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Abstract

Bisulfite sequencing (BS-seq) is the gold standard for studying genome-wide DNA methylation. We developed

MOABS to increase the speed, accuracy, statistical power and biological relevance of BS-seq data analysis. MOABS

detects differential methylation with 10-fold coverage at single-CpG resolution based on a Beta-Binomial hierarchical

model and is capable of processing two billion reads in 24 CPU hours. Here, using simulated and real BS-seq data,

we demonstrate that MOABS outperforms other leading algorithms, such as Fisher’s exact test and BSmooth.

Furthermore, MOABS analysis can be easily extended to differential 5hmC analysis using RRBS and oxBS-seq.

MOABS is available at http://code.google.com/p/moabs/.

Background
DNA methylation, an epigenetic modification affecting

organization and function of the genome, plays a critical

role in both normal development and disease. Until re-

cently, the only known DNA methylation was 5-

methylcytosine (5mC) at CpG dinucleotides, which is

generally associated with transcriptional repression [1].

In 2009, another form of DNA methylation termed 5-

hydroxymethylcytosine (5hmC) [2] was found to be in-

volved in active demethylation [3] and gene regulation

[4]. Understanding the functional role of DNA methyla-

tion requires knowledge of its distribution in the gen-

ome [5,6]. Bisulfite conversion of unmethylated Cs to Ts

followed by deep sequencing (BS-Seq) has emerged as

the gold standard to study genome-wide DNA methyla-

tion at single-nucleotide resolution. The most popular

protocols include RRBS (Reduced Representation Bisul-

fite Sequencing) [7] and WGBS (Whole Genome Bisul-

fite Sequencing) [8] for the combination of 5mc and

5hmc, oxBS-Seq (Oxidative Bisulfite Sequencing) [9] for

5mc and TAB-Seq (Tet-assisted Bisulfite Sequencing) [10]

for 5hmc, respectively. After mapping BS-seq reads to the

genome, the proportion of unchanged Cs is regarded as

the absolute DNA methylation level. Due to random sam-

pling nature of BS-seq, deep sequencing (e.g. >30 fold) is

usually required to reduce the measurement error. Techno-

logical advances and reduced costs have seen a significant

increase in interest in BS-seq among biologists. Currently,

BS-seq is widely used by small laboratories to profile cell

lines and animal models [11], as well as by large consor-

tiums such as the NIH ENCODE, Roadmap Epigenomics,

The Cancer Genome Atlas (TCGA), and European BLUE-

PRINT to profile thousands of cell populations. Hence, it is

expected that BS-seq data will continue to grow exponen-

tially. However, despite recent progress [7,12-14], computa-

tional methods designed for issues specific to BS-seq are

much less developed than those for other sequencing appli-

cations such as ChIP-Seq and RNA-seq.

The most fundamental aspects of BS-seq data analysis

include read mapping and differential methylation detec-

tion. We previously developed one of the most widely

used BS mapping programmed BSMAP [15]. After read

mapping, the most common task is the identification of

differentially methylated regions (DMRs) between sam-

ples, such as disease versus normal. Based on the bio-

logical question, DMRs can range in size from a single

CpG (DMC: differentially methylated CpG) to tens of mil-

lions of bases. Although several statistical methods have

been applied to DMR detection [12], among which Fisher’s

exact test p-value (FETP) method [16] is the most popular,

several challenges remain to be addressed. 1) Statistical

Power: most previous methods are very conservative in

power and require deep sequencing (e.g. 30 fold). For
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example, Hansen [13] recently calculated that for single

CpG methylation level “even 30× coverage yields standard

error as large as 0.09”. As a compromise, many studies as-

sumed that neighboring CpGs have similar methylation

levels, thus can be combined together within a genomic

region (e.g. 1 kb) to increase the statistical power [17]. For

example, BSmooth [13] performs local smoothing fol-

lowed by t-test for DMR detection. While this strategy

may be applicable in many cases, regional average analysis

will unfortunately miss low-CpG-density DMRs that are

abundant in the genome and critical for gene expression,

such as TFBSs. Most TFBSs are small (i.e. < 50 bp) as im-

plied by high-resolution ChIP-seq and ChIP-exo experi-

ments [18] and contain few or even a single CpG(s) that

are in general differentially methylated compared to sur-

rounding ones, thus are very likely to be “overlooked” by

the regional average analysis. 2) Biological Significance:

previous methods use p-value for statistical significance of

DMR. This p-value metric only tells whether a region is

differentially methylated, but does not directly measure

the magnitude of the methylation difference. A similar

problem also exists in gene expression profiling, where the

p-value does not directly measure the expression fold-

change [19]. Since sequencing depth in BS-seq experi-

ments can fluctuate by an order of magnitude in different

loci, a very small methylation difference, although not bio-

logically meaningful, can easily return a significant p-value

if the underlying sequencing depth is deep enough. On

the other hand, the nominal methylation difference, i.e.

direct subtraction of two methylation ratios, suffers signifi-

cantly from the random sampling error such that a large

difference with low sequencing depth is not likely to be

statistically meaningful. 3) Biological Variation is an essen-

tial feature of DNA methylation [20], and should be han-

dled carefully to detect reproducible DMRs that represent

the common characteristics of the sample group. How-

ever, most previous methods fail to account for biological

variation between replicates, and simply pool the raw data

from replicates for DMR detection. Some of the resulting

DMRs may have significant differences at the mean level

but might not be reproducible between replicates, and

hence are “false-positives”. To our knowledge, BSmooth

[13] is the first replicate-aware program that accounted

for biological variation using a modified t-test.

In response to these challenges, we developed a power-

ful differential methylation analysis algorithm termed

MOABS: Model-based Analysis of Bisulfite Sequencing

data. Its source code is available as Additional file 1.

MOABS uses a Beta-Binomial hierarchical model to cap-

ture both sampling and biological variations, and accord-

ingly adjusts observed nominal methylation difference by

sequencing depth and sample reproducibility. The result-

ing credible methylation difference (CDIF) is a single

metric that combines both biological and statistical

significance of differential methylation. Using both simu-

lated and real whole-genome BS-seq data from mouse

brain tissues and stem cells, we demonstrate the superior

performance of MOABS over other leading methods, es-

pecially at low sequencing depth. Furthermore, one prac-

tical challenge is that BS-seq data analysis is usually

computational intensive, and requires multiple steps. We

therefore seamlessly integrate several major BS-seq pro-

cessing procedures into MOABS, including read mapping,

methylation ratio calling, identification of hypo- or hyper-

methylated regions from one sample, and differential

methylation from multiple samples. MOABS is imple-

mented in C++ with highly efficient numerical algorithms,

and thus is at least 10 times faster than other popular

packages. For example, it takes only 24 CPU hours to de-

tect differential methylation from 2 billion aligned reads.

Together, MOABS provides a comprehensive, accurate, ef-

ficient and user-friendly solution for analyzing large-scale

BS-seq data.

Results and discussion

Beta-Binomial hierarchical model for both sampling and

biological variations

For a single CpG locus in the j-th biological replicate of

condition i, we denote the number of total reads, the

number of methylated reads and methylation ratio as nij,

kij and pij, respectively. For a typical two group compari-

son, i = 1,2 and j = 1, 2,…,N, where N is the number of

replicates in each condition. The nij and kij are observa-

tions from experiments, while the pij is unknown with

kij/nij as its nominal estimation. Given pijand nij, the

number of methylated reads kij is characterized by the

sampling variation from sequencing and can be modeled

by a Binomial distribution: kij ~ Binomial(nij, pij). The

posterior distribution of the methylation ratio pij will

then follow a Beta distribution Beta(αij, βij) and can be

estimated using an Empirical Bayes approach. The prior

distribution will be estimated from the whole genome, in

which most CpGs are either fully methylated or fully un-

methylated, resulting in a bimodal distribution. The Em-

pirical Bayes approach will automatically incorporate

such bimodal information in the methylation ratio esti-

mation and hence increases the power of our analysis.

When biological replicates are available, we will refine

the posterior distribution of pij with biological variation

from the Bayesian perspective. Specifically, αi and βi will

be treated as random variables with a prior distribution

estimated from all the CpGs in the genome similar to

the Empirical Bayes priors. We will then use maximum

likelihood approach to generate the posterior distribu-

tion of pi. Typical posterior distributions of four CpGs

are shown in Figure 1a, in which all CpGs have the same

average methylation ratios and the same total number of

reads. Their methylation ratios would have identical Beta
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distributions (black curve on CpG #1) if biological variation

was not considered. Our method is able to adjust the poster-

ior distribution of pi based on observed biological variation.

For example, highly variable replicates on CpG #2 results in

a bimodal distribution, whereas reproducible replicates on

CpG #3 leads to a normal-like distribution. Furthermore, in-

creasing the number of reproducible replicates from 2 to 3

on CpG #4 will reduce the variation of the resulting poster-

ior distribution. Taken together, the posterior distribution of

the methylation ratio in condition i will be determined by its

prior distribution, sequencing depth, and the degree of vari-

ation between replicates.

Credible methylation difference (CDIF) is a single metric

for both statistical and biological significance of

differential methylation

We illustrate the idea of CDIF using a simple experi-

mental design, in which only one sample (N = 1) is

sequenced for each of the two conditions: kij ~ Binomial

(ni, pi) and pi ∼ Beta(αi, βi), i = 1, 2. The Empirical Bayes

priors α0i ; β
0
i of pi will be estimated from all the CpGs in

the genome by maximizing a marginal likelihood func-

tion using the quasi-Newton optimization method [21].

In this case, there is no biological variation, so Beta(αi,

βi) will be only determined by the prior distribution and

sequencing depth: αi ¼ k i þ α0i and βi ¼ ni−k i þ β0i . An

example is shown in Figure 1b. Due to low sequencing

depth (k1 = 9; n1 = 10), sample #1′s Beta distribution has

higher variance than that of sample #2 with high se-

quencing depth (k2 = 12; n2 = 80). The methylation ratio

difference between two samples is denoted as t = p1 - p2.

One immediate question is how to estimate the confi-

dence interval CI(a,b) of t. Many methods have been

proposed but their merits have been subject to debate

[22]. We therefore propose to use the exact numer-

ical solution [23] to solve CI(a,b). CDIF is then
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Figure 1 Overview of the MOABS algorithm. (a) Posterior distribution of methylation ratio inferred from biological replicates. Each curve represents

the inferred methylation ratio Beta distribution of a CpG. The symbols at the bottom indicate the observed methylation ratios of all replicates. The values

on the top right corner indicate number of methylated reads over number of total reads in each replicate. (b) An example of Credible Methylation

Difference (CDIF). Dash curves indicate inferred methylation ratio Beta distributions from low (Sample #1) or high sequencing depth (Sample #2). The black

curve is the exact distribution of the methylation difference between two samples. The CDIF is shown as the lower bound of the 95% confidence interval.

(c) Ranking of three CpG examples by CDIF, FETP p-value and nominal difference, i.e. direct subtraction of two methylation ratios. The three curves are the

exact distributions of methylation differences. The corresponding CDIF values are show as vertical dash lines.
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defined as the distance between 0 and the 95% CI

(a,b) (Figure 1b):

CDIF≡

a; if a≥0
0; if a < 0 < b

b; if b≤0

8

<

:

In practice, CDIF represents the conservative estimation of

the true methylation difference, i.e. for 97.5% of chance the

absolute value of true methylation difference is greater than or

equal to that of CDIF. The CDIF value will be assigned to 0 is

there is no significant difference. Constructed in this way, the

CDIF value, if greater than the resolution defined as min(1/n1,

1/n2), guarantees a significant p-value from Fisher’s exact test,

and at the same time represents the magnitude of methylation

difference. The sequencing depth will largely influence CDIF,

since bigger ni will make a smaller 95% CI of the methylation

difference, normally resulting in greater CDIF value.

We believe CDIF is a better metric to capture the methy-

lation difference than statistical p-value or nominal met-

hylation difference. Three CpG examples are shown in

Figure 1c. According to p-value 1.4e-10, CpG #3 is the most

significant one. However, this significant p-value, which is

largely driven by the high sequencing depth, does not cor-

rectly represent the actual biological difference of 0.3, which

is the smallest among three CpGs. On the other hand, if we

use nominal difference, CpG #2 would be the most signifi-

cant. However, its low sequencing depth makes this high

nominal difference unreliable. CDIF is able to penalize the

nominal difference according to its statistical significance

and ranks CpG #1 as the most significant followed by CpGs

#2 and #3, although CpG #1 does not have the most signifi-

cant p-value or nominal difference. Taken together, CDIF

reaches a well balance between statistical and biological sig-

nificance and gives a more stable and biological meaningful

interpretation and ranking of differential methylation.

Functions and performance of the MOABS pipeline

We have implemented MOABS as a comprehensive soft-

ware pipeline (Figure 2a), including read alignment, quality
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Figure 2 Overview of the MOABS software pipeline. (a) Comprehensive workflow of the MOABS pipeline. (b) An example of hypo-methylated
region. (c) A descriptive figure for global methylation distribution of a mouse methylome. The Y-axis on the left is percent of CpGs and the Y-axis on
the right is the average of local CpG density at each specified methylation ratio.
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control (QC), single sample analysis and multiple sample

comparative analysis. 1) The read alignment model is a

wrapper of popular bisulfite mapping programs, such as

BSMAP [15], which allows the trimming of low quality

band adaptor sequences, as well as supports parallel com-

puting on a cluster. 2) The QC module adjusts biases in

PCR amplification, end-repair, bisulfite conversion failure,

and etc. [24]. In addition, it can also estimate bisulfite con-

version rate based on cytosines in the non-CpG content. 3)

Single sample analysis reports CpG or CpH methylation ra-

tios with corresponding confidence intervals, detects hypo-

or hyper- methylated regions (e.g. Trp53 gene in Figure 2b)

in the genome [25], and provides general statistics with de-

scriptive figures (an example of the mouse methylome [25]

is shown in Figure 2c). 3) For multiple sample comparative

analysis, MOABS detects de novo DMCs, which can be fur-

ther grouped into DMRs using a Hidden Markov Model.

MOABS can also examine the differential methylation

levels of pre-defined regions, such as promoters.

All the modules are wrapped in a single master script

such that users can specify the input BS-seq reads and

run all the modules one by one automatically. The

MOABS pipeline is developed using C++ with highly ef-

ficient numerical algorithms, native multiple-threading

and cluster support so that multiple jobs can run in par-

allel on different computing nodes. Several mathematical

and computational optimizations have made MOABS

pipeline extremely efficient. For example, it takes only

one hour on 24 CPUs (IBM power7 4 Ghz) to detect dif-

ferential methylation for approximately 30 million CpGs

in the human genome based on 2 billion aligned reads.

MOABS is significantly faster than other software. For

example, a benchmark (Additional file 2: Table S1) based

on public BS-seq data in mouse hematopoietic stem cell

(HSC) [26] reveals that MOABS is roughly 3.3, 1.7, and

1.4 times faster than BSmooth in bisulfite mapping,

methylation call and differential methylation analysis, re-

spectively. In summary, MOABS is a comprehensive, ac-

curate, efficient and user-friendly solution for analyzing

large-scale BS-seq data.

Simulated BS-seq data reveals the superior performance

of MOABS

To assess the performance of MOABS on differentially

methylated CpGs (DMCs), we simulated 0.1 million true

positive CpGs with large methylation difference and 0.9

million true negative CpGs (Additional file 3: Figure S1)

from a H1 methylome [16], and then compared MOABS

with FETP at 5% false discovery rate (FDR) (Figure 3).

Note that this evaluation is at single CpG resolution

without local smoothing, therefore BSmooth [13] cannot

be used. The results indicate that MOABS clearly out-

performs FETP with the most dramatic difference ob-

served at low sequencing depth. For example, with

sequencing depth at 5–10 fold, MOABS can recover 55-

75% true positives while FETP only predicts 13-51% true

positives. To further evaluate the performance of

MOABS at different methylation levels, we re-simulated

the 0.1 million true positive CpGs with different baseline

methylation levels (0% -100%) and methylation differ-

ences (20% - 100%). The results (Additional file 3: Figure

S2) indicate that MOABS is more accurate than FETP at

any sequencing depth and at any methylation difference.

Notably, the difference between the two methods is large

when sequencing depth is low or when methylation dif-

ference is moderate (50% ~ 70%). In contrast, the differ-

ence between methods is small when sequencing depth

is high or when the methylation difference is either very

high (80% ~ 100%) or very low (~20%). Although FETP

is well suited for the analysis of discrete data, it has less

power for DNA methylation, which by its nature is a

continuous rather than discrete random variable. The

improved power of MOABS results from the modeling

of DNA methylation using a Beta-Binomial hierarchical

model and the Empirical Bayes approach to borrow in-

formation from all the CpGs in the genome. The testing

data used for the method validation above is included in

Additional file 4.
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negative CpGs were initially assigned the same methylation ratios. The

density of the methylation ratios fits a bimodal distribution (Additional file

3: Figure S1) frequently observed in real BS-seq data. The remaining true
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Y-axis shows the percentage of true DMCs predicted at 5% FDR.
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MOABS improves the detection of allele specific DNA

methylation

To assess how MOABS performs on DMRs for real BS-

seq data, we compared MOABS with FETP and

BSmooth [13] using allele-specific mouse methylomes

[25], in which a list of well-known imprinted DMRs can

serve as gold standard for method evaluation. Xie et al.

[25] used FETP followed by clustering of DMCs for

DMR detection. They confirmed 32 known experimen-

tally verified imprinted DMRs (Additional file 5: Table

S2) and reported 20 novel ones by pooling two biological

replicates without considering sample variation. We no-

ticed that two known DMRs (Ndn and Igf2r) are weak,

exhibiting a very small methylation difference of ap-

proximately 10%. We also found that 3 novel DMRs they

reported (Vwde, Casc1 and Nhlrc1) are differentially

methylated in only one of the two replicates, and thus

are likely to be false positives (Additional file 3: Figure

S3). Since the remaining 17 novel DMRs have yet to be

experimentally verified, we decided to remove them

from our analysis. In our method evaluation, we used

the 32 known DMRs as true positives and the remaining

genome (with 17 reproducible novel DMRs removed) as

true negatives. To allow for a fair comparison, we used

the same method to calculate FDR for all three methods.

In addition, we used the same procedure to cluster

DMCs into DMRs for MOABS and FETP. The resulting

ROC-like curves (Figure 4a) clearly indicate that

MOABS is superior to the other two methods. MOABS

successfully reports all 32 known DMRs including the

two weak ones at 11% FDR, and 4 “false positive” new

DMRs (Cdh20, Trappc9, Pcdhb20 and Pfdn4). Manual

inspection (Additional file 3: Figure S4) confirms that

these 4 “false positive” are indeed regions showing differ-

ential methylation in both replicates. Hence the 11%

FDR of MOABS is significantly over estimated based on

incomplete true positives. Interestingly, our FETP ana-

lysis predicts 7 new DMRs in addition to 32 known

DMRs, suggesting additional filtering steps may have

been performed in Xie et al. [25]. Among these 7 DMRs,

one greatly overlaps with the new DMR Pcdhb20 re-

ported by MOABS, while the other 6, including Vwde

and Casc1 and Nhlc1, show poor correlation between

replicates. Finally, the ROC-like curve indicates that

BSmooth is less accurate than either FETP or MOABS.

The 32 known DMRs can be easily detected by both

MOABS and FETP mainly because they have large

methylation differences and high read depth (54-fold in

DMR regions), which is consistent with our simulation

study. However, deep bisulfite sequencing of the mam-

malian genome is still quite expensive. This reality moti-

vated us to test to what extent these known DMRs can

still be recovered at a lower sequencing depth. The same

previous procedure was applied to compare all three

methods. The number of recovered known DMRs at 5%

FDR is plotted at each sequencing depth from random

sampling (Figure 4b). We observe that the lower sequen-

cing depth, the greater performance difference between

MOABS and FETP. For example, when the depth is at

11-fold, MOABS recovers roughly 90% of known DMRs,

while FETP only detects 78% of DMRs. When the depth

is further lowed to 3.1-fold, MOABS can still recover

roughly 70% of known DMRs, while FETP detects 44%

DMRs. Interestingly, BSmooth’s performance is largely

independent of sequencing depth, probably because it

was designed mainly for low sequencing depth. Indeed,

at a low depth of 3.1-fold, BSmooth outperforms FETP.

However, at sequencing depth higher than 3.1-fold,

BSmooth has a lower sensitivity than the other two

methods. Collectively, we conclude that MOABS is
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superior in DMR detection, especially at low sequencing

depth.

MOABS reliably reveals differential methylation

underlying TFBSs

Since the previous benchmark is based on a small num-

ber of experimentally verified DMRs, we sought to fur-

ther evaluate the performance of MOABS based on

larger scale datasets. The link between differential

methylation and TFBSs provides such a good sys-

tem. TFBSs are usually hypo-methylated compared to

surrounding genome background; therefore, a tissue

specific TFBS is expected to be a tissue specific hypo-

methylated-DMR (hypo-DMR). To test this hypothesis,

we performed deep (46-fold) WGBS of the mouse

hematopoietic stem cell (HSC), and compared the HSC

methylome with that of a publically available mouse em-

bryonic stem cell (ESC) [27]. The HSC methylome data

is accessible at NCBI GEO Accession GSE47815. The

HSC-specific hypo-DMR were then compared with ap-

proximately 58,000 in vivo ChIP-seq TFBSs of 10 major

HSC specific TFs [28], including Erg, Fli1, Gata2, Gfi1b,

Lmo2, Lyl1, Meis1, Pu.1, Runx1 and Scl. Figure 5a illus-

trates the hypo-methylation of a TFBS in Runx2 gene. At

the center of the TFBS co-bound by Runx1, Gata2 and

Scl, there are 2 CpGs fully methylated in mouse ESC but

unmethylated in HSC, while the surrounding regions

are almost fully methylated in both HSC and ESC.

Additional file 3: Figure S5 shows more examples of tis-

sue specific hypo-DMR coupled with tissue specific

TFBSs. Such TFBS associated hypo-methylated regions are

usually very small and abundant in the genome. Using

Runx1 as an example, 71% of the 4793 Runx1 TFBSs show

hypo-methylation, while the remaining TFBSs are either

fully methylated or have no underlying CpGs. Toge-

ther, ~34% of TFBS associated hypo-methylated regions

contain no more than 3 CpGs with a median length of

51 bp (Figure 5b). Furthermore, 14% of such regions even

have a single CpG. For such small DMRs, single CpG level

differential analysis is essential since regional averaging is

very likely to overlook most of them.

We then used TFBSs to evaluate DMC detection as-

suming tissue-specific TF binding is associated with

tissue-specific hypo-methylation. For a fair comparison,

we calculated FDR for each method based on a method-

specific null distribution obtained through permutation

of read sample labels. At FDR of 5%, MOABS, FETP and

BSmooth predicted 32,867, 32,047 and 18,021 differen-

tially methylated TFBSs respectively (Figure 5c). We also

used a method similar to Gene Set Enrichment Analysis

(GSEA [29]) to test enrichment of TFBS moving down

the lists of DMCs ranked by different methods. MOABS

shows the highest enrichment score (Figure 5d) of TFBS.

For example, with the same 4,000 most significant

DMCs, MOABS recovers 1,000 TFBSs while FETP only

predicts ~600 TFBSs (i.e., 40% less).

In this instance, the sequencing depth is sufficient to en-

able MOABS and FETP to recover very similar number of

TFBSs. However, when we randomly sampled reads to a

depth of 4-fold, MOABS recovered many more TFBS

(15,349) than FETP (7,520) and BSmooth (4,028) (Figure 5e).

Again, at this low sequencing depth, MOABS not only re-

covers 2–3 fold more TFBSs, but also exhibit more signifi-

cant score of TFBS enrichment in the most significant

DMCs. In both high and low sequencing depths, BSmooth

recovers fewer TFBSs mainly because its smoothing func-

tion easily ignores small region with a few CpGs. Together,

using tissue specific in vivo TFBSs, we demonstrate that

MOABS can better recover differential methylation in small

regulatory regions with a few CpGs, especially at low se-

quencing depth (e.g. 4-fold).

MOABS detects differential 5hmc in ES cells using RRBS

and oxBS-Seq

To demonstrate the broad utility of MOABS, we ana-

lyzed 5hmc data using RRBS and oxBS-seq [9]. RRBS

measures both 5mc and 5hmc together while oxBS-Seq

[9] detects 5mc directly. The 5hmc level can then be in-

ferred by the difference between RRBS and oxBS-Seq of

the same sample. The 5hmc level is often very small (e.g.

at 5%) and hence its detection requires hundreds of fold

coverage using FETP [9]. Our simulation study indicates

that MOABS can significantly reduce the depth require-

ment (Figure 6a). For example, to detect 5hmc at 5%

when 5mc is at 0%, MOABS requires 80-fold coverage

while FETP needs ~200-fold. However, when the 5mc

level is close to 50%, significantly more reads will be

needed for both methods (~120-fold for MOABS and

>500-fold for FETP). The differential 5hmc between two

samples can be inferred by the difference of two CDIF

values, each of which is the difference between RRBS

and oxBS-Seq of the same sample. The similar numerical

approach can then be used to infer the distribution of

the difference of the difference between two Beta distri-

butions, which are used to model BS-seq data. Figure 6b

shows an example, in which 5hmc is measured by both

RRBS and oxBS-Seq in two samples. FETP shows more

significant p-value for 5hmc in sample #1 than in #2,

whereas MOABS CDIF is bigger in sample #2 than in

#1. However, the significance of FETP on sample #1 is

largely driven by the high sequencing depth, thus does

not correctly represent the actual biological difference.

In contrast, MOABS CDIF reaches a balance between

statistical and biological significance and gives a bio-

logically meaningful differential 5hmc at CDIF value of

0.06 (0.29-0.23).

When applied to RRBS and oxBS-seq data derived

from ES cell lines with different passages [9], MOABS
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reported 299 genes with decreased 5hmc and 125 genes

with increased 5hmc (Additional file 6: Table S3) in pro-

moters in the later passage P20, which is consistent with

the mass spectrometry data [9] that shows overall re-

duced 5hmc in later passage. This result implies that the

epigenetic stability of ES cells is impacted by prolonged

in vitro culture. This is an important issue for both the

safety and efficacy of stem cell-derived tissues in cell-

replacement therapies as well as the appropriate in-

terpretation of experimental models. Mono-allelic gene

expression, including genomic imprinting, is primarily

regulated through epigenetic mechanisms and thus can

serve as a useful model of epigenetic stability. As ex-

pected, our analysis identified five imprinted genes with
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decreased 5hmc: Plagl1, Sfmbt2, Gpr1, Kcnq1 and

Kcnq1ot1, as well as one imprinted gene with increased

5hmc, Pcdha4-g.

The role of 5hmc in disease remains unclear. A recent

study suggests that genome-wide loss of 5hmc is an epi-

genetic feature of neurodegenerative Huntington’s disease

[30]. The authors identified 559 genes with decreased

5hmc in the diseased mice compared to healthy controls.

A considerable fraction of these disease-specific genes were

uncovered in our differential 5hmc analysis in ES cells.

This included 26 of 299 and 11 of 125 genes (overlapping

p-value < 8e-5) with decreased and increased 5hmc, re-

spectively. These results suggest that one potential conse-

quence of decreased epigenetic stability over time in ES

cells is the acquisition of pathological epimutations.

The observed bias toward loss of 5hmc in ES cells upon

long-term culture may also suggest stem cell properties, such

as pluripotency, are affected. Ficz and colleagues [31] showed

that knockdown of Tet1/Tet2 in mouse ES cells down regu-

lates epigenetic reprogramming and pluripotency-related

genes such as Esrrb, Klf2, Tcl1, Zfp42, Dppa3, Ecat1 and

Prdm14. Decreased expression was concomitant with both

decreased 5hmC and increased 5mC at the gene promoters.

In our differential 5hmc analysis in ES cells, we observed de-

creased 5hmc at three of these genes: Ecat1, Esrrb, and

Zfp42. Together, we conclude that MOABS can be used ef-

fectively to infer differential 5hmc using RRBS and oxBS-

Seq.

Conclusions
While progress in next-generation sequencing allows in-

creasingly affordable BS-seq experiments, the resulting

data generated poses significant and unique bioinformat-

ics challenges. The lack of efficient computational

methods is the major bottleneck that prevents a broad

adoption of such powerful technologies. In response to

this challenge, we developed MAOBS, an accurate, com-

prehensive, efficient, and user-friendly pipeline for BS-

seq data analysis. The MOABS analysis is novel and sig-

nificant in two major aspects: 1) MOABS CDIF value

provides an innovative strategy to combine statistical p-

value and biological difference into a single metric,

which will bring biological relevance to the interpret-

ation of the DNA methylation data. 2) MOABS does not

sacrifice resolution with low sequencing depth. By rely-

ing on the Beta-Binomial Hierarchical Model and Empir-

ical Bayes approach, MOABS has enough power to

detect single-CpG-resolution differential methylation in

low-CpG-density regulatory regions, such as TFBSs, with

as low as 10-fold. The low-depth BS-seq experimental de-

sign enables remarkable cost reduction per sample. In

Figure 3 simulated data, we showed that MOABS achieved

roughly 80% sensitivity with 5% FDR at 10-fold sequen-

cing depth. In Figure 4b real data, we showed that as se-

quencing depth decreased to 11-fold by sampling,

MOABS recovered roughly 90% of known DMRs. The

MOABS sensitivity starts to drop dramatically when se-

quencing depth is further reduced. Based on the above

two observations, we would recommend low-depth (e.g.

10-fold) BS-seq on more biological samples with the same

limited budget, which in most scenarios will provide

greater biological insights than high-depth BS-seq on

fewer samples.

Copy Number Variation (CNV) is a common issue in

many disease related bisulfite sequencing. The sequen-

cing depth is normally higher or lower in high (or low)

copy-number regions and this depth bias has an impact

on our CDIF calculation. To correct this bias, we have

included a separate script ‘redepth.pl’ in the MOABS

package. Users can select their favorite CNV detection
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tools [32], such as CNV-Seq, Control-FREEC and VarS-

can, to predict the CNV region from genome sequencing

or bisulfite sequencing. Nearly all these tools output a

bed file of CNV regions with predicted copy number

based on a p-value cutoff. The script ‘redepth.pl’ manip-

ulates the read alignment BAM files according to the

CNV prediction. If a read is located in a CNV region

with a predicted copy number of X in a diploid genome,

the read will have a probability of 2/X to be kept in the

new BAM files. Reads in the non-CNV regions will keep

unchanged. This process will result in CNV bias free

BAM files for downstream analysis.

Large-scale case–control epigenome-wide association

study (EWAS) is a powerful strategy to identify disease-

associated epigenetic biomarkers. Currently, most stud-

ies use Illumina bisulfite arrays (e.g. 450 K) mainly due

to the cost constraint. MOABS in theory can also be ap-

plied to such studies when EWAS bisulfite sequencing

data are publicly available.

In summary, as DNA methylation is increasingly rec-

ognized as a key regulator of genomic function, deci-

phering its genome-wide distribution using BS-seq in

numerous samples and conditions will continue to be a

major research interest. MOABS significantly increase

the speed, accuracy, statistical power and biological rele-

vance of the BS-seq data analysis. We believe that

MOABS’s superior performance will greatly facilitate the

study of epigenetic regulation in numerous biological

systems and disease models.

Materials and methods
The major portions of the methods for the model are

described here. In the Additional file 7, we provide more

details and additional methods to make the model

complete.

Distribution for difference of two Binomial proportions

In the Additional method section (Additional file 7) we

show that a methylation ratio p inferred from k methyl-

ated cytosines out of n total reads, follows a Beta distri-

bution from the Bayesian perspective. The probability

density function is

f p; n; kð Þ ¼ Be α; βð Þ ¼
pα−1 1−pð Þβ−1

Z 1

0

pα−1 1−pð Þβ−1dp

; ð1Þ

where α = k + α0, β = n-k + β0, if Be(α0, β0) is priori distri-

bution for p. We also give formulas to numerically cal-

culate the confidence interval for the single Binomial

proportional p under observed (n, k).

The methylation ratio difference at a defined genomic

locus from two biological samples is the difference of

two Binomial proportions p1-p2. Many methods have

been proposed to estimate the confidence interval p1-p2 of

and their merits have been subject to decades of consider-

able debate [22,33-38]. No comprehensive comparison of

currently available methods is available. This motivated us

to turn to the direct and exact numerical calculation of

confidence interval from Bayesian perspective.

Let t = p1−p2, where pi is the proportion for the sample

i with observation ni and ki. Since the joint probability

density of such observation is f(p1, n1, k1) f(p2, n2, k2),

the PDF for t is

f tð Þ ¼

Z 1

0

dp2f 1 p2 þ tð Þf 2 p2ð Þ

¼

Z 1

0

dp1f 1 p1ð Þf 2 p1 � tð Þ; ð2Þ

where fi(pi) ≡ f(pi; ni, ki). Boundary conditions like the

proportional area condition, minimal length condition

can be applied to get unique solutions for (a, b).

Distribution for difference of difference

Let t = p1 − p2, where pi is the proportion for the assay i

with observation ni and ki. In the ox-BS experiments, p2
is the oxBS methylation ratio and p1 is the RRBS methy-

lation ratio, and t is the 5hmc methylation ratio. Since

the joint probability density of such observation is f(p1;

n1; k1)f(p2; n2; k2), the PDF for t is

f tð Þ ¼

Z 1

0

dp2f 1 p2 þ tð Þf 2 p2ð Þ

¼

Z 1

0

dp1f 1 p1ð Þf 2 p1−tð Þ; ð3Þ

where fi(pi) ≡ f(pi; ni, ki).

Let t
0
¼ p

0

1−p
0

2 , where ′ denotes the other sample. To

be clear, call the two samples S and S′. In general we

want to know the difference of the two 5hmc ratios, i.e.,

t-t′. Let x = t–t′, we can immediately obtain the distribu-

tion of difference of 5hmc ratio between two samples by

f xð Þ ¼

Z 1

−1

f tð Þf 0 t−xð Þdt ¼

Z 1

−1

f t0 þ xð Þf 0 t0ð Þdt0; ð4Þ

where f(t) and f′(t′) are the distributions of 5hmc ratio

for sample S and S′ respectively. After distribution of

difference of 5hmc ratio between two samples is ob-

tained, similarly confidence interval, credible difference

and similarity test p-value can be calculated.

Distribution for measurements with replicates

Here we use the exact numerical approach to calculate

the distribution of p at observance (mi, li) of with mi as

total count for replicate i and li as methylated count for

replicate i. Let us start with 2 replicates. We try to fit

this unknown distribution of p at observance (m1, l1)
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and (m2, l2) into a Beta distribution f(p; α,β). The param-

eter estimation is based on the following formula

P k i; ni; α; βð Þ ¼

Z 1

0

f k i; ni; pð Þf p; α; βð Þdp; ð5Þ

where P(ki; ni, α, β) is the probability to observe (ni, ki)

under the Beta distribution f(p; α, β), and f(ki; ni, p) is

the Binomial distribution, i.e., the probability to observe

(ni, ki) under a specific true ratio p. For N number of

replicates, (α, β) may be estimated by maximizing the

log likelihood function

log L α; βð Þ ¼
X

N

i¼1

log Ck i
ni

B αþ ni; βþ k i−nið Þ

B α; βð Þ

� �

; ð6Þ

where the expression inside log is the probability P(ki; ni,

α , β ) defined in equation (5) and B (α, β)is the Beta

function.
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