO<sub>2</sub>, and CNT electrode under CO<sub>2</sub> with the current at 20  $\mu$ A. (c) Galvanostatic discharge-charge profiles of CNT and Mo<sub>2</sub>C/CNT electrodes under CO<sub>2</sub> at the current of 20  $\mu$ A, up to the capacity of 100  $\mu$ Ah. (d) Cycling performance of Mo<sub>2</sub>C/CNT electrode for selected cycles under CO<sub>2</sub> at the current of 20  $\mu$ A, up to the capacity of 100  $\mu$ Ah.



**Figure 3** (a) SEM images of Mo<sub>2</sub>C/CNT electrode at different stages: pristine (top), discharged (middle), charged (bottom); (b) Raman spectra of Mo<sub>2</sub>C/CNT electrode at different stages: pristine (top), discharged (middle), charged (bottom); (c) X-ray photoelectron spectra (XPS) of Mo 3d for Mo<sub>2</sub>C/CNT electrode at different stages: pristine (top), discharged (middle), charged (bottom); d) X-ray photoelectron spectra (XPS) of C 1s for Mo<sub>2</sub>C/CNT electrode at different stages: pristine (top), discharged (middle), charged (bottom); d) X-ray photoelectron spectra (XPS) of C 1s for Mo<sub>2</sub>C/CNT electrode at different stages: pristine (top), discharged (middle), charged (bottom); d)



**Figure 4.** Schematic illustration of reactions during discharge and charge of  $Mo_2C/CNT$  in the Li-CO<sub>2</sub> battery. CO<sub>2</sub> is reduced at the  $Mo_2C/CNT$  electrode surface on discharge, forming Li<sub>2</sub>C<sub>2</sub>O<sub>4</sub>, and then this intermediate product is stabilized by  $Mo_2C$ , forming an amorphous discharge product that can be easily decomposed on charge.

### ToC figure



### Supporting Information

#### Mo<sub>2</sub>C/CNT as an Efficient Catalyst for Rechargeable Li-CO<sub>2</sub> Batteries

Yuyang Hou<sup>1</sup>, Jiazhao Wang<sup>2,\*</sup>, Lili Liu<sup>2</sup>, Yuqing Liu<sup>1</sup>, Shulei Chou<sup>2</sup>, Dongqi Shi<sup>2</sup>, Huakun Liu<sup>2</sup>, Yuping Wu<sup>3</sup>, Weimin Zhang<sup>4</sup>, Jun Chen<sup>1,\*</sup>



Figure S1. a) The HRTEM image of nanoparticle of as-prepared  $Mo_2C/CNT$  composite material; b-e) EDS with HRTEM in a highly resolved small area of  $Mo_2C/CNT$  (yellow: C, red: Mo).

The high-resolution TEM (HRTEM) image indicates that the particles possess a typical crystalline texture, with space between lattice planes of 0.149 nm and 0.227, which corresponds to the d value of the (110) and (101) planes of  $Mo_2C$ , which can well confirm the results of our XRD and SEM.

The EDS with HRTEM in a highly resolved small area of Mo<sub>2</sub>C/CNT shows the morphology and shape of as prepared Mo<sub>2</sub>C/CNT, and this mapping analysis also shows uniformity of Mo and C elements.



**Figure S2**. TGA curves of CNT and  $Mo_2C/CNT$ , indicating that  $Mo_2C$  was completely transformed into  $MoO_3$  while the CNT was transformed into  $CO_2$ .

In the TGA curve of Mo<sub>2</sub>C/CNT, the initial weight gain from 300 °C to 500 °C is attributed to the gradual oxidation of Mo<sub>2</sub>C to MoO<sub>3</sub>, followed by a slight weight loss caused by the combustion of CNTs. When Mo<sub>2</sub>C/CNT is heated to 700 °C, it is completely transformed into MoO<sub>3</sub>. According to these results, the Mo<sub>2</sub>C content is estimated to be 94.8 wt.% in Mo<sub>2</sub>C/CNT, based on the following equation: m (Mo<sub>2</sub>C) = 133.8 wt.% \*  $M(Mo_2C)/2M(MoO_3) = 94.8$  wt.%, and the CNT content is calculated to be 5.2 wt. %



**Figure S3.** Galvanostatic discharge and charge profile (left) of the Mo<sub>2</sub>C/CNT cathode in a Li-CO<sub>2</sub> cell, and corresponding images of separators taken out of the battery at the indicated stages (right).

Typically, a Li-CO<sub>2</sub> battery with Mo<sub>2</sub>C/CNT as cathode was discharged to 2.0 V, as shown in step A, at which point the separator was clean, indicating that the battery is stable during discharge; it was then charged to 3.65 V at step B, at which the separator was still clean, indicating that the decomposition of discharge product is stable; the battery was then charged to the capacity delivered upon discharge at step C, at which the separator was slightly blue, indicating full decomposition of the discharge product, although the electrode started to decompose at this voltage; the battery was finally charged to 3100  $\mu$ Ah at step D, at which the separator was dark blue, indicating that the Mo<sub>2</sub>C had become unstable and was starting to dissolve in electrolyte above 3.8 V, as also proved by the stable voltage plateau.



**Figure S4**. Galvanostatic cycling for the first 3 cycles of the Mo<sub>2</sub>C/CNT cathode in a Li-CO<sub>2</sub> cell at the current of 20  $\mu$ A in a 2.0 V – 3.65 V (vs. Li/Li<sup>+</sup>) voltage window. 20  $\mu$ A of current was applied for both discharge and charge. Although there is still degradation during cycling, this might have come from insufficient decomposition of the discharge product.



**Figure S5**. XRD pattern of CNT electrodes at different stages (pristine CNT: black line; and discharged CNT: red line), with the inset showing an enlargement of the indicated range.

The carbon paper exhibited the typical graphite structure, with a sharp (002) XRD graphite peak at  $2\theta \approx 26.55^{\circ}$  and a small (004) XRD graphite peak at  $2\theta \approx 54.75^{\circ}$ . After discharge, some characteristic peaks appeared, which correspond to the formation of Li<sub>2</sub>CO<sub>3</sub>, according to XRD card PDF#22-1141.



**Figure S6.** SEM images of CNT electrode at different stages: (a) pristine CNT; (b) discharged CNT.

The pristine CNT features a homogeneous crosslinked structure, with the diameters of the nanotubes in the range of 10-20 nm. After discharge to 2.0 V at the current of 20  $\mu$ A, the crosslinked structure was filled with some plate-like product.



**Figure S7**. Raman spectra of CNT electrodes at different stages (pristine CNT: black line; discharged CNT: red line).

The D band and G band are clearly shown in the Raman spectra, which should be ascribed to the CNT. Compared with the pristine CNT, there is a new peak at 1089 cm<sup>-1</sup>, corresponding to the formation of  $Li_2CO_3$ .



**Figure S8**. XRD patterns of  $Mo_2C/CNT$  electrodes at different stages (pristine  $Mo_2C/CNT$ : black line; discharged  $Mo_2C/CNT$ : red line), with the inset showing an enlargement of the indicated range.

Unlike discharged CNT in a Li-CO<sub>2</sub> cell, no additional new peaks appeared when  $Mo_2C/CNT$  was used as cathode in a Li-CO<sub>2</sub> cell, indicating that no crystalline Li<sub>2</sub>CO<sub>3</sub> was formed during discharge.

**Table S1** Fitting parameters (peak position, full width at half maximum (FWHM), and species percentage) for both Mo  $3d_{3/2}$  and Mo  $3d_{5/2}$  spectra collected from Mo<sub>2</sub>C/CNT electrode in different stages (pristine, discharged, charged).

| Electrode                      | Species          | Peak position for                  | FWHM for                        | Species    |
|--------------------------------|------------------|------------------------------------|---------------------------------|------------|
|                                |                  | Mo 3d <sub>5/2</sub> (former);     | Mo 3d <sub>5/2</sub> (former);  | percentage |
|                                |                  | Mo 3d <sub>3/2</sub> (latter) / eV | Mo 3d <sub>3/2</sub> (latter) / | 1%         |
|                                |                  |                                    | eV                              |            |
|                                | Mo <sup>2+</sup> | 228.64; 231.92                     | 1.69; 1.67                      | 19.3       |
| Pristine Mo <sub>2</sub> C/CNT | Mo <sup>3+</sup> | 229.33; 232.69                     | 1.61; 1.51                      | 7.4        |
|                                | Mo <sup>5+</sup> | 231.26; 234.60                     | 1.81; 1.79                      | 18.0       |
|                                | Mo <sup>6+</sup> | 232.91; 236.09                     | 1.76; 1.96                      | 55.3       |
|                                | Mo <sup>2+</sup> | -                                  | -                               | -          |
| Discharged                     | Mo <sup>3+</sup> | -                                  | -                               | -          |
| Mo <sub>2</sub> C/CNT          | Mo <sup>5+</sup> | 231.50; 234.74                     | 1.28; 1.15                      | 6.4        |
|                                | Mo <sup>6+</sup> | 233.35; 236.44                     | 1.82; 1.93                      | 93.6       |
|                                | Mo <sup>2+</sup> | 228.40; 232.05                     | 1.48; 1.37                      | 11.3       |
| charged Mo <sub>2</sub> C/CNT  | Mo <sup>3+</sup> | 229.21; 232.61                     | 1.80; 1.93                      | 15.2       |
|                                | Mo <sup>5+</sup> | 231.26; 234.80                     | 1.71; 1.70                      | 11.9       |
|                                | Mo <sup>6+</sup> | 233.25; 236.41                     | 1.90; 1.90                      | 62.6       |