MobiHide: A Mobilea Peer-to-Peer System for
Anonymous Location-Based Queries*

Gabriel Ghinita!, Panos Kalnis', and Spiros Skiadopoulos?

L Dept. of Computer Science
National University of Singapore
{ghinitag,kalnis}@comp.nus.edu.sg
2 Dept. of Comp. Science & Technology
University of Peloponnese, Greece
spiros@uop.gr

Abstract. Modern mobile phones and PDAs are equipped with posi-
tioning capabilities (e.g., GPS). Users can access public location-based
services (e.g., Google Maps) and ask spatial queries. Although communi-
cation is encrypted, privacy and confidentiality remain major concerns,
since the queries may disclose the location and identity of the user.
Commonly, spatial K-anonymity is employed to hide the query initia-
tor among a group of K users. However, existing work either fails to
guarantee privacy, or exhibits unacceptably long response time.

In this paper we propose MOBIHIDE, a Peer-to-Peer system for anony-
mous location-based queries, which addresses these problems. MOBIHIDE
employs the Hilbert space-filling curve to map the 2-D locations of mo-
bile users to 1-D space. The transformed locations are indexed by a
Chord-based distributed hash table, which is formed by the mobile de-
vices. The resulting Peer-to-Peer system is used to anonymize a query by
mapping it to a random group of K users that are consecutive in the 1-D
space. Compared to existing state-of-the-art, MOBIHIDE does not pro-
vide theoretical anonymity guarantees for skewed query distributions.
Nevertheless, it achieves strong anonymity in practice, and it eliminates
system hotspots. Our experimental evaluation shows that MOBIHIDE has
good load balancing and fault tolerance properties, and is applicable to
real-life scenarios with numerous mobile users.

1 Introduction

Consider the following scenario: Bob uses his GPS enabled mobile phone (e.g.,
iPAQ hw6515, Mio A701) to ask the query “Find the nearest AIDS clinic to
my present location”. This query can be answered by a Location-Based Service
(LBS), e.g., Google Maps, which is not trusted. To preserve his privacy, Bob
does not contact the LBS directly. Instead he submits his query via a trusted
pseudonym service which hides his identity (services for anonymous web surf-
ing are commonly available). Nevertheless, the query still contains the exact

* This work has been partially supported by project PENED 03 funded by the European Social
Fund (75%) and the General Secretariat of Research and Technology (25%).

coordinates of Bob. One may reveal sensitive data by combining the location
with other publicly available information. If, for instance, Bob uses his mobile
phone within his residence, the untrustworthy owner of the LBS may infer Bob’s
identity (e.g., through a white-pages service) and speculate that he suffers from
AIDS. Bob may even hesitate to ask innocuous queries such as “Find the nearest
restaurant”, in order to avoid unsolicited advertisement.

Recent research on LBS privacy focused on the K-anonymity [17,20] tech-
nique, which is used in relational databases for publishing census, medical and
other sensitive data. A dataset is K-anonymous, if each record is indistinguish-
able from at least K—1 other records with respect to certain identifying at-
tributes. In the LBS domain, a similar idea appears in Ref. 7,9, 12, 15], which
employ spatial cloaking to conceal the location of the querying user u: Instead
of reporting the coordinates of u, they construct an Anonymizing Spatial Region
(ASR or K-ASR) which encloses v and K£—1 additional users. Typically, a central
trusted server (called location anonymizer, or simply anonymizer in the sequel)
exists between the users and the LBS. All users subscribe to the anonymizer and
continuously update their position while they move. Each user sends his query
to the anonymizer, which constructs the appropriate K-ASR and contacts the
LBS. The LBS computes the answer based on the K-ASR, instead of the exact
user location; thus, the response may contain false hits. The anonymizer filters
the result and returns the exact answer to the user.

The centralized approach has several drawbacks; for example, the anonymizer
may become bottleneck since it must handle frequent location updates as users
move [8]. Most importantly, the centralized anonymizer poses a serious security
threat. If it is compromised by an attacker, or forced to cooperate with a gov-
ernment agency, the history of all user movements and their queries may be re-
vealed. For these reasons, two fully distributed systems emerged: (i) CLOAKP2P
[5] is a Peer-to-Peer system which constructs K-ASRs by considering users in the
neighborhood of the querying user. (ii) PRIVE [8], on the other hand, clusters
users in a hierarchical overlay network, resembling a distributed B¥-tree. Both
systems minimize the security risk by distributing the sensitive information in
numerous peers. However, we will show that CLOAKP2P fails to provide privacy
for many user distributions, whereas PRIVE may suffer from slow response time,
since root-level nodes constitute potential bottlenecks.

In this paper we propose MOBIHIDE, a Peer-to-Peer (P2P) system for anony-
mous location-based queries which addresses the problems of existing approaches.
In MOBIHIDE the participating mobile devices form a hierarchical distributed
hash table, based on the Chord P2P architecture [19], which indexes the lo-
cations of all users. In order to map the 2-D user locations to the 1-D Chord
space, we employ the Hilbert space-filling curve [16]. K-ASRs are collaboratively
assembled by peers in a distributed fashion, by choosing random groups of K
users (including the querying user) that are consecutive in the 1-D space. We
prove that for uniform query distribution MOBIHIDE guarantees privacy, and we
show experimentally that even for skewed distributions, the probability of iden-
tifying the querying user is very close to the theoretical bound. A clear trade-

O
o
02
o 3-ASR
% °U;
Location-Based u Uy
Service % U2
u D04
u
N o 'y
Pseudonym a
Service o 03
Fig. 1. System architecture Fig. 2. Anonymized query, =3

off emerges between MOBIHIDE and existing state-of-the-art PRIVE: the latter
provides anonymity guarantees under any query distribution, but has an hierar-
chical architecture. On the other hand, MOBIHIDE alleviates system hotspots,
and still achieves strong anonymity in practice. Our experiments suggest that
MOBIHIDE is resilient to failures, achieves good load balancing and supports ef-
ficiently the relocation of users (as users move) and the construction of X-ASRs
(while querying); therefore, it is scalable to a large number of mobile users.

The rest of the paper is organized as follows: Section 2 presents an overview of
MOBIHIDE. Section 3 surveys the related work. Section 4 introduces our Hilbert-
based randomized K-ASR construction algorithm, whereas Section 5 describes
the implementation of our system on top of Chord. Section 6 presents the ex-
perimental evaluation of MOBIHIDE. Finally, Section 7 concludes the paper and
discusses directions for future work.

2 Overview of MobiHide

We assume a large number of users who carry mobile devices (e.g., mobile phones,
PDAs) with embedded positioning capabilities (e.g., GPS). The devices have
processing power and access the network through a wireless protocol such as
WiFi, GPRS or 3G. Moreover, each device has an IP address and can establish
point-to-point communication with any other device in the system through a
base station (i.e., the two devices do not need to be within the range of each
other). For security reasons, all communication links are encrypted. In addition,
we assume the existence of a trusted central Certification Server (CS), where
users are registered. Prior to entering the system, a user u must authenticate
against the CS and obtain a certificate. Users having a certificate are trusted
by all other users. Typically, a certificate is valid for several hours; it can be
renewed by recontacting the CS. Apart from the certificate, the CS returns to u
a list of possible entry points to the P2P network (i.e., IP addresses of on-line
users). Note that the CS does not know the locations of the users and does not
participate in the anonymization process; therefore, it is not a security threat or
a bottleneck.

The mobile users self-organize into a P2P system (see Figure 1) based on the
Chord [19] distributed hash table architecture, well-known for its good scalability
and fault-tolerance properties. The P2P system defines a 1-D space of index keys;
MOBIHIDE uses the Hilbert space-filling curve to map the 2-D user coordinates
to 1-D space. The Hilbert curve is a continuous fractal (see Figure 2) which maps
each region of the space to an integer. With high probability, if two points are
close in the 2-D space, they will also be close in the Hilbert transformation [16].

Typically users ask Range or Nearest-Neighbor (NN) queries with respect to
their location. In the example of Figure 2, user u, asks for the nearest object to
his location (i.e., 04). Assume that the required degree of anonymity is £ = 3 (K
may vary among users). MOBIHIDE identifies in a distributed manner a random
set of 3 users (including u4) that are consecutive in the 1-D space (i.e., us, uz and
uy4 in the example), and constructs the corresponding 3-ASR (i.e., the rectangle
which encloses the 3 users). Next, uy submits the 3-ASR NN query to the LBS
through any existing pseudonym service [2]. Note that the pseudonym service
hides the IP address of us but is not aware of the users’ locations. Further-
more, it does not become a bottleneck, since each user may choose his preferred
pseudonym service.

The LBS returns to uy (through the pseudonym service) the NN of every
point of the 3-ASR. Intuitively, the nearest neighbors of a region are all data
objects inside the region plus the NNs of every point in the perimeter of the
region [11]. In our example, these are objects 0y and o4. Finally, uy filters the
false hits and determines his true NN (i.e., 04). Note that the number of false
hits depends on the IC-ASR; therefore we aim to minimize the size of the IC-ASR.
Query processing at the LBS [11,12,15] is orthogonal to our work but outside
the scope of this paper.

3 Background and Related Work

KC-anonymity was first discussed in relational databases, where sensitive pub-
lished data (e.g., census, medical) should not be linked to specific persons. Sama-
rati and Sweeney [17,20] proposed the following definition: A relation satisfies
K-anonymity if every tuple is indistinguishable from at least —1 other tuples
with respect to every set of quasi-identifier attributes. Quasi-identifiers are sets
of attributes (e.g., date of birth, gender, zip code) which can be linked to pub-
licly available data to identify individuals. Machanavajjhala et al. [14] proposed
{-diversity, an anonymization method that extends K-anonymity by providing
diversity among the sensitive attribute values of the anonymized set.

Privacy in location-based services has recently attracted a lot of attention.
Spatial K-anonymity is defined as [8]:

Definition 1 (Spatial K-anonymity). Let A be a set of K users with locations
enclosed in an arbitrary spatial region K-ASR. User u € A is said to possess K-
anonymity, if the probability of distinguishing u among the other users in A does
not exceed 1/K, where IC is the required degree of anonymity.

Note that: (i) The definition assumes a snapshot of the users’ locations.
Although we support user mobility, K-anonymity is undefined across multiple
snapshots. (%) Spatial C-anonymity does not depend on the size of the K-ASR.
In the extreme case, the -ASR can degenerate to a point, if K users are at
the same location. In general, we prefer small -ASRs, in order to minimize the
processing cost at the LBS and the communication cost between the LBS and
the mobile user. Nevertheless, some applications impose a lower bound on the
size of the K-ASR [15]. In such cases, the K-ASR can be trivially scaled to satisfy
the lower bound. The same procedure can also be used to avoid having users on
the perimeter of the KC-ASR.

Also observe that the naive solution of generating an arbitrary K-ASR around
the querying user, is not applicable. If, for instance, the user resides in a rural
area, the -ASR may include only himself, whereas in a densely populated area, a
too large KC-ASR will affect the query processing cost. Moreover, we cannot select
K—1 random users and send K distinct queries, because this would reveal the
ezxact locations of K users; this is not desirable for any anonymization technique.

Ref. [7] considers mobile users who send queries to the anonymizer together
with a spatial cloaking range ¢,,d, and a temporal cloaking interval ¢;. If KC-
1 other users generate queries within this cloaking box, the query is issued,
otherwise it is dropped. Ref. [9], on the other hand, assumes that users report
periodically their location to the anonymizer, and focuses on concealing the
exact location without considering query processing. The anonymizer indexes the
locations of all users with a Quad-tree [18]. For a user u, it traverses the Quad-
tree until it encounters a quadrant which includes v and less than —1 additional
users. Then it selects the parent of that quadrant as JC-ASR. Casper [15] also
employs a variation of the Quad-tree anonymization method. Casper attempts
to build K£-ASRs by combining two neighboring quadrants, rather than going
one level up in the tree every time more users are required. Finally, Ref. [12]
introduces the HILBASR algorithm based on space-filling curves, and proposes
an integrated framework for JC-ASR construction and query processing in LBS.

The previous approaches assume a centralized anonymizer. Recall from Sec-
tion 1 that centralized approaches, among other drawbacks, are potential se-
curity threats. Closer to our approach is CLOAKP2P [5], which addresses the
drawbacks of centralized anonymization by employing a fully distributed mobile
Peer-to-Peer (P2P) system. In CLOAKP2P, the querying user u initiates -ASR
construction by contacting all peers within a given physical radius r, which is
a fixed system parameter. If the set of peers Sy found in the initial iteration is
larger than KC, the closest IC of them are chosen to form the C-ASR; otherwise,
the process continues recursively, and all peers in Sy issue a request to all peers
within radius r. Intuitively, CLOAKP2P determines a JC-ASR by finding the K
—1 users closest to u. Unfortunately, this heuristic fails to achieve anonymity in
many cases, since u tends to be closest to the center of the K-ASR. We call this
“center-of-KC-ASR” attack. In Section 6 we demonstrate that, in many cases, an
attacker can identify u with probability much higher that 1/K. The experiments
show that MOBIHIDE is considerably more secure compared to CLOAKP2P.

PRIVE [8] is another P2P system, which uses the Hilbert transformation to
generate a sorted 1-D sequence of all users. PRIVE constructs fized partitions of K
users each (except the last one, which may have up to 2K—1 users). It is formally
proved that this method guarantees anonymity (i.e., prevents identification of
the query source) against any location-based attack, for any distribution of users
and queries, even if an attacker knows the exact location of users. To generate
fixed partitions, PRIVE must determine the absolute rank of each user in the
sorted Hilbert sequence. To achieve this, it implements an overlay network which
resembles a distributed B*-tree. For each query the search must start at the root
of the tree; this can overload the root peer. Although PRIVE has a load-balancing
mechanism, its purpose is to equally share load among users during long periods
of time, but it cannot avoid the root hotspot when the number of users or the
query rate increases. In Section 6 we will show that even with 10,000 users and a
moderate query rate, the response time is almost 10 minutes, while as many as
60% of the queries are rejected due to buffer overflows. In contrast, MOBIHIDE
does not maintain fixed partitions, therefore it is much faster than PRIVE.

The privacy of user locations has also been studied in the context of related
problems. Probabilistic Cloaking [4] does not apply spatial K-anonymity. In-
stead, given an ASR, the LBS returns the probability that each candidate result
satisfies the query, based on its location with respect to the ASR. Kamat et al.
[13] focus on sensor networks and examine the privacy characteristics of differ-
ent routing protocols. Hoh and Gruteser [10] describe techniques for hiding the
trajectory of users in applications that continuously collect location samples.

MOBIHIDE is built on top of Chord [19], a Distributed Hash Table (DHT)
protocol that supports scalable, fully decentralized key searching. Chord has a
flat structure, where all peers have equal responsibilities and equally share the
system load among themselves. Our work is also related to CANON [6], which
is a framework for building hierarchical DHTs, while retaining the homogeneity
of load and functionality offered by flat designs.

4 The MobiHide Spatial Anonymization Algorithm

We introduce MOBIHIDE, a P2P system which employs a randomized C-ASR
construction technique to offer query source anonymity, and is scalable to a
large number of mobile users. Similar to PRIvE, MOBIHIDE is using the Hilbert
ordering of the users’ locations. However, instead of grouping users into fixed
partitions, it forms a KC-ASR by randomly choosing K consecutive users, includ-
ing the querying user.

Let [uq, ... ,un] be the sequence of all users, ordered by their Hilbert value. To
allow random KC-ASR selection for the users at the start and end of the sequence,
the 1-D space becomes a ring (or torus), instead of an array. Therefore, u; is
after uy (and un is before up). Figure 3 presents an example, where u, is the
user who issues a query. There are K ways to choose a set of consecutive K
users which includes ug: [ug—xc41 @ Ugl, [Ug—Kk+2 Ugt1]s- -, [Uqg * Ugric—1]. This
is equivalent to choosing a random offset [€ [0, —1], representing the offset

Ug+k-1 - Hilbert value e ——
27133(43|56|58| 3 | 5|10(15|18

2K-1 users Us | U7 | Ug | Ug [Uso| s fuzfus | us|us

Ug+2

‘Uqu-ﬂ‘ ‘Uq—Z‘Uq—qu+1

L 4

€

Fig. 3. Hilbert sequence ring Fig. 4. K-ASR construction in MOBIHIDE

of u4 in the resulting sequence. For example, if [= 0, the resulting sequence is
[ug : ug+k—1]. Observe that we only need information in the neighborhood of
ug in order to select the sequence (as opposed to PRIVE, which needs the global
ranking). Therefore, MOBIHIDE works in a fully decentralized manner, and can
be deployed on top of a scalable structure such as Chord.

Figure 4 shows an example of -ASR construction, where us is the querying
user. Let K = 4 and assume that us randomly selects offset | = 2. According
to the Hilbert ordering, the resulting sequence of users is [u1g, u1, ug, u3]. The
corresponding IC-ASR is the minimum bounding rectangle (MBR) which encloses
these four users. In this particular example it was necessary to wrap around the
Hilbert sequence (from g to u1). Observe that the “jump” in Euclidean distance
due to wrapping, is not necessarily larger than other “jumps” that may occur
within the sequence (e.g., from user ug to ug). Therefore, the average size of
the K-ASRs (thus the query cost) is not affected significantly by wrapping. We
investigate further this issue in Section 6.

Theorem 1. If all users issue queries with the same probability (i.e., uniform
distribution), MOBIHIDE guarantees query anonymity.

Proof. Denote by Pg the probability of a user issuing a query (same for all
users). The query source generates a random offset [€ [0, K—1]; we denote by
(u,1) the event of user u generating a set of users with offset I. The probability
P,y = Pg/K. Refer to Figure 3, where v, is issuing a query. Obviously, u, must
belong to the set associated to his query. To guarantee anonymity, the probability
of identifying u, as the query source must not exceed 1/KC. We denote by A,
any set of users that includes u,, and by P4, the probability of such a set being
generated. We denote by P,, the probability of user u; being the source of the
query associated with A,. Then, P,, > 0 only for users [uq—x+1 : Ug+i—1], and
by symmetry, P, P, ... We have:

Ug—j — 7 Ug+tj

7‘

—i4+q
Pug =) Pugy=Fo, Pu = }: Py == Fa, i>q
=0 l=i—q
q+K—-1
Py, +2 Y Py =Pa,
i1=q+1

The probability of pinpointing v, as the query source is

Puq _ Pg _ l (1)
Pa, K K’

<1+2;;

—1
K—i
= IC >P

hence user u, is K-anonymous.

4.1 The Correlation Attack

In practice, the query distribution is not always uniform, hence Theorem 1 may
not hold. In the extreme case, the same user (e.g., uqy) would send all queries
and he would be included in all -ASRs. An attacker can intersect the JC-ASRs
and pinpoint u, as the querying user with high probability. It is more realistic,
however, that many users ask queries, even if the query distribution is skewed.
In this case, intersecting the C-ASRs is unlikely to compromise the system,
since the random sequence selection in MOBIHIDE distributes the anonymized
regions in the entire space. In order to succeed, the attacker should know the
exact locations of all users, to be able to reconstruct the Hilbert sequence. Then,
he could find the users included in each K-ASR by reverse-engineering the K-
ASR construction mechanism, and speculate that the users who appear more
frequently are the ones who issued the queries.

Consider the extreme case where the attacker knows the exact location of all
users and intercepts the set R of K-ASRs. We formalize the correlation attack
as follows: (i) Construct a histogram F with the number of occurrences of every
user in any of the queries. (i) For each R € R: infer the query source as the
user in R with the highest number of occurrences in F'.

The correlation attack gives an attacker powerful means to infer the query
source. PRIVE guarantees anonymization against this type of attack, but as dis-
cussed in Section 3, scales poorly as the number of users increases. MOBIHIDE
cannot offer theoretical guarantees when the query distribution is extremely
skewed. However, we believe that in practice this attack is hard to stage, since it
is difficult for an attacker to know the exact locations of all users at each snap-
shot. Furthermore, we show experimentally (Section 6) that the probability of
identifying the querying user in MOBIHIDE is very close to the theoretical bound
1/K, even if the attacker knows all users’ locations and the query distribution is
skewed. Finally, observe that MOBIHIDE does not suffer from the “center-of-XC-
ASR” attack (see Section 3) because, by construction, the probability of u, to
be closest to the center of the JC-ASR is 1/K.

Us C:
et 8,11,12

Uy Routing State for Ui2
Cluster Members | 8, 11, 12
Uz, Predecessor 62
Successor 21
Successor List |21, 22, 25
Finger Table 29, 46

Fig. 5. MoBIHIDE implementation over Chord

5 Implementation of MobiHide

MOBIHIDE users organize themselves into a Chord [19] P2P system. Chord is a
Distributed Hash Table (DHT), where each peer (or node) has an m-bit key (the
Hilbert value in our case), and it stores a routing table with pointers to other
nodes (see Figure 5). The routing table at peer n with key key,, consists of:

— a successor and predecessor pointer to the node with the key that immedi-
ately follows (respectively, precedes) key, on the ring
— a successor list, used mainly for fault tolerance, with a list of consecutive
peers that follow n on the ring
— a finger table, with m pointers to nodes that are situated at 2¢ distances
fromn (i =0,1,..,m —1}.
We denote by H(u) the Chord key of user w. Assume that each user is mapped
to a distinct Chord node. When user u wants to ask a query, he initiates the /C-
ASR construction procedure, denoted by K-request. u generates a random offset
1 €10, K—1], and contacts the set P of [predecessors and the set S of K—1 —1
successors on the Chord ring. The resulting C-ASR is the MBR that encloses
users in P U S U {u}. The complexity of a C-request is O(K) overlay hops.
Since K can be large (e.g., 50-100) in practice, we wish to reduce the number
of hops, and hence the latency of C-request. We introduce an additional level of
hierarchy, such that each overlay node represents a cluster of users, rather than
a single user. Each cluster has between o and 3a-1 users, where « is a system
parameter. If the cluster reaches 3a;, a split is performed and an additional ring
node is created. If the size falls below «, a merge operation with another overlay
node is performed®. We chose 3a, instead of 2«, as the upper bound on size, to
minimize frequent merge and split operations. Each cluster has a representative,
or cluster head, which is part of the Chord ring. In the example of Figure 5, w1 is
the head of cluster {us, u11,u12}. The head’s key on the ring is the maximum of
all keys inside its cluster, in order to preserve the key ordering on the ring. The
cluster membership is maintained by the head, and is replicated to all cluster
members, to enhance fault-tolerance. Heads are rotated periodically to achieve

3 Obviously, if more keys fall within a Chord segment, there will also be proportionally
more nodes in that segment; therefore, hot-spots are avoided.

o U, joins

find U

52 161,67,74,

Ubs (bootstrap)

. Ugy
b) After split

a) Before split

Fig. 6. Join and Split, a=2

load-balancing. We denote by C, the cluster that contains user u, and by CH,
the head of C,,.

We further describe how various operations are performed in MOBIHIDE. For
each operation, we consider two performance metrics:

— latency: the time to completion, measured as the number of overlay hops on
the longest path followed. Multiple paths may be followed in parallel.

— cost: the communication cost of an operation, measured as the number of
transmitted messages (communication cost typically prevails over CPU cost).

Join and Departure. User join is illustrated in Figure 6a. User u with key
H(u) = 71 authenticates at the certification server and receives the address of
some user ups inside the system. wup; issues a search for key H(u), which returns
the address of ugs, the successor of 71 on the ring. uw contacts ugs and joins
cluster C. Hence, C,, = C and CH,, = ugs. Upon u’s join, CH, checks the new
size of cluster C,,, and if size(C,) = 3a, C'H,, splits his cluster into two halves,
in increasing order of key values. He appoints one of his cluster members, CHJ,,
as head of the newly formed cluster. All nodes in the initial cluster are notified.
CH, and CH,, also notify their predecessor and successor on the ring. CH/,
inherits a large part (if not all) of the finger table of C'H,,; the rest of the table
is determined through the Chord stabilization process [19].

In our example, the new size of C' is 6 and a = 2, so ugs triggers a split
operation (Figure 6b). ugs divides his cluster C' into two halves, C’ with members
61, 67 and 71, and C” with members 74, 82 and 85. u7; is appointed as head
of ¢, while ugs remains head for C”. ugs sets his predecessor pointer to wuzq,
and notifies the former predecessor uso to change its successor from ugs to urzy.
The complexity of join is O(log N — log a) latency and O(log N — loga + «)
communication cost (the last term stands for notifying all cluster members).

User u can depart gracefully, or fail; failure is addressed in Section 5.1. When
u departs gracefully, he notifies his cluster head C'H,,, who updates the cluster
membership. If the departing node is cluster head, he appoints one of his mem-
bers as new head. A merge can be triggered by departure. In this case, user CH,,
triggering the merge contacts randomly either his successor s or predecessor p

10

u.find ASR(H,K) u.C-request (K)

compute ranks in sorted order of C,, call CH,, findASR(H(u),K)

generate random offset [u.FwdReq(count,direction)

before = max(0,l - rankp) if (direction == 1) /*Look Forward*/

after = max(0,KC-1 + ranky — size(Cy)) return MBR of first count keys

if (after > 0) if (count > size(Cy))
succ.FwdReq(after,1) succ.FwdReq(count — size(Ch),1)

if (before > 0) else /*Look Backward*/
pred.FwdReq(be fore,—1) return MBR of last count keys

wait for partial MBRs if (count > size(Cy))

K-ASR = union of all received MBR pred.FwdReq(count — size(C),—1)

Fig. 7. Pseudocode for K-Request

on the Chord ring to merge*. C'H,, transfers his members (including himself) to
the merging peer and ceases to be cluster head. All members are notified and
the successor and predecessor pointers are updated.

Relocation. When user u moves to a new location, his Hilbert value H(u)
changes. If the new H’(u) falls within the key range of other users in cluster C,,
u only needs to inform his cluster head of the key change. Otherwise, u performs
a graceful departure followed by a join. Since Hilbert ordering preserves locality,
it is likely that the relocation will be within a small distance from the initial ring
position. The worst case complexity of relocation is O(log N —log «) latency and
O(log N — log & +) communication cost.

K-request. To generate a K-ASR, u forwards a K-request to his cluster head
CH, (unless u himself is the cluster head). CH, generates a random offset
l € [0, K—1]. Then, CH, examines the membership list of his cluster C,, and
determines how many users in C,, will belong to the X-ASR. C'H, computes the
values be fore and a fter corresponding to the number of users in K-ASR that are
outside C,, and precede (respectively, follow) the set of keys in C,,. CH,, issues
a request for the MBR?® of these members to his predecessor p and successor s.
In p and s the same procedure is followed recursively, until I users are found.
C H,, waits for all answers, and assembles the IC-ASR as the union of the received
MBRs. The pseudocode® for K-request is given in Figure 7. The complexity is
O(K/a) in terms of both latency and communication cost. Once the K-ASR is
assembled, u can submit it to the LBS using his preferred pseudonym service.

5.1 Fault-tolerance and Load Balancing

MOBIHIDE inherits the good fault-tolerance properties of Chord [19]. Similar to
Chord, some of the pointers to other peers (i.e., successor and predecessor point-
ers, the successor list and the finger table) may be temporarily corrupted (e.g.,

4 Alternatively, an interrogation phase can find which of s or p has fewer members,
and merge with that one (to avoid cascaded splits and to equalize cluster sizes).

5 CH, only acquires the MBR, not the exact location of users in other clusters.

6 We use the Remote Procedure Call convention u.routine(); i.e., u is the node where
routine is executed

11

Receive
candidate(IP<MyIP)
Receive
candidate(IP>MyIP)

RS=1 _
send cluster peers R5=2

candidate(MyIP) Receive out of ew

candidate(IP< MyIP)

RS=0
(usual behavior)

Detect

head

failure Election
timer

: Receive
expiry

setParent(IP)

| am LEADER
send peers
setParent(MyIP)

Fig. 8. Leader Election Protocol

when a user fails). Such pointers are corrected periodically through a stabiliza-
tion process. In addition to stabilization, MOBIHIDE implements an intra-cluster
maintenance mechanism. Each cluster head periodically (i.e., every 6t seconds)
checks if all cluster members are alive, by sending beacon messages; beacons con-
tain the current cluster membership in addition to the successor and predecessor
nodes of the head on the Chord ring. If a user fails to respond for 2t seconds, he
is considered failed and is removed from the cluster. Similarly, a non-head node
that does not receive a beacon from his head for 26t seconds, concludes that the
head has failed and initiates a leader election protocol (see Figure 8). The Re-
coveryState (RS) variable of each node indicates whether the node is in normal
operation (RS = 0) or participates in the election protocol. Since the cluster
membership is replicated at all cluster nodes, recovery is facilitated. Upon de-
tecting leader failure, node n enters the RS = 1 state, sends a candidate(n.IP)
message to all peers in the cluster and sets an election timer large enough to
allow other peers to respond to the candidature proposal. When a node receives
the candidate(IP) message, it initiates its own candidature only if its address is
smaller than I P; otherwise, it enters the RS = 2 state and waits for a set Parent
message. The user with the smallest address declares himself leader and notifies
all other cluster members, as well as the predecessor and successor on the ring.
To prevent unequal load sharing, a simple rotation mechanism is enforced
among cluster members. The rotation is triggered when a certain load thresh-
old is reached. This threshold is measured in terms of number of messages
sent/received, since the communication cost is predominant in terms of both
energy consumption and fees payed to the service provider. When the cluster
head CH transfers leadership to another cluster member C'H’, he transfers his
routing state on the Chord ring and the cluster membership to CH’. Observe
that the Chord key does not change, since it is the maximum key among all
cluster members. Therefore, the overhead for the P2P network is minimal.

6 Experimental Evaluation

We implemented MOBIHIDE on top of Chord in the p2psim [1] suite, a packet-
level simulator for P2P systems. We consider topologies with 1sec average round-

12

0.12 -
“y @ 0.1 f:
e
=1 0.08
o
%) B
% 006 .‘.
< : MobiHide —&—
3 0.04 Prive —6—
o A T CloakP2P —Aa—
fay ool W8 ’ 0021 g
‘5:“:‘;"?'{‘3“ ol . e
il 20 40 60 80 100120140160
San Francisco Bay Area K
Fig. 9. Dataset Fig. 10. “center-of-K-ASR” attack

trip delay, a typical value for wireless devices. To highlight the behavior of our
system, we only consider packet loss as an effect of queueing at the processing
nodes, and not as a result of link faults. Our dataset corresponds to the San
Francisco Bay Area (Figure 9) and is constructed with the Network-based Gen-
erator of Moving Objects [3], which models the movement of mobile users on
public road infrastructures. We consider scenarios with 1,000 to 10,000 users
and anonymization degree K between 10 and 160. If not stated differently, we
set & = 5 (see Section 5). We compare MOBIHIDE against the two existing
distributed spatial anonymization systems (i.e., CLOAKP2P and PRIVE).

Anonymization Strength. Theorem 1 theoretical demonstrates that MoOBI-
HIDE guarantees KC-anonymity for a uniform query distribution. To complete our
study, we also evaluate the anonymity strength of MOBIHIDE for skewed query
distributions. To this end, we assume 10K users and 10K queries and consider a
Zipfian query distributions with ¢ = 0.8. We start by focusing on the “center-
of-K-ASR” attack. We revisit the query scenario from Ref [8], and present a
comparison of MOBIHIDE against PRIVE and CLOAKP2P. Let us denote by u,
the closest user to the center of the -ASR. Figure 10 illustrates the probability
of u. being the query source (i.e., the user initiating the query). Theoretically,
to achieve anonymity, the above probability should be bounded by 1/K. In other
words, the performance of the evaluated algorithms should be under line 1/K
(the dotted line of Figure 10). CLOAKP2P, for K£> 20, does not satisfy the the-
oretical bound. For instance, for K=40, the probability of u. being the query
source is 10%, i.e., four times the maximum allowed bound (1/K=2.5%). The
users are likely to come uniformly from all directions; hence, u,. is disclosed as
the query source. Contrary, PRIVE and MOBIHIDE always satisfy the theoretical
bound. Notice that in some cases, the MBR of the -ASR may contain a few
more than K users. This is why the results for PRIVE and MOBIHIDE are not
identical to the 1/K line.

In Figure 11 we consider the correlation attack (see Section 4.1). We assume
the extreme case, where the attacker knows the exact locations of all users (re-
call that this attack is unlikely to occur in practice). We show the results for

13

0.12

] o UK e 1.2 Prive-Unif —5—
—~ 01 MobiHide-Unif —&— MobiHide-Unif —e—
3) MobiHide-Zipf0.5 —o— = 1 Prive-Zipf -8
3 0083 MobiHide-Zipf0.8 —&— S 0.g | MobiHide-Zipf - o---
7] ¢ o :
g 006 £ o6
g x
3 0.04 (2 0.4
& 002 0.2

0
20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
K K

Fig. 11. Correlation attack (MOBIHIDE) Fig.12. L-ASR Area

uniform and Zipf query distribution, with ¢ = 0.5 and ¥ = 0.8. As expected, for
uniform distribution anonymity is always preserved. Actually, in this case MoO-
BIHIDE behaves almost identical to PRIVE (not shown in the graph). Anonymity
is also entirely preserved for ¥ = 0.5. As the distribution becomes more skewed,
MOBIHIDE may fail to preserve anonymity by a small margin. In most cases,
however, the probability of identifying the query source is very close to the the-
oretical bound 1/K. In the worst case, for = 160, ¥ = 0.8, the probability
of identifying the query source was 1.2/K. Observe that in Figure 11 we did
not consider CLOAKP2P, as it can be easily compromised by the much simpler
“center-of-KC-ASR” attack. Since it fails to provide anonymity in many cases, we
will not consider CLOAKP2P any further.

K-ASR Size. MOBIHIDE wraps around the Hilbert sequence in order to handle
users near the start/end of the sequence. In some cases, this may yield I-ASRs
with larger area, compared to PRIVE; consequently, the query processing cost
will increase. To investigate this issue, we considered uniform and Zipf (¢ = 0.8)
query distributions over a set of 10K users and varying K. In Figure 12 we plot
the average area of the K-ASRs as a percentage of the entire dataspace. Observe
that for the Zipf distribution the two systems behave almost identical, while for
uniform distribution MOBIHIDE generates 25% larger K-ASRs in the worst case.
Therefore, we tradeoff at most 25% in additional query processing cost, but we
obtain far superior system scalability as we will show next.

Scalability (response time). The most important advantage of MOBIHIDE is
its increased scalability due to the highly decentralized structure. Here, we eval-
uate the response time of the system for 1K, 5K and 10K users. The querying
users are selected with a Zipf (¢ = 0.8) distribution”. We use exponential distri-
bution to model the query rate, and the mean is varied between 0.5 and 60quh
(Queries per User per Hour). Processing time at each node is exponentially dis-
tributed with mean 50ms. This is a realistic processing time that includes CPU
processing and network buffer access. We set =40 and inject queries for a pe-
riod of 600sec. From Figure 13(a), we can see that the response time is short (i.e,

7 MOBIHIDE behaves even better for uniform distribution of the querying user.

14

10 N= 1000

_ =10k —5— .
2 N=5k —&— Q
& 8 N=lk —&— &
£ s g w00
= =
[} [}
2] (%]
& & 10
o o
(%] (%]
O] O]
2 2

0 1

0O 10 20 30 40 50 60 0O 10 20 30 40 50 60
QueryRate(quh) QueryRate(quh)
(a) MOBIHIDE (b) PrIVE
Fig. 13. Scalability, IC = 40

10 50
Z 8 g a0
E I
5 M ¢
> (0]
2 E
% 4 N=1k —5 ?-8’ 20
| N=2k —6— o

2 N=5k —Aa— 10

N=10k —=—
0 0
5 10 15 20
a a
(a) Latency (b) Communication cost
Fig. 14. Join

does not exceed 5sec) even for large user populations and high query rates. Note
that the experiment assumes unbounded message queues at the nodes; therefore
the drop rate of requests is 0. We also considered bounded queues (size = 100);
in the worst case, the drop rate was 3.4%.

In Figure 13(b) we repeated the same experiment for PRIVE. Observe that
the response time grows sharply with the query rate, due to delays at the root
node. For 10K users and 10quh the response time is almost 600sec (whereas,
MOBIHIDE needs only 2.5sec). Again, these results are for unbounded queues.
For the bounded case (queue size = 100), the drop rate was 26% for 8quh; for
10quh the drop rate surges as high as 60%. From the previous experiments it is
obvious that MOBIHIDE outperforms PRIVE.

Join. In this experiment, we measure the latency (i.e., number of hops) and
communication cost (i.e., total number of messages) for the user join operation.
Starting from a stable system, an additional 10% of the initial user population
joins randomly the system. Figure 14(a) shows the latency for N = 1K, 2K, 5K
and 10K users, for varying « (recall that the cluster size is between « and 3a).
The plot confirms the theoretical expected complexity O(log N — loga). For low
« values, we observe a slight increase, due to the increasing proportion of split

15

35 90
0 .
— [}
§ 25 % 60
£ 20 2 50
& 2 40
£ 15 E 4
2 @ 30
§ 10 3
— S 20
10
0
a a
(a) Latency (b) Communication cost
Fig. 15. K-Request Operation
Iy] £ 100 EEn
08t @
5 g 80
o 067 2 60
° 5]
8 o4} o
s o o O 40
02t " No Rotation —&— g 20 Finger Table —&—
’ Rotation —=— g Succ/Pred —6—
0 iZ Ideal - 2 0 Cluster Membership —&—
0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 0 20 40 60 80 100 120
User ID Time(sec)
Fig. 16. Load Balancing Fig. 17. Fault Tolerance

operations. In terms of communication cost (see Figure 14(b)), the dominant
factor is O(«) due to the intra-cluster notification. There is a tradeoff between
join latency and communication cost in terms of a. For low « values, the cluster
maintenance cost is lower, but the latency increases. Furthermore, a low « also
causes increased latency and communication cost during K-requests, as we will
show shortly. Our experiments suggest that a value 5 < o < 10 is likely to yield
good results in practice.

K-Request. We consider a 10K user population with 10K uniformly distributed
queries (note that the distribution does not influence the latency or communi-
cation cost in the absence of queuing). Figure 15(a) and 15(b) show the average
latency and communication for constructing the -ASRs (« is varied). Both the
latency and communication cost are favored by larger « values. However, a com-
promise must be reached among the IC-Request performance, maintenance cost
and system scalability. Larger o determines higher maintenance cost and also
yields a more centralized system, with inferior peak-load performance.

Load Balancing. Due to the hierarchical nature of MOBIHIDE, the cluster
heads that participate on the Chord ring bear more load than other cluster
members. Here, we evaluate the rotation mechanism of MOBIHIDE which aims
at distributing the load evenly. We set a=5, X=20 and simulated a 10K user
network, where an average of 3.6quh are generated. The total simulated time is

16

3 hours, and a rotation is triggered at every 300 messages received by a node.
Figure 16 shows the cumulative distribution function (CDF) of the sorted node
loads. Without rotation, the roughly 1,000 cluster heads (i.e., 10000/2« as 2« is
the average cluster size) bear 90% of the system load. With rotation, the load
balancing is very close to the ideal (i.e., linear CDF, plotted as dotted line).
Note that, for a load unit setting of 300 and a rotation cost of 2ac messages, the
rotation overhead is only 2c//300 = 3%. This overhead can be decreased further
by increasing the load unit.

Fault Tolerance. In this experiment we evaluate the fault-tolerance features
of MOBIHIDE. We consider 10K users and a=5. Chord performs periodical
maintenance for its pointers. The respective timers are set at 3sec for the suc-
cessor/predecessor, 10sec for the successor list and 30sec for the finger table
pointers. The intra-cluster beacon timer §t = 10sec. We consider three network
correctness metrics: (i) the intra-cluster correctness, measured as the ratio of
correct cluster membership entries out of the total entries, (%) the succ/pred
correctness, measured as the ratio of correct successors/predecessors over the
total number of successor /predecessor pointers, and (iii) we define similarly the
correctness of finger tables. Note that, for correct execution of C-request oper-
ations, only the successor/predecessor and intra-cluster membership need to be
100% accurate; the finger table pointers are only used for join and relocation
operations, and their inaccuracy can only cause a slight increase in latency. Fig-
ure 17 shows the evolution in time of the three metrics, starting with a correct
network, when 25% of the users fail simultaneously; ¢ = 0 is the time of failure.
We observe that the succ/pred and intra-cluster correctness are established after
60sec. For the intra-cluster correctness, it takes the system roughly three purge
intervals (60t) to detect head failure, elect new leaders and establish correct
cluster membership. The finger table is restored after 120sec.

7 Conclusions

While location-based services become essential in supporting a broad area of ap-
plications (navigation systems, emergency services, etc), new privacy concerns
arise for LBS users (e.g. in the near future GSM phones will be equipped with
a “clipper” chip that accurately tracks users). In this paper, we propose Mo-
BIHIDE, a scalable P2P system for anonymous LBS queries. MOBIHIDE indexes
users into a hierarchical Chord network, according to the 1-D Hilbert ordering of
their coordinates, and builds C-ASRs by randomly choosing Hilbert sequences
of I users. Our results confirm that in practice, MOBIHIDE outperforms existing
solutions: our system provides strong anonymity, it is fault-tolerant, and scales
to large numbers of mobile users.

In future work, we plan to address the issue of anonymizing user trajecto-
ries, as opposed to user locations. Furthermore, we plan to investigate efficient
methods to anonymize queries for infrastructure-less environments, such as ad-
hoc wireless networks (Wi-Fi, Bluetooth), where point-to-point communication

17

channels do not exist between any pair of users, and only users within a limited
physical range can be contacted.

References

[\]

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. p2psim: The Peer-to-Peer Network Simulator. http://pdos.csail.mit.edu/p2psim.
. Tor: Anonymity Online. http://tor.eff.org/.
. T. Brinkhoff. A framework for generating network-based moving objects. Geoin-

formatica, 6(2):153-180, 2002.

. R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar. Preserving User Location Pri-

vacy in Mobile Data Management Infrastructures. In Proc. of Privacy Enhancing
Technology Workshop, 2006.

. C.-Y. Chow, M. F. Mokbel, and X. Liu. A Peer-to-Peer Spatial Cloaking Algorithm

for Anonymous Location-based Services. In ACM International Symposium on
Advances in Geographic Information Systems, 2006.

. P. Ganesan, K. Gummadi, and H. Garcia-Molina. Canon in G Major: Designing

DHTs with Hierarchical Structure. In Proc. of ICDCS, pages 263—-272, 2004.

. B. Gedik and L. Liu. Location Privacy in Mobile Systems: A Personalized

Anonymization Model. In Proc. of ICDCS, pages 620-629, 2005.

. G. Ghinita, P. Kalnis, and S. Skiadopoulos. PRIVE: Anonymous Location-Based

Queries in Distributed Mobile Systems. In Proc of WWW, 2007.

. M. Gruteser and D. Grunwald. Anonymous Usage of Location-Based Services

Through Spatial and Temporal Cloaking. In Proc. of USENIX MobiSys, 2003.

B. Hoh and M. Gruteser. Protecting Location Privacy through Path Confusion.
In Proc. of SecureComm, 2005.

H. Hu and D. L. Lee. Range Nearest-Neighbor Query. IEEE TKDE, 18(1):78-91,
2006.

P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias. Preserving Anonymity
in Location Based Services. Technical Report TRB6/06, National University of
Singapore, 2006.

P. Kamat, Y. Zhang, W. Trappe, and C. Ozturk. Enhancing Source-Location
Privacy in Sensor Network Routing. In Proc. of ICDCS, 2005.

A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. I-Diversity:
Privacy Beyond k-Anonymity. In Proc. of ICDE, 2006.

M. F. Mokbel, C. Y. Chow, and W. G. Aref. The New Casper: Query Processing
for Location Services without Compromising Privacy. In Proc. of VLDB, 2006.
B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the Clustering
Properties of the Hilbert Space-Filling Curve. IEEE TKDE, 13(1):124-141, 2001.
P. Samarati. Protecting Respondents’ Identities in Microdata Release. IEEE
TKDE, 13(6):1010-1027, 2001.

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
1990.

I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
and H. Balakrishnan. Chord: a Scalable Peer-to-Peer Lookup Protocol for Internet
Applications. IEEE/ACM Transactions on Networking, 11(1):17-32, 2003.

L. Sweeney. k-Anonymity: A Model for Protecting Privacy. Int. J. of Uncertainty,
Fuzziness and Knowledge-Based Systems, 10(5):557-570, 2002.

18

