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Abstract

Massive Online Analysis (MOA) is a software environment for implementing algorithms
and running experiments for online learning from evolving data streams. MOA is designed
to deal with the challenging problem of scaling up the implementation of state of the art
algorithms to real world dataset sizes. It contains collection of offline and online for both
classification and clustering as well as tools for evaluation. In particular, for classification
it implements boosting, bagging, and Hoeffding Trees, all with and without Näıve Bayes
classifiers at the leaves. For clustering, it implements StreamKM++, CluStream, ClusTree,
Den-Stream, D-Stream and CobWeb. Researchers benefit from MOA by getting insights
into workings and problems of different approaches, practitioners can easily apply and
compare several algorithms to real world data set and settings. MOA supports bi-directional
interaction with WEKA, the Waikato Environment for Knowledge Analysis, and is released
under the GNU GPL license.

1. Introduction

Nowadays, data is generated at an increasing rate from mobile applications, sensor ap-
plications, measurements in network monitoring and traffic management, log records or
click-streams in web exploring, manufacturing processes, call detail records, email, blog-
ging, twitter posts and others. In fact, all data generated can be considered as streaming
data or as a snapshot of streaming data, since it is obtained from an interval of time.

In the data stream model, data arrive at high speed, and an algorithm must process them
under very strict constraints of space and time. MOA is an open-source framework for
dealing with massive, potentially infinite, evolving data streams.

A data stream environment has different requirements from the traditional batch learning
setting. The most significant are the following:
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(1) Input
Requirement 1

(2) Learning
Requirements 2&3

(3) Model
Requirement 4

Learning

Examples

Prediction

Figure 1: The data stream classification cycle

Requirement 1 Process an example at a time, and inspect it only once (at most)

Requirement 2 Use a limited amount of memory

Requirement 3 Work in a limited amount of time

Requirement 4 Be ready to predict at any time

Figure 1 illustrates the typical use of a data stream classification algorithm, and how the
requirements fit in a repeating cycle:

1. The algorithm is passed the next available example from the stream (Requirement 1).

2. The algorithm processes the example, updating its data structures. It does so without
exceeding the memory bounds set on it (requirement 2), and as quickly as possible
(Requirement 3).

3. The algorithm is ready to accept the next example. On request it is able to predict
the class of unseen examples (Requirement 4).

As data stream mining is a relatively new field, evaluation practices are not nearly as
well researched and established as they are in the traditional batch setting. The majority
of experimental evaluations use less than one million training examples. In the context of
data streams this is disappointing, because to be truly useful at data stream classification
the algorithms need to be capable of handling very large (potentially infinite) streams of
examples. Demonstrating systems only on small amounts of data does not build a convincing
case for capacity to solve more demanding data stream applications (Kirkby, 2007).

MOA permits evaluation of data stream learning algorithms on large streams, in the order
of tens of millions of examples where possible, and under explicit memory limits. Any less
than this does not actually test algorithms in a realistically challenging setting.
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2. Classification

In traditional batch learning the problem of limited data is overcome by analyzing and
averaging multiple models produced with different random arrangements of training and
test data. In the stream setting the problem of (effectively) unlimited data poses different
challenges. One solution involves taking snapshots at different times during the induction
of a model to see how much the model improves.

The evaluation procedure of a learning algorithm determines which examples are used for
training the algorithm, and which are used to test the model output by the algorithm.When
considering what procedure to use in the data stream setting, one of the unique concerns is
how to build a picture of accuracy over time. Two main approaches arise:

• Holdout: When traditional batch learning reaches a scale where cross-validation is
too time consuming, it is often accepted to instead measure performance on a single
holdout set. This is most useful when the division between train and test sets has
been pre-defined, so that results from different studies can be directly compared.

• Interleaved Test-Then-Train or Prequential: Each individual example can be
used to test the model before it is used for training, and from this the accuracy can
be incrementally updated. When intentionally performed in this order, the model
is always being tested on examples it has not seen. This scheme has the advantage
that no holdout set is needed for testing, making maximum use of the available data.
It also ensures a smooth plot of accuracy over time, as each individual example will
become increasingly less significant to the overall average (Gama et al., 2009).

MOA contains stream generators, classifiers and evaluation methods. Figure 2 shows the
MOA graphical user interface. However, a command line interface is also available.

Considering data streams as data generated from pure distributions, MOA models a
concept drift event as a weighted combination of two pure distributions that characterizes
the target concepts before and after the drift. Within the framework, it is possible to define
the probability that instances of the stream belong to the new concept after the drift. It
uses the sigmoid function, as an elegant and practical solution (Bifet et al., 2009a,b).

MOA contains the data generators most commonly found in the literature. MOA streams
can be built using generators, reading ARFF files, joining several streams, or filtering
streams. They allow for the simulation of a potentially infinite sequence of data. The
following generators are currently available: Random Tree Generator, SEA Concepts Gen-
erator, STAGGER Concepts Generator, Rotating Hyperplane, Random RBF Generator,
LED Generator, Waveform Generator, and Function Generator. The implemented classifier
methods currently include: Naive Bayes, Decision Stump, Hoeffding Tree, Hoeffding Option
Tree (Pfahringer et al., 2008), Bagging, Boosting, Bagging using ADWIN, and Bagging using
Adaptive-Size Hoeffding Trees (Bifet et al., 2009b).

A non-trivial example of the EvaluateInterleavedTestThenTrain task creating a comma
separated values file, training the HoeffdingTree classifier on the WaveformGenerator data,
training and testing on a total of 100 million examples, and testing every one million ex-
amples, is encapsulated by the following commandline:

java -cp .:moa.jar:weka.jar -javaagent:sizeofag.jar moa.DoTask \
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Figure 2: MOA Graphical User Interface

"EvaluateInterleavedTestThenTrain -l HoeffdingTree \

-s generators.WaveformGenerator \

-i 100000000 -f 1000000" > htresult.csv
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MOA is easy to use and extend. A simple approach to writing a new classifier is to extend
moa.classifiers.AbstractClassifier, which will take care of certain details to ease the
task.

3. Clustering

MOA contains also an experimental framework for clustering data streams, which allows
comparing different approaches on individual (real world) settings and which makes it easy
for researchers to run and build experimental data stream benchmarks. The features of
MOA for stream clustering are:

• data generators for evolving data streams (including events such as novelty, merge,
etc. (Spiliopoulou et al., 2006)),

• an extensible set of stream clustering algorithms,

• evaluation measures for stream clustering,

• visualization tools for analyzing results and comparing different settings.

For stream clustering we added new data generators that support the simulation of cluster
evolution events such as merging or disappearing of clusters (Spiliopoulou et al., 2006). Cur-
rently MOA contains several stream clustering methods such as StreamKM++ (Ackermann
et al., 2010), CluStream (Aggarwal et al., 2003), ClusTree (P. et al., 2010), Den-Stream (Cao
et al., 2006), D-Stream (Tu and Chen, 2009) and CobWeb (Fisher, 1987). Moreover, MOA
contains measures for analyzing the performance of the clustering models generated in-
cluding measures commonly used in the literature as well as novel evaluation measures to
compare and evaluate both online and offline components. The available measures evaluate
both the correct assignment of examples (Chen, 2009) and the compactness of the resulting
clustering.

Beside providing an evaluation framework, the second key objective is the extensibility
of the benchmark suite regarding the set of implemented algorithms as well as the available
data feeds and evaluation measures.

The visualization component allows to visualize the stream as well as the clustering
results, choose dimensions for multi dimensional settings, and compare experiments with
different settings in parallel. Figure 3 shows a screen shot of our visualization tab. For this
screen shot two different settings of the CluStream algorithm (Aggarwal et al., 2003) were
compared on the same stream setting (including merge/split events every 50000 examples)
and five measures were chosen for online evaluation (CMD, F1, Precision, Recall and SSQ).
The upper part of the GUI offers options to pause and resume the stream, adjust the
visualization speed, choose the dimensions for x and y as well as the components to be
displayed (points, micro- and macro clustering and ground truth). The lower part of the
GUI displays the measured values for both settings as numbers (left side, including mean
values) and the currently selected measure as a plot over the arrived examples (right, F1
measure in this example). For the given setting one can see a clear drop in the performance
after the split event at roughly 160000 examples (event details are shown when choosing
the corresponding vertical line in the plot). While this holds for both settings, the left
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configuration (red, CluStream with 100 micro clusters) is constantly outperformed by the
right configuration (blue, CluStream with 20 micro clusters).

4. Website, Tutorials, and Documentation

MOA is a classification and clustering system for massive data streams with the following
characteristics:

• open source tool and framework for practice, research and teaching similar to WEKA

• set of implemented algorithms for testing and comparison to approaches from the
literature

• benchmark streaming data sets through stored, shared, and repeatable settings for
the various data feeds and noise options, both synthetic and real

MOA is written in Java. The main benefits of Java are portability, where applications
can be run on any platform with an appropriate Java virtual machine, and the strong and
well-developed support libraries. Use of the language is widespread, and features such as
the automatic garbage collection help to reduce programmer burden and error.

MOA can be found at:

http://moa.cs.waikato.ac.nz/

The website includes a tutorial, an API reference, a user manual, and a manual about
mining data streams. Several examples of how the software can be used are available.
Additional material regarding the extension of MOA to stream clustering can be found at

http://dme.rwth-aachen.de/moa-datastream/

The material includes a live video of the software as well as screenshots and explanations for
the most important interfaces that are needed for extending our framework through novel
data feeds, algorithms or measures.

5. Conclusions

Our goal is to build an experimental framework for classification and clustering on data
streams similar to the WEKA framework. Our stream learning framework provides a set
of data generators, algorithms and evaluation measures. Practitioners can benefit from
this by comparing several algorithms in real world scenarios and choosing the best fitting
solution. For researchers our framework yields insights into advantages and disadvantages of
different approaches and allows the the creation of benchmark streaming data sets through
stored, shared and repeatable settings for the data feeds. The sources are publicly available
and are released under the GNU GPL license. Although the current focus in MOA is on
classification and clustering, we plan to extend the framework to include regression, and
frequent pattern learning (Bifet, 2010).
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Figure 3: Option dialog for the RBF data generator (by storing and loading settings bench-
mark streaming data sets can be shared for repeatability and comparison) and
visualization tab of the clustering MOA graphical user interface.
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