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ABSTRACT

The MobiDB (URL: mobidb.bio.unipd.it) database of
protein disorder and mobility annotations has been
significantly updated and upgraded since its last ma-
jor renewal in 2014. Several curated datasets for in-
trinsic disorder and folding upon binding have been
integrated from specialized databases. The indirect
evidence has also been expanded to better capture
information available in the PDB, such as high tem-
perature residues in X-ray structures and overall con-
formational diversity. Novel nuclear magnetic reso-
nance chemical shift data provides an additional ex-
perimental information layer on conformational dy-
namics. Predictions have been expanded to provide
new types of annotation on backbone rigidity, sec-
ondary structure preference and disordered bind-
ing regions. MobiDB 3.0 contains information for
the complete UniProt protein set and synchroniza-
tion has been improved by covering all UniParc se-
quences. An advanced search function allows the

creation of a wide array of custom-made datasets
for download and further analysis. A large amount
of information and cross-links to more specialized
databases are intended to make MobiDB the cen-
tral resource for the scientific community working
on protein intrinsic disorder and mobility.

INTRODUCTION

The protein structure-function paradigm is a cornerstone
of molecular biology, offering a mechanistic understanding
of processes ranging from enzyme catalysis, signal transduc-
tion to molecular recognition and allosteric regulation. Un-
derlying this paradigm is the assumption that proteins be-
come functional by assuming a well-defined structure, typ-
ically described by the coordinates of all its atoms. A solid
foundation of this view is provided by the 130 000 struc-
tures of proteins and complexes in the Protein Data Bank,
PDB (1). However, it is increasingly recognized that many
proteins do not obey this rule. Intrinsically disordered pro-
teins (IDPs) or regions (IDRs) are devoid of order in their
native unbound state (2–4). Intrinsic disorder is prevalent
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in the human proteome (5), appears to play important sig-
naling and regulatory roles (2) and is frequently involved
in disease (6). The discovery of intrinsic disorder and its
prevalence and functional importance is transforming the
field of molecular biology. As intrinsic disorder is emerging
as a general phenomenon, databases are collecting and pre-
senting disorder related data in a systematic manner. Mo-
biDB has been a major contributor by providing consensus
predictions and functional annotations for all UniProt pro-
teins, driving the field ahead (7,8). The MobiDB upgrade
we present in this paper is essential for several reasons.

There is a rapid advance in the functional understand-
ing of intrinsic disorder. The functional classification of
IDPs/IDRs is becoming ever more elaborate, with sev-
eral newly recognized functional mechanisms (9). For ex-
ample, the central role of intrinsic disorder in the forma-
tion of membraneless organelles, such as nucleoli and stress
granules, by liquid-liquid phase separation has been char-
acterized recently (10–13). A wide range of experimen-
tal observations on the structure-function relationship of
IDPs/IDRs is furthering our understanding of disordered
states and of the manners in which they function (14–16).
These developments have also played a central role in the re-
cent update of the DisProt database (17), the central repos-
itory of experimentally characterized IDPs and IDRs. The
re-curated version of this database contains experimental
observations of disorder for more than 800 protein entries
and a renewed functional ontology schema. The experimen-
tal evidence on which it rests has also been significantly aug-
mented to include a broad range of biophysical techniques.
DisProt is the basis for most developments in disorder pre-
dictors (18,19), and its recent update is a major motivation
for a new version of MobiDB.

Additional developments in the field make this release
timely. A major source of intrinsic disorder is the identifi-
cation of residues with missing atomic coordinates in the
PDB, which can now be augmented by cryo-electron mi-
croscopy (cryo-EM) data. This is having a tremendous im-
pact on structural biology (20,21). Structural descriptions
of IDPs and IDRs under physiological conditions have also
greatly advanced and are starting to appear in dedicated
databases such as IDEAL (22), DIBS (23) and MFIB (24).
IDPs and IDRs can perform key roles in molecular recogni-
tion by folding upon binding of short linear motifs (SLiMs)
covered in the ELM database (25). Generally, the full func-
tional characterization of IDPs and IDRs requires the de-
scription not just of their free (disordered) states (26,27),
but also of their residual dynamics in the bound states (28).
Fuzzy (disordered) complexes can be found in FuzDB (29)
and structural ensembles describing the free form (30) in
the protein ensemble database (PED (31)). Techniques such
as in-cell Nuclear magnetic resonance (NMR) spectroscopy
(32,33) and single-molecule fluorescence (34) will soon help
study these structures in the physiological state. In reflec-
tion of all these developments, we are now launching a sig-
nificantly updated version of our database, MobiDB 3.0.
The new version incorporates additional curated data from
specialized databases. Novel annotation features include
disorder derived from publicly available NMR chemical
shift data (35) and an extended list of predictors. Database

Figure 1. Overview of different annotation data types (A) and levels of
accuracy (B) in MobiDB 3.0.

searches are facilitated by an improved search algorithm,
pre-calculated data and new sections in the database.

DATABASE DESCRIPTION

MobiDB 3.0 is intended to be a central resource for large-
scale intrinsic disorder sequence annotation. This new ver-
sion is organized by both type of disorder annotation and
quality of disorder evidence (Figure 1). Disorder informa-
tion is grouped in three different sections: disorder, linear
interacting peptides (LIPs) and secondary structure pop-
ulations. The latter represents the conformational hetero-
geneity of IDPs and IDRs as the ability to populate differ-
ent secondary structure populations in solution. LIPs are
structure fragments that interact with other molecules pre-
serving an elongated structure or folding upon binding. The
data in MobiDB is organized hierarchically. The top tier is
formed by manually curated data from external databases
and represents the highest quality annotations. Annotations
derived from experimental data such as X-ray and NMR
chemical shifts are indirect but far more abundant. At the
bottom, predictions provide disorder annotation at lower
confidence than experimental evidence. The main disorder
definition in MobiDB is provided by a consensus combin-
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Table 1. Overview of databases integrated into MobiDB 3.0

Database Type Comment URL

UniProt Curated Disorder http://www.uniprot.org/
DisProt Curated Disorder http://www.disprot.org/
FuzDB Curated Disorder http://protdyn-database.org/
ELM Curated LIPs http://elm.eu.org/
MFIB Curated LIPs http://mfib.enzim.ttk.mta.hu/
DIBS Curated LIPs http://dibs.enzim.ttk.mta.hu/
IDEAL Curated LIPs http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/
Gene3D Curated/Prediction Structure http://gene3d.biochem.ucl.ac.uk/
Pfam Curated/Prediction Domains/Families http://pfam.xfam.org/
CoDNaS Indirect Conformational diversity http://ufq.unq.edu.ar/codnas/

ing all available sources prioritizing curated and indirect
evidences over predictions in analogy to the previous ver-
sion (8). In the following, we will describe the main re-
cent improvements since the previous release. The database
schema, web interface and server have been completely re-
designed and the underlying technology updated. The fea-
ture viewer showing sequence annotations is now fully dy-
namic and allows the generation of high quality images for
publications with a click. Where available, MobiDB anno-
tation is projected directly onto the structure and shown in
a new 3D viewer. The look and feel and organization of the
page and loading latency were also improved.

New curated data

MobiDB 3.0 includes different sources of manually curated
disorder annotations (Table 1). These annotations fall into
two categories: disorder and LIPs. LIPs are binding regions
presumed or demonstrated to be intrinsically disordered
that fold upon binding. These come under different names
such as SLiMs or MoREs (molecular recognition elements)
in the literature. The IDEAL database calls them ‘protean’
segments (ProS) (22). MobiDB includes both ‘verified’ and
‘possible’ ProS from IDEAL, where verified means disorder
has been experimentally observed in the isolated molecule.
The Database of Disordered Binding Sites (DIBS, (23)) col-
lects cases where a disordered region folds upon binding
with a globular domain and the Mutual Folding Induced
by Binding (MFIB, (24)) database includes disordered re-
gions that fold upon binding with another disordered re-
gion. ELM (25) provides SLiM annotations involved in
binding and post-translational modifications. General dis-
order annotation, i.e. without any knowledge about tran-
sition driven by interactions, is collected from UniProtKB
(36), DisProt (17) and FuzDB (29). UniProtKB provides
manually curated disorder annotations under the region
field in the features section. FuzDB collects cases of fuzzy
complexes, where conformational diversity has a functional
role in the regulation and formation of protein complexes
or higher-order assemblies. DisProt has been recently re-
vamped and MobiDB now propagates DisProt disordered
regions by homology transfer. Regions homologous to ex-
perimentally characterized IDRs are mapped across ho-
mologs obtained from GeneTree alignments (37). Regions
with identity and similarity >80% and an alignment of at
least 10 residues are retained as homologous IDRs. Gene3D
(38) contributes complementary order annotation to the
MobiDB consensus calculation, while Pfam (39) is used

to highlight protein domains. Lastly MobiDB also maps
CoDNaS information to highlight conformation diversity
in globular regions. CoDNaS measures structural differ-
ences among conformers of the same protein (40).

New indirect annotations

Previous releases of MobiDB provided indirect annotations
from the PDB through missing residues in X-ray struc-
tures and mobile regions from NMR ensembles as calcu-
lated with the Mobi software (41). In the current release,
this annotation has been complemented with additional
indirect information from experimental data in the PDB
and chemical shifts from the Biological Magnetic Reso-
nance Data Bank (BMRB) (35). The new Mobi 2.0 software
(42) is used to extract LIPs and disorder information from
PDB files. Disorder is encoded by three different parame-
ters: high-temperature, missing and mobile residues. High-
temperature residues are detected from B-factor regions for
X-ray and cryo-EM structures using a threshold propor-
tional to the resolution of the structure. Missing residues
are available for all experimental types and obtained com-
paring the experimental sequence (i.e. PDB SEQRES en-
tries) with the observed residues in the structure (i.e. PDB
ATOM entries). A mobility estimate is provided for NMR
structures by comparing Cα displacement and local confor-
mations in different aligned models (41). LIPs are identified
by comparing intra- versus inter-chain contacts calculated
using RING (43). The closest atoms between two residues
are used to establish a contact which is then distinguished by
chemical type (e.g. hydrogen bond, salt bridge, �−� stack).
LIPs are identified as any region where the number of inter-
chain contacts is at least two times the number of intra-
chain contacts (42).

MobiDB 3.0 better exploits the power of NMR spec-
troscopy to probe the structural properties of proteins in
solution, as well as their dynamics on a wide range of
timescales (44). Chemical shifts quantify structural fluctu-
ations of proteins up to the millisecond timescale and are
relatively easy to measure. Using chemical shifts to ob-
tain information about the statistical populations of dif-
ferent structural motifs allows for a more comprehensive
structural description of proteins in solution than static
structures or binary definitions such as ‘ordered’ and ‘dis-
ordered’ (44). MobiDB 3.0 uses chemical shift data from
BMRB directly as reported without applying chemical shift
re-referencing methods. The software packages �2D (45)
and Random Coil Index (RCI) (46) are used to calculate
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Table 2. Overview of tools used into MobiDB 3.0

Tool Type Description

Mobi 2.0 Indirect Missing, high-temperature and mobile residues from PDB structures
RING 2.0 Indirect Residue interactions from PDB structures, used to define LIPs
RCI Indirect Random coil index from BMRB chemical shifts
�2D Indirect Secondary structure populations from BMRB chemical shifts
DynaMine Prediction Random coil index
FeSS Prediction Secondary structure prediction component of FELLS
MobiDB-lite Prediction Long disorder based on consensus
DisEMBL Prediction Disorder. Versions: 465, Hot-loops
ESpritz Prediction Disorder. Versions: DisProt, NMR, X-ray
IUPred Prediction Disorder. Versions: Short, Long
VSL2b Prediction Disorder
GlobPlot Prediction Globular regions, used as opposite of disorder
SEG Prediction Low complexity
Pfilt Prediction Low complexity

two-dimensional ensembles in terms of secondary structure
populations (44) and backbone flexibility. Secondary struc-
ture populations are calculated only for residues with at
least three atom types with measured chemical shifts, as us-
ing fewer chemical shifts results in less accurate mappings of
the populations (45). MobiDB 3.0 reports the experimen-
tal conditions at which the chemical shifts were measured
as the structural properties of some proteins can change
drastically between different conditions (e.g. binding part-
ners, lipids, pH) and these can help elucidate protein func-
tion (44). When an entry in MobiDB is associated to mul-
tiple chemical shifts, an overview of the predominant sec-
ondary structure conformation is provided in a consensus
track. This can be expanded in the feature viewer to show
experimental conditions such as pH, temperature, binding
partners, molecular state, sample information and the title
of the corresponding BMRB entries.

New predictors

MobiDB 3.0 includes the same set of disorder predictors
used in the previous release: ESpritz (47), IUpred (48), Dis-
EMBL (49) and VSL2b (50). Consensus generation is han-
dled by MobiDB-lite (51), which uses a stronger majority
threshold and enforces at least 20 consecutive disordered
residues to provide highly specific predictions. This is com-
pleted by a continuous representation of the fraction of
methods predicting disorder for each residue. DynaMine
(52), Anchor (53) and FeSS (54) are now also part of the an-
notation pipeline. DynaMine (52) predicts backbone flexi-
bility where 1.0 means complete order (stable conformation,
i.e. rigid) and 0 means fully random bond vector movement
(highly dynamic, i.e. flexible). Anchor predicts binding re-
gions located in disordered proteins, providing LIP annota-
tions for all proteins in the database. FeSS is a component of
the FELLS method (54) providing three-state (helix, sheet,
coil) secondary structure propensity. FeSS prediction confi-
dence can be interpreted similarly to the dynamic behavior
measured by �2D in chemical shifts, i.e. a propensity to re-
main in a given state of secondary structure. The complete
list of tools is available in Table 2.

The MobiDB-lite version used in MobiDB 3.0 has been
extended to provide a structural characterization of the dis-
order regions that can help interpret their functional role. It
distinguishes different types of disordered regions by mea-

suring the fraction of charged residues and net charge ac-
cording to a previous classification (55). The different types
are: positive polyelectrolites (D PPE), negative polyelectro-
lites (D NPE), polyampholites (D PA) and weak polyam-
pholites (D WC). A statistical analysis of the different dis-
order flavours was already performed on the MobiDB 2.0
data (8).

Usage and annotated data

MobiDB now contains all sequences from UniParc, the
most comprehensive non-redundant set of protein se-
quences. Entries are identified also by UniProtKB (36) ac-
cession numbers and can be retrieved by organism, taxon-
omy and other identifiers provided by UniProtKB. Predic-
tion results are combined with indirect disorder evidences
derived from PDB data (using Mobi 2) and data extracted
from manually curated third party databases. MobiDB an-
notations are used by DisProt (17) curators to guide the an-
notation of disorder regions. MobiDB data is made avail-
able to the public via a web interface allowing extensive
search functionalities and RESTful services for program-
matic access. MobiDB 3.0 includes a pre-calculated con-
sensus for all entries allowing real-time statistics and down-
load of entire datasets in different formats directly from the
web interface. The new database schema makes it possible
to perform complex search queries and to generate custom
datasets, for example retrieving all entries with manually cu-
rated annotations. The MobiDB update has been automa-
tized and is scheduled every three months due to the high
computational cost of generating predictions for new se-
quences.

DISCUSSION

MobiDB 3.0 improves on previous releases by adding de-
scriptions of conformational diversity and disorder-related
functions, both in terms of experimental data and pre-
dictions. A particular field where it may have a signifi-
cant impact is the establishment of a long-awaited disor-
der sequence-function relationship schema. The most reli-
able proxy to this goal is to assess the function of a pro-
tein by homology transfer, i.e. transferring functional an-
notation based on sequence similarity. Aligning IDR se-
quences is complicated by their high evolutionary variabil-
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ity and often limits evolutionary analysis (56,57). New func-
tional terms introduced in the DisProt update (17), repre-
sent non-canonical functions probably only characteristic
of IDPs which are not incorporated in functional classifica-
tion schemes such as GO (58). A large-scale analysis of IDP
functional annotations will be necessary to find adequate
boundaries for transferring IDP functions by homology. As
sufficient data is now available in MobiDB 3.0, we expect a
rapid advance in the field of sequence-function correlations
of IDPs.

For proteins with sufficient NMR data, MobiDB now
features quantitative annotations incorporating structure
and equilibrium dynamics in a unified framework. These
large-scale quantitative annotations will help understand
the biological role of order and disorder, and serve as a basis
to construct predictive models. As NMR measurements of
proteins in their native complex environments, such as in-
side living cells, are becoming more common (59), we will
be able to address fundamental biological questions with
greater physiological relevance (60).

MobiDB is widely used by scientific community and by
third party services such as DisProt (17) and ProViz (61).
It has recently joined the InterPro consortium to provide
disorder annotation alongside protein domains and fami-
lies (62). MobiDB is becoming a thematic hub for IDPs in-
side the European sustainable bioinformatics infrastructure
(ELIXIR) and we encourage contributions of novel predic-
tors and datasets. Future work will focus on including IDP
annotations into core data resources such as UniProt.
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