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Abstract—Recent developments in nanotechnology have enabled the fabrication of nanomachines with very limited sensing,

computation, communication, and action capabilities. The network of communicating nanomachines is envisaged as nanonet-

works that are designed to accomplish complex tasks such as drug delivery and health monitoring. For the realization of future

nanonetworks, it is essential to develop novel and efficient communication and networking paradigms. In this paper, the first step

towards designing a mobile ad hoc molecular nanonetwork (MAMNET) with electrochemical communication is taken. MAMNET

consists of mobile nanomachines and infostations that share nanoscale information using electrochemical communication

whenever they have a physical contact with each other. In MAMNET, the intermittent connectivity introduced by the mobility

of nanomachines and infostations is a critical issue to be addressed. In this paper, an analytical framework that incorporates

the effect of mobility into the performance of electrochemical communication among nanomachines is presented. Using the

analytical model, numerical analysis for the performance evaluation of MAMNET is obtained. Results reveal that MAMNET

achieves adequately high throughput performance to enable frontier nanonetwork applications with acceptable communication

latency.

Index Terms—Nanomachines, Molecular neuro-spike communication, Mobile ad hoc molecular nanonetworks, Epidemic

spreading, Delay and throughput performance.
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1 INTRODUCTION

Rapid growth in nanotechnology provides favorable devel-

opment in miniaturization and fabrication of nanomachines

with simple sensing, computation, communication, and

action capabilities. In literature, three different ways are

proposed for the development of nanomachines, namely,

bottom-up, top-down and bio-hybrid approaches [1]. In

bottom-up approach, the molecules or atoms are assembled

to form nanomachines. In top-down approach, the design

of nanomachines is realized by downsizing current micro-

electronic devices. The third approach is the bio-hybrid

approach. In this approach, biological entities can either

be genetically modified to develop nanomachines or used

as the building blocks of nanomachines. In nature, there are

already many molecular-scale phenomena consisting of an

arranged set of molecules, which are able to perform very

simple tasks. These phenomena can be envisaged as nature-

made nanomachines. For example, a chloroplast in a plant

cell stands as a nanomachine including arrays of molecules

that act as tuned optical antennas for absorption and trans-

formation of solar energy. Mitochondrion can be envisioned

as a nanomachine used for controlled combustion of organic

molecules to generate adenosine triphosphate (ATP) for

fulfilling energy needs of cellular activities. A flagellar

motor attached on the membrane of many bacterial cells is

a highly structured combination of proteins for providing
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cellular movement [4]. Nature-made nanomachines can be

exploited to learn and understand the principles governing

the operation of nanomachines and their interactions [4].

The limited capabilities of nanomachines also limit the

applications that can be achieved by a single nanomachine.

However, the networks of communicating nanomachines,

i.e., nanonetworks, are expected to enable very large set of

new applications in various research fields such as genetic

engineering, health monitoring, and military surveillance

systems [1]. For the realization of frontier nanonetworks, it

is imperative to develop new and efficient communication

and networking techniques. The aim of these techniques

is to overcome unique challenges and requirements of

nanonetworks. These challenges and requirements can be

briefed as follows:

• Scale of the nanomachines is on the order of microm-

eters, therefore, classical transceiver circuitries cannot

be mounted into nanomachines.

• Current encoding and decoding techniques are not

feasible due to very limited processing capability of

nanomachines.

• For in-vivo application scenarios, nanomachines need

to be biocompatible in order not to be rejected by the

organism.

• Mobility of nanomachines is governed by the physical

rules in nano domain [11].

• Nanomachines are extremely susceptible to any

change in the communication environment such as

rapid concentration change or quaking.

• Communication or noise signal characteristics cannot

be easily anticipated due to severely unreliable nature

of the communication medium.
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In literature, different communication techniques,

namely, acoustic, electromagnetic, molecular, and

nanomechanical, are proposed for the communication

of nanomachines [14]. Traditional electromagnetic and

acoustic communication technologies cannot be directly

used in the communication between nanomachines because

of the size restrictions. Nanomechanical communication

requires a strict physical contact between transmitter and

receiver in order to enable information transmission, which

makes it inconvenient for many application scenarios. On

the other hand, molecular communication, which is already

used by biological entities, is a promising approach for

the communication of nanomachines.

Molecular communication is inspired by the natural

nanoscale communication techniques. In living organisms,

cells communicate in various ways. Existing communi-

cation paradigms between cells may be adopted for the

realization of nanonetworks [5]. In [8], a design of a

molecular communication system based on intercellular

calcium signaling is introduced. In [7] and [10], molecular

communication systems using biological molecular motors

and vesicles as communication carriers are introduced.

Molecular communication channel is modeled as a binary

symmetric channel and mutual information and capacity

expressions are derived for that channel in [6]. A flagellated

bacteria and catalytic nanomotors based molecular nanonet-

works is proposed in [3]. In [12], a computational model

for mobile nanomachines using molecular communication

is introduced. In [2], the first realistic and very comprehen-

sive physical channel model of diffusion-based molecular

communication has been developed.

In literature, generally, nanomachines are considered as

immobile nodes. However, mobile nanomachines may be

indispensable for many nanonetwork applications. A possi-

ble example that necessitates the mobile nanomachines is a

nanonetwork designed for coordinated cancer cell detection

by identifying cancer cells and informing a central con-

troller to take an appropriate action. Clearly, these applica-

tions necessitate the realization of mobile ad hoc molecular

nanonetworks (MAMNET). In MAMNET, nanomachines

collect some environmental information such as a chemical

state, or the existence of a certain concentration level and

deliver the information collected by mobile nanomachines

to mobile infostations as shown in Fig. 1. The infostations

are central control units that make decisions according

to the collected information, or gateways that connect

MAMNET to a micro-device.

However, the mobility of nanomachines also incurs a

new set of crucial challenges that must be addressed for

the realization of MAMNET. One of the main challenges

introduced by the mobility is the intermittent connectivity,

i.e., nanomachines can communicate only when they are

in physical contact. Therefore, this intermittent connectiv-

ity clearly imposes a high level of latency on nanoscale

communication. To the best of our knowledge, the feasi-

bility and performance of an ad hoc nanonetwork that is

composed of mobile nanomachines communicating through

electrochemical means have not yet been investigated.

NM1 senses a
chemical substance

S

Inf. Transmitted 
from NM1 to NM2

NM1

Inf. Transmitted 
from NM2 to IS

Fig. 1. Information flow in MAMNET.

The aim of this paper is to introduce the concept of

MAMNET and provide an analytical framework in order

to show feasibility of MAMNET. The communication of

nanomachines is inspired by the cellular communication

paradigm in immune system. In immune system, the im-

mune response starts by the recognition of antigens by T-

cells. However, T-cells cannot directly recognize antigens.

First, antigen presenting cells (APCs) recognize the antigen

entering the body. Then, APCs and T-cells collide and ad-

here to each other, which forms an immunological synapse

by the interaction of complex molecules on the surface of

APCs with T-cell receptors [13]. This allows the transfer

of antigen information to T-cells and the immune response

starts.

In MAMNET, the communication of mobile nanoma-

chines is similar to the natural cellular communication

in immune system and enabled by three main phases,

namely, collision, adhesion and transmission. In collision

phase, nanomachines randomly collide with each other.

In adhesion phase, nanomachines stuck to each other.

Finally, the information is transmitted in the transmission

phase. For the transmission of information, we introduce

a new communication paradigm, called molecular neuro-

spike communication, that is inspired by electrochemi-

cal communication among biological neuron cells. After

the adhesion phase, molecular neuro-spike communication

scheme enables the communication of adherent nanoma-

chines. These three phases briefly mentioned above jointly

provide the communication of nanomachines and infosta-

tions in MAMNET.

The remainder of this paper is organized as follows. In

Section 2, we give an overview of MAMNET, and underline

the design issues and assumptions. Then, we model the

collision and adhesion of nanomachines in Section 3. In

Section 4, we introduce molecular neuro-spike communi-

cation of adherent nanomachines and an analytical capacity

expression for molecular neuro-spike channel. In Section

5, we derive the distribution of communication latency

and find average throughput in MAMNET. We present the

numerical results in Section 6 and give concluding remarks

in Section 7.
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2 MOBILE AD HOC MOLECULAR NANONET-
WORK COMMUNICATION MODEL

MAMNET is composed of two kinds of mobile nanonodes,

namely, nanomachines and infostations as shown in Fig. 1.

Nanomachines and infostations are assumed as genetically

modified cells with additional capabilities. Nanomachines

are assumed to sense the environment and gather some

environmental information to deliver infostations. Based on

the collected information coming from nanomachines, in-

fostations are assumed to make decision for an appropriate

action. Furthermore, infostations may also be considered as

gateways that connect MAMNET to a micro-device.

Nanomachines and infostations do not always have a

direct communication interface because of mobility. In

order for a nanomachine to transmit collected information

to an infostation, the nanomachine and the infostation

should first collide, then adhere to each other. Since the

system volume containing MAMNET is much larger than

the size of a single nanonode, the meeting probability

of a nanomachine and an infostation is very low. Thus,

intermediary nanomachines can be used as relay nodes that

help the communication between the nanomachines and the

infostations as follows.

Fig. 1 describes the information flow in MAMNET.

Nanomachine 1 is assumed to be the source of the in-

formation that is to be communicated to the infostation.

Nanomachine 1 transmits the information to every nanoma-

chine, i.e., relay node, with which it collides and adheres.

The nanomachines that acquire the information follow the

same strategy and this clearly increases the probability of

information delivery. Note that this communication strategy

is clearly similar to the spreading of epidemic disease.

Here, we assume that nanomachines and infostations do

not have any additional capability for mobility or collision.

As will be detailed in Section 3, nanomachines diffuse in

the environment and randomly collide with each other. The

collided nanonodes adhere to each other via the surface

mounting molecules called, ligands and receptors. This phe-

nomenon is commonly known as the ligand-receptor bind-

ing process. According to this process, ligand molecules on

the surface of one biological entity, i.e., nanonode, bind to

the receptors of an other nanonode. Once a certain number

of bonds is established between the nanonodes, they can

adhere to each other.

The performance of MAMNET directly depends on the

interaction of nanonodes that are triggered by collision and

adhesion of nanomachines and infostation. Therefore, it is

important to investigate the collision rate, i.e., the number

of collisions occur per unit time, and the adhesion prob-

ability of collided nanomachines and infostations. Next, a

detailed analytical analysis of collision and adhesion phases

in MAMNET is given.

3 COLLISION AND ADHESION OF NANOMA-
CHINES

In nature, the behaviors of cells are significantly affected

by contacts with other cells [17]. In their environment,

r1

r12 = r1 + r2

Nanonode 1

v1

v12δt

Nanonode 2

r2

δVcoll = πr12
2  v12δt

-v2

v12

v1

v2

Fig. 2. Collision of two nanomachines. Nanomachine

1 and nanomachine 2 collide in the time interval δt if

nanomachine 2 is in the collision volume δVcoll in δt.

mobile biological cells collide with each other and cellu-

lar adhesion occurs between the collided cells. The cell

adhesion is accomplished by the ligand-receptor binding

process on the surface of the cells. The adhesion has a

critical role in intracellular and intercellular signaling, i.e.,

communication, that governs basic cellular activities and

coordinates cell actions [19].

In this paper, we adopt the natural cellular communica-

tion for the communication among nanomachines. Similar

to living cells, nanomachines should be in physical contact

with each other in order to communicate. The physical

contact is established through the collision and adhesion

of nanonodes that are modeled as follows.

3.1 Collision of Nanomachines

As in traditional mobile ad hoc networks (MANET), in

MAMNET stochastic nature of nanomachine collision rate

is governed by some mobility models such as brownian

motion and random waypoint. Since nanomachines do not

have any capability for controlling their movement, they are

assumed to freely diffuse in the aqueous medium. Hence,

the mobility of nanomachines is governed by the dynamics

of Brownian motion that explains the movement of small

particles that freely diffuse in an aqueous medium.

Nanomachines with radius r are assumed to be contained

in a volume V and moving according to Brownian motion.

Here, we assume that V >> r. In order to find the collision

rate of nanomachines, we first obtain the probability that

the nanomachines collide within the next infinitesimal time

interval δt, given that the first nanomachine’s center is

located at the position (x1, y1, z1). Two nanomachines

collide in the next δt, only if the second nanomachine is in

the volume that is covered by the first nanomachine with

respect to the second nanomachine. This collision volume

δVcoll is shown in Fig. 2 and expressed as

δVcoll = πr212υ12δt (1)

where r12 = r1 + r2 and υ12 is the relative velocity of the

first nanomachine with respect to the second nanomachine.

By using the relative velocity, the second nanomachine

is considered as stationary while the first nanomachine

is considered moving with velocity υ12 rather than υ1.

Thus, the probability that the second nanomachine, i. e.,
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two nanomachines collide, is located in volume δVcoll is

expressed by

px1,y1,z1 =

∫∫∫

δVcoll

f(x, y, z) dx dy dz (2)

where f(x, y, z) is the probability density function (pdf)

of spatial node distribution in the volume V . For small

values of r, the points f(x, y, z) in V can be approximated

by f(x1, y1, z1). This gives the probability of a collision

within the next infinitesimally small time interval, given

that the first node’s starting position is (x1, y1, z1), i.e.,

px1,y1,z1 ≈ πr212υ12δtf(x1, y1, z1) (3)

The first node’s starting position can be changed. Therefore,

by integrating px1,y1,z1 over all starting positions of the

first node, the probability of collision within the next

infinitesimally small time interval δt can be obtained as

p =

∫∫∫

V

px1,y1,z1f(x1, y1, z1) dx1 dy1 dz1

≈ πr212υ12δt

∫∫∫

V

f2(x1, y1, z1) dx1 dy1 dz1 (4)

(4) is specific to the relative speed υ12. Averaging the

relative velocity over the velocity distributions of the nanon-

odes, the collision rate for nanodes can be approximated as

Rc ≈ πr212E[υnn]

∫∫∫

V

f2(x1, y1, z1) dx1 dy1 dz1 (5)

where E[υnn] is the average relative speed of the nanoma-

chines. In order to evaluate the collision rate, the spatial

node distribution f(x, y, z), and average relative speed

E[υnn] for the nanomachines moving according to Brow-

nian motion are required. Note that the effect of average

relative speed on performance is discussed in Section 6. In

[16], it is shown that the steady-state node distribution in

Brownian motion is uniform. Thus, f(x, y, z) = 1/V and

Rc can be also approximated as

Rc ≈ πr212E[υnn]

∫∫∫

V

1/V 2 dx1 dy1 dz1

≈ πr212E[υnn]

V
(6)

Since the size of nanomachines are identical, r12 can be

given as r12 = 2r, where r is the radius of a nanomachine.

Then, from (6), the collision rate for nanomachines can be

expressed as

Rc ≈
4πr2E[υnn]

V
(7)

The collision rate of an infostation and a nanomachine

follows a similar argument except that infostations could

have a different radius compared to nanomachines. For

nanomachine-infostation r12 is set as r12 = r+ri, where ri
is the radius of an infostation. Then, similar to the collision

21 3 M-1 M

Surface of nanomachine 1

Surface of nanomachine 2

Fig. 3. Nanomachine Adhesion. Nanomachine 1 and

Nanomachine 2 are attached to each other by M ligand

receptor pairs.

rate of nanomachines, the collision rate of an infostation

and a nanomachine can be written as

Ric ≈
π(r + ri)

2E[υni]

V
(8)

where E[υni] is the average relative speed of the nanoma-

chine and infostation.

The collision rates Rc and Ric are essential to under-

stand the interaction rate of nanomachines and infostations.

However, the collision rates are not the ultimate parameters

that affect the MAMNET performance since the collided

nanomachines should also adhere with each other to enable

molecular neuro-spike communication. Next, the adhesion

of nanomachines is modeled.

3.2 Adhesion of nanomachines

After the collision between nanomachines, the collided

nanomachines adhere with each other via the binding of the

surface molecules called ligands and receptors, as shown

in Fig. 3. In nature, the binding process of two cells,

i.e., cell adhesion, is an important issue. Cell adhesion

is involved in a variety of processes such as migration,

invasion, embryogenesis, wound healing and cell-to-cell

communication [19].

In this paper, the natural cellular adhesion paradigm is

adopted to enable the adhesion of nanomachines. In liter-

ature, there exists several research efforts on modeling the

adhesion between cells [9], [17]. Here, the adhesion model

developed in [9] is adopted. Accordingly, nanomachines

are assumed to have ligands and receptors which mediate

adhesion. The adhesion process is heavily affected by the

density of ligands and receptors and the contact area of the

collided nanomachines.

Adhesion is considered as a random event and the

state of the system is considered as a probability vector

[p0, p1, ..., pn, ..., pAcmmin] where mmin is the minimum of

surface densities of receptors and ligands and Ac is the area

of contact [9]. In other words, adhesion could be mediated

by any number of bonds ranging from 0 to Acmmin. For

forming any number of bonds, there is a defined likelihood

given by pn. Here, nanomachines are assumed to adhere

when at least c bonds are formed between them. Hence, our

aim is to derive the probability that nanomachines adhere

via at least c bonds, and the closed-form expression of pn
is needed in deriving this. In [9], a closed-form expression
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is found for pn under a set of certain assumptions for

two cells, such as either ligands or receptors outnumbers

the other one. When two nanomachines are just brought

together (t = 0), there is no bond, hence,

pn(0) =

{

1 , n = 0

0 , n ̸= 0
(9)

With the contact of nanomachines, bonds start to form

according to a single step reversible reaction. The chemical

reaction of vr receptors (designated Mr) binding to vl
ligands (designated Ml) to form vb bonds (designated Mb)

can be expressed as

vrMr + vlMl

k0
f ,k

0
r−−−→ vbMb (10)

where k0f and k0r are the forward and reverse rate constants,

respectively.

In the stochastic model of ligand-receptor binding pro-

cess, the state of the system, described by the single

step reversible chemical reaction in (10), is represented by

the probability vector [p0, p1, ..., pn, ..., pAcmmin
]. In [15],

a stochastic model of ligand-receptor binding process is

discussed and master equations are derived in order to

describe the state of the system. Actually, these master

equations can be used to describe the rate of change in

probability pn(t). However, it may not possible to obtain

closed-form solutions for the master equations. However,

in the current literature, two simplified versions of master

equations are discussed in order to obtain closed-form

expressions. In [9], a simplified version is discussed under

the condition that either ligands or receptors excessively

outnumber the other one. Under that condition and with

vr = vl = vb = 1, i.e., a bond is formed by the binding of a

ligand to a receptor, the master equations can be simplified

as [9]

dpn
dt

=
[

Acmmin − (n− 1)
]

mmaxk
0
fpn−1 −

−
[

(Acmmin − n)mmaxk
0
f + nk0r

]

pn + (n+ 1)k0rpn+1 (11)

Assuming either ligands or receptors excessively out-

number the other one, pn(t) is found to be in the form

of binomial distribution and can be given as [9]

pn(t) =

(

Acmmin

n

)

[p(t)]n[1− p(t)]Acmmin−n (12)

where p(t) is the probability of forming one bond given by

p(t) =
1− e−kt

1 + (mmaxK0
a)

−1
(13)

where K0
a = k0f/k

0
r is the equilibrium association constant

and k = mmaxk
0
f + k0r is the overall rate of reaction.

After the collision event between two nanomachines,

they are assumed to stay in contact with each other during

an average contact duration τc. τc is affected by the phys-

ical properties of the environment, relative velocities and

physical surface properties of the nanomachines. The effect

of τc on performance is discussed in Section 6. We also

Plasma membrane of NM 1

Plasma membrane of NM 2

Neurotransmitter mol .

Ligand Gated 
Channel (Open )

Ligand Gated 
Channel (Closed)

Synaptic
Cleft

Presynaptic neuronPostsynaptic neuron

Fig. 4. Neuro-spike transmission between nanoma-

chines. Neurotransmitters emitted from the transmitter

nanomachine (TN), diffuse through the gap between

the nanomachines and reach the receiver nanoma-

chine (RN).

assume that the collided nanomachines adhere with each

other if at least c bonds are formed during a contact duration

τc. Hence, the probability that the collided nanomachines

adhere with each other, i.e., Ra, can be given as

Ra = 1−
c−1
∑

i=0

pi(τc) (14)

Note that we do not present a different adhesion rate

for the nanomachine-infostation interaction. This is because

the physical properties used in the derivation of adhesion

rates are the same for both nanomachines and infostations.

The adhesion probability derived in this section is very

important to understand the interaction of nanomachines.

The communication between nanomachines can only be

possible after successful adhesion.

4 MOLECULAR NEURO-SPIKE COMMUNI-
CATION

In this section, molecular neuro-spike communication is

explained in detail. First, the basics of molecular neuro-

spike communication are introduced. Then, its channel ca-

pacity and error probability are analytically investigated. Fi-

nally, successful information transmission probability in the

molecular neuro-spike communication channel is derived to

be used for the performance evaluation of MAMNET.

4.1 Basics of Molecular Neuro-Spike Communica-

tion

When a nanomachine that has an information collide and

successfully adhere to another nanomachine, it transmits

its information to this nanomachine by means of molecular

neuro-spike communication. The nanomachine that trans-

mits the information is called the transmitter nanomachine
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Spike Bit 0

Spike Bit 1

Spike Bit 0

Spike Bit 1

PF

PM

1-PF

1-PM

Fig. 5. Channel model of synaptic transmission. Trans-

mission probabilities are shown for the binary channel.

(TN) and the nanomachine that receives the information is

called the receiver nanomachine (RN). After the adhesion

of nanomachines, there exists a small gap, synapse, between

the TN and RN. This synapse is the communication media

for nanomachines. Since TN and RN cannot remain adhered

for a long time, a fast and reliable communication paradigm

is needed to enable the information transmission between

nanomachines. Among the existing inter-cellular communi-

cation paradigms, the communication between neuron cells

is the fastest one. Therefore, in our model, we adopt the

principles of neural communication to enable the informa-

tion transmission among nanomachines.

In human body, there already exist at least two types

of natural synapses between cells, namely, the neuronal

synapse and the immunological synapse. These specialized

contacts directly transfer highly controlled secretory signals

between the adjacent cells [18]. The neuronal synapse is

formed between the neurons and it retains the connectiv-

ity of the neuron cells throughout the life, whereas the

immunological synapse is formed by the instant contacts

of immune cells. Although nervous system and immune

system have totally different roles in human life, in both

systems cells need to communicate, and this is accom-

plished in the synapse. Therefore, synapses play a critical

role in the cell-to-cell communication.

In nervous system, neural signals propagate in the form

of electrochemical waves. These electrochemical waves

are basically action potentials that propagate along ax-

ons and transmitted to other neurons. Action potential is

basically an electrical pulse which has approximately 80

mV amplitude. At synapse, action potentials or spikes are

electrochemically transmitted from one neuron to another.

The signal is transmitted by means of chemical messengers

called neurotransmitters. Neurotransmitters are contained in

vesicles. The coming pulse or action potential, releases the

neurotransmitters on the pre-synaptic neuron, and then, the

neurotransmitters bind to the receptors on the post-synaptic

neuron. Binding of a neurotransmitter to a receptor opens a

channel which lies between inside and outside of the post-

synaptic neuron. These channels allow the flow of ions to

the neuron. The net movement of ions causes the membrane

potential of the post-synaptic neuron to change rapidly. In

this way, spikes or action potentials are transmitted to the

next neuron.

In this work, we adopt the principles of neural commu-

nication to develop molecular neuro-spike communication

model. The communication between nanomachines is re-

alized with spike transmission as shown in Fig. 4. The

communication process based on molecular neuro-spike

communication involves the following steps:

1) Encoding: Similar to the traditional digital commu-

nication, we define 2 bit levels, i.e., spike bit 0 and

spike bit 1 corresponding to logic 0 and 1. The

information is encoded on the concentration of the

released neurotransmitter molecules. For spike bit 1,

neurotransmitters are released to the channel, whereas

for spike bit 0 no releasing occurs.

2) Transmission: Actually, this process initiates the elec-

trochemical signaling. Whenever a TN wants to send

a spike bit 1, it simply activates the release of vesicles

that contain neurotransmitters.

3) Signal Propagation: The released neurotransmitters

propagate in the synaptic channel formed between

the adherent nanomachines. The aim of the neuro-

transmitters is to bind to the receptors on the RN.

4) Reception: The neurotransmitters released into the

synaptic channel reach the RN and bind to the recep-

tors on the RN membrane as in Fig. 4. The binding

of neurotransmitters to receptors opens ligand gated

channels that let the flow of ions into or out of the

RN. The flow of ions changes the membrane voltage.

5) Decoding: RN nanomachine monitors the plasma

membrane voltage for certain time periods. If RN

observes a rapid change in the membrane voltage it

decides the received bit as spike bit 1, otherwise the

decision is spike bit 0.

In an ideal channel, the spike bit sent by a TN should be

perfectly received by the receiver nanomachine. However,

in practice there exist two kinds of errors as shown in Fig.

5, namely, false alarm and miss detection errors. The false

alarm and miss detection probabilities, i.e., PF and PM ,

respectively, can be defined as

PF = Prob[Y = 1|X = 0]

PM = Prob[Y = 0|X = 1] (15)

where X and Y are the input and output symbols, re-

spectively. In order to derive these probabilities, a close

look at neuronal synapse would be helpful. In [20], a

cortical synapse is modeled as a binary channel and the

information-theoretical capacity is derived for two different

coding paradigms, i.e., signal estimation and signal detec-

tion. Although this synaptic transmission model ignores

certain aspects like paired-pulse facilitation, vesicle deple-

tion, calcium buffering, it represents a simplified and com-

pact picture of synaptic transmission. Therefore, we adopt

the synaptic transmission model in [20] and accordingly

derive the channel capacity expression.

In Fig. 6, the block diagram of the channel model of

synaptic transmission is shown. The input to the channel,

X(t), is a spike bit. If the input is spike bit 1, vesicles

containing neurotransmitters are released by the TN to the

synaptic cleft. For spike bit 0, no vesicles are released.

Neurotransmitters binding to the receptors on the RN

membrane open channels that let the flow of ions. The

flow of ions create an Excitatory Postsynaptic Potential
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P(q)

+

n(t)
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Memb.
Voltage
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Variable quantal 
amplitude

EPSP 
Shape

h(t)
Spike

Encoding Spike Bit 0 or
Spike Bit 1

X(t) Input

Spike Bit 0 or
Spike Bit 1

Fig. 6. Block diagram of the channel model of synap-

tic transmission [20]. Spikes sent from the transmit-

ter nanomachines pass through a filtering process

and an additive gaussian noise is corrupted at the

post-synaptic membrane. The decision by the receiver

nanomachine is based on the matched filter.

(EPSP) on the RN. In Fig. 6, EPSP profile or shape of

RN is modeled by a filter with impulse response h(t) [20].

In Fig. 6, the random variable q, which has probability

density P (q), models the variability in the size of EPSP.

The number of neurotransmitter molecules released by the

TN, the number of available postsynaptic receptors on the

RN and several other factors affect this variability. In Fig.

6, there exists also an additive noise, n(t), coupled to the

response of RN. The noise n(t) accounts for the other noise

sources in the membrane of the RN such as thermal noise

and channel noise [21].

4.2 Information Theoretical Capacity of Molecular
Neuro-Spike Communication

In molecular neuro-spike communication, at the receiver

side, the aim of RN is to optimally detect the presence

or absence of a single spike through the knowledge of

membrane voltage Vm(t). In [20], it is shown that the

optimal decision rule for spike detection is to compare

the correlation r between Vm(t) and h(t) to a threshold

θ. Thus, the decision rule can be written as

r ≥ θ ⇒ Y = 1,

r < θ ⇒ Y = 0 (16)

With this decision rule, the false alarm and miss detection

probabilities are written as

PF = Prob[r ≥ θ|X = 0]

PM = Prob[r < θ|X = 1] (17)

In [20], the probabilities of miss detection and false alarm

are derived for both stochastic and deterministic vesicle

release processes. In our model, we use the probabilities

derived for deterministic vesicle release, i.e.,

PF =
1

2
[1− Erf(θ)] (18)

PM =
1

2

[

1 +

∫

∞

0

Erf(θ − q
√
SNR)P (q) dq

]

(19)

where Erf(x) is the error function and SNR is the signal-

to-noise ratio on the post-synaptic potential.

Based on the false alarm and miss detection probabilities,

the molecular neuro-spike channel can now be modeled

as a binary symmetric channel. TN emits spike bit 1 with

probability p1 and spike bit 0 with probability (1−p1) Then,

the probability of error for one spike bit can be written as

PE = p1PM + (1− p1)PF (20)

The value of PE depends both on the threshold θ and

SNR. For small values of θ, PM is low whereas PF is

high. On the other hand, for large values of θ, PF is low

whereas PM is high. Therefore, PE should be evaluated

with varying θ in order to find an optimum value for θ. In

Fig. 7(a), the dependencies of PE , PM and PF on θ are

shown for a fixed value of SNR = 10 assuming an equally-

likely prior probability (p1 = 0.5). With decreasing SNR,

the probability of error increases. Furthermore, SNR also

has an impact on the optimum value of threshold. As can

be seen in Fig. 7(b), the optimum value of θ becomes closer

to 0 as the value of SNR decreases.

The performance of the molecular neuro-spike communi-

cation can be further quantified by the mutual information.

The transition matrix of the molecular neuro-spike channel

can be written as follows

P (Y |X) =

(

p1(1− PM ) (1− p1)PF

p1PM (1− p1)(1− PF )

)

(21)

Using the transition matrix in (21), the mutual information

I(X;Y ) between X and Y can be derived as follows

I(X;Y ) = H(Y )−H(Y |X)

= H
(

p1PM + (1− p1)(1− PF )
)

−
(

p1H(PM ) + (1− p1)H(PF )
)

(22)

where H(z) denotes the binary entropy function H(z) =
−z log2(z) − (1 − z) log2(1 − z). Mutual information

corresponds to how much one can guess about the input

with the knowledge of the output. θ and SNR have a direct

effect on the value of mutual information. For low SNR
values, mutual information can be very low. However, as

SNR increases the mutual information increases as well,

as shown in Fig. 7(c). The optimum value of θ, changes

with SNR.

In a synaptic channel, spikes can be transmitted by 3 ms

differences which is composed of a 0.5 ms action potential

pulse and 2.5 ms of recovery time. Thus, a theoretical

bandwidth of 333 bps can be reached. This corresponds to

an ideal synaptic channel with I(X;Y ) = 1, i.e., every bit

transmitted contains exactly 1 bit of information. However,

in practice there exist channel errors and this rate cannot

be achieved.

The capacity of the molecular-neuro spike channel can

be obtained by maximizing the mutual information over all

input distributions, i.e.,

C = max
pX

(I(X;Y )) (23)

As can be seen in Fig. 7(d), the mutual information can

be at most 0.57 for the channel under consideration. This

corresponds to a bandwidth of approximately 333×0.57 ≈
190 bps. Even if it is slightly larger than half of the ideal

bandwidth of an ideal synaptic channel, it is a considerably

high bandwidth.
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Fig. 7. (a) False alarm, miss and channel error probabilities in molecular neuro-spike channel for a fixed value

of SNR = 10 with varying θ, (p1 = 0.5). (b) Channel error probability in molecular neuro-spike channel with

varying θ for different values of SNR, (p1 = 0.5). (c) Mutual information with varying SNR for different values of

θ, (p1 = 0.5). (d) Mutual information with varying p1 for different values of θ, (SNR = 10).

By analyzing single spike bit error probability and

channel capacity expressions, it is shown that molecular

neuro-spike channel promises a reliable and fast commu-

nication. Therefore, molecular neuro-spike communication

stands as a promising solution for the communication

of adherent nanomachines in MAMNET. In evaluating

the performance of MAMNET, information transmission

probability is needed. Information transmission probability

can be described as the successful transmission of all the

information from TN to RN.

The information collected by the TN is encoded to

spikes and sent to the RN. The probability of successful

information transmission is analogous to the successful

transmission of all spike bits in the message. Hence,

successful information transmission probability is

Rt = (1− PE)
n (24)

where n is the number of spike bits contained in the

message. The probability in (24) is used in the analytical

model of MAMNET.

5 MATHEMATICAL MODEL OF MOBILE AD

HOC MOLECULAR NANONETWORK

In this section, a closed form expression for average

message delivery delay is also derived for MAMNET.

Furthermore, average throughput and system throughput

expressions are obtained. The propagation of a single mes-

sage is modeled using the principles of epidemic disease

spreading. For this purpose, a store-carry-forward scheme

is proposed. When a nanomachine having an information

S I RβSI γ I

Fig. 8. S-I-R Model. Markov chain model of an epi-

demic disease spreading. S, I, R represents the sus-

ceptible, infected and the recovered states respectively.

encounters with another nanomachine that does not have a

copy of the information, it forwards the information to this

nanomachine.

In mobile ad hoc networks with intermittent connectiv-

ity, many routing protocols inspired by epidemic disease

spreading have been previously developed [22], [23], [24].

Similar to these works, inspiring by epidemic disease

spreading nanomachines can be in three different states,

i.e., infected, suspicious and recovered. The message which

should be transmitted to an infostation, is analogous to the

agent of a disease. An infected nanomachine is the one that

has a copy of the message. A nanomachine is said to be

suspicious when it does not have a copy of the message,

but could potentially acquire a copy of the message from

the infected ones. A nanomachine is recovered after it has

offloaded the message to the infostation.

Our model is developed upon the Markov model devised

for the basic epidemic disease spreading [25]. In Fig. 8,

S, I and R are the susceptible, infected and recovered

states, respectively. S(t), I(t) and R(t) are the numbers

of nanomachines in the susceptible, infected and recovered

states, respectively. In MAMNET, β represents the rate of

contacts, that ends with successful transmission between

two nanomachines, per nanomachine and γ represents the
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rate of contacts, that ends with successful transmission, be-

tween a nanomachine and an infostation, per nanomachine.

The model is based on three assumptions, which can be

adopted for our model as follows.

i. An infected nanomachine makes contacts, that

are ended with the successful transmission of

message, with β(N−1) others per unit time where

N represents the total number of nanomachines in

MAMNET. β expresses the total rate including

collision (Rc), adhesion (Ra) and transmission

rates (Rt) for nanomachines. Therefore, β =
Rc × Ra × Rt. Since S/(N − 1) proportion of

these contacts are with the suspicious ones, the

number of infections per unit time can be derived

as
(

β(N − 1)
)(

S/(N − 1)
)

I = βSI .

ii. γ expresses the rate with which infected nanoma-

chines become non-infected (recovered) and

therefore, it contains infostation-nanomachine col-

lision, adhesion and transmission rates. Therefore,

γ can be given as γ = Ric×Ra×Rt. If there are

more than one infostation, the parameter γ should

be multiplied by the number of infostations. This

is because, the delivery of message to any infos-

tation means recovery.

iii. The total number of individuals in the system is

constant.

The message delivery delay Td is defined as the time

elapsed from an information message is first generated

by a nanomachine to the time when this message is first

offloaded to an infostation. The initial conditions for the

system can be defined as follows. At time t = 0, only one

nanomachine is infected, i.e., I(0) = 1, S(0) = N−1. Until

offloading, the entire number of nanomachines N will be

contained in either I state or S state, i.e., S+I = N,R(t) =
0 for t < Td. At the time of offloading, R(Td) = 1.

In order to find message delay distribution, it should be

required that the transient solution of the Markov Chain

given in Fig. 8 and modeled as

dI

dt
= βSI = βNI − βI2 (25)

For I(0) = 1, the solution of (25) is given in [22] as

I(t) =
N

1 + (N − 1)e−βNt
(26)

Using (26), the cumulative distribution function (CDF)

of the message delay can be found. The CDF describes the

probability that the message is delivered to an infostation by

time t and denoted by F (t) = Pr(Td < t). The differential

equation for F (t) can be written as [22]

dF

dt
= lim

ϵ→0

F (t+ ϵ)− F (t)

ϵ
(27)

where ϵ is an arbitrary positive small number close to 0.

Note that, F (t) = 1 − Pr(Td > t) and F (t + ϵ) =
1 − Pr(Td > t + ϵ). In order to find F (t) using (27),

the probability Pr(T ≥ t + ϵ) is needed. Assuming

Pr(event in [0, t)) is independent of Pr(event in [t, t+ϵ)),

Pr(Td > t+ ϵ | Td > t)

= 1− Pr(t < Td < t+ ϵ | Td > t)

= 1− ϵγI(t) (28)

From (28), Pr(Td > t+ ϵ) can be calculated as

Pr(Td > t+ ϵ) = Pr(Td > t)Pr(Td > t+ ϵ | Td > t)

= Pr(Td > t)(1− ϵγI(t)) (29)

This can be used to derive the differential equation for F (t),
i.e.,

dF

dt
= lim

ϵ→0

[1− Pr(Td > t+ ϵ)]− [1− Pr(Td > t)]

ϵ

= lim
ϵ→0

−1

ϵ
Pr(Td > t)(1− ϵγI(t)− 1)

= γI(t)Pr(Td > t)

= γ
N

1 + e−βNt(N − 1)
[1− F (t)] (30)

For the solution of (30), an initial condition is required.

Note that, F (0) represents the probability that the nanoma-

chine which generates the message is adherent with infos-

tation such that it can directly transmit the message to the

infostation. Therefore, F (0) can be given by

F (0) =
4π(r3i − r3)

3V
(31)

Using F (0), F (t) can be derived as

F (t) = 1−K

(

N − 1

N − 1 + eβNt

)

γ
β

(32)

where K =
[

N−1
N

]

−γ
β [1−F (0)]. Hence, the probability that

a message is delivered to an infostation for a given time can

be obtained. Conversely, the average time needed to deliver

the information to an infostation can also be calculated.

Average delivery delay can be found using CDF of message

delivery delay, i.e.,

E[Td] =

∞
∫

0

1− F (t) dt =

∞
∫

0

K

(

N − 1

N − 1 + eβNt

)

γ
β

dt

Assuming γ/β ϵ N+, E[Td] can be analytically expressed

as

E[Td]=























F (0) lnN
γ(N−1)

, γ/β = 1
F (0)(1−N)

βN2

[

∑γ/β
k=2

β
β+γ−kβ

(

N
N−1

)k
−

(

N
N−1

)1+γ/β
logN

]

, γ/β ≥ 2

(33)

Note that, the analytical result in (33) are only valid for

γ/β ϵ N+. On the other hand, by numerically evaluating

the integral in (33), E[Td] can be calculated for any γ
and β. The numerical results for average delivery delay

are presented in Section 6.

Using the average delivery delay, average throughput of

MAMNET can also be calculated. Considering from an

infostation point of view, a message encoded by n spike bits
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TABLE 1

Simulation Parameters

Radius of a nanomachine (r) 7.5 (µm)

Radius of an infostation (ri) 15 (µm)

Average relative speed of nanoma-
chines (E[υnn])

1 (µm/sec)

Average relative speed of nanoma-
chines and infostation (E[υni])

1 (µm/sec)

Volume (V ) 1000000 (µm3)

Area of contact (Ac) 3 (µm2)

Surface density of receptors (mr) 100 (1/µm2)
Surface density of ligands (ml) 75 (1/µm2)
Forward binding rate (k0

f ) 1.32 × 10−7

(µm2/sec)

Reverse binding rate (k0

r) 0.36 (1/sec)

Contact time τc 1 (sec)

Minimum number of required bonds for
proper adhesion (c)

40

Prior probability of sending spike bit 1
(p1)

0.5

Threshold for decision of spike bit (θ) 1.1

Signal to noise ration on RN (SNR) 10

Length of message (n) 8 (bits)

Number of nanomachines (N) 20

is transmitted from a nanomachine source to an infostation

in an average time of E[Td]. Hence, the average throughput

of MAMNET can be described as

Tavg =
n

E[Td]
(34)

On the other hand, in the whole system, an average number

of I(E[Td]) nanomachines get infected, i.e., apart from

source, an average number of I(E[Td]) − 1 copies of

the message exist in the network. This means that, an

average of (I(E[Td]) − 1) × n spike bits are transmitted

between nanomachines until the message arrives into an

infostation. Also accounting for the n spike bits transmitted

to infostation, the system throughput can be written as

Tsys =
I(E[Td])n

E[Td]
(35)

Consequently, all aspects of MAMNET are covered

by this model. The expressions derived for E[Td], Tavg

and Tsys clearly describe the performance of MAMNET.

These expressions can be used to investigate the feasibility

and evaluate performance of MAMNET. Using the model

derived above, next, the performance of MAMNET is

evaluated.

6 PERFORMANCE ANALYSIS OF MOBILE

AD HOC MOLECULAR NANONETWORK

In this section, we evaluate the performance of MAMNET

by using average message delay, average throughput and

system throughput expressions derived in previous section.

We use MATLAB to obtain analytical results. The aim is

to investigate delay and throughput performance and gain

insight on the feasibility of MAMNET. The parameters

used in the analysis are given in Table 1. In the following

sections, the effect of these parameters is investigated.

6.1 Effect of Relative Speed and Size of Nanoma-

chines

We first observe the effect of relative speed and size

of nanomachines on average delay, average throughput

and system throughput. Nanomachines and infostation are

contained in a volume of 106 µm3. Nanomachine size

is on the order of typical mammalian cells, i.e. having a

diameter of 5-10 µm. Since infostations have more complex

roles than nanomachines, they are assumed to have larger

dimensions than nanomachines, e.g., around 10-20 µm.

In Fig. 9(a), Fig. 9(b) and Fig. 9(c), average message

delay, average throughput and system throughput are shown

for different r with varying E[υnn], respectively. For

r = 7.5 µm, average message delivery delay ranges from

a few hundreds to a thousand seconds. Although, these

can be considered as huge message delays for traditional

networks, these values are very reasonable for MAMNET.

The volume in nanomachines contained is 565 times larger

than a nanomachine volume. Furthermore, the average

relative speed of nanomachines is very low. Hence, the

collision rate in MAMNET is low, e.g., with the values

specified in Table 1, on average, only 14 collisions occur

between nanomachines in 1000 seconds. Therefore, it is

reasonable to end up with message delays on the order of

a few thousand seconds. The system throughput follows

a similar argument. Considering the effect of low collision

rate and the information message is encoded by 8 spike bits,

it is also reasonable to encounter with a system throughput

on the order of few spike bits per 10 seconds.

In Fig. 9(a), average message delivery delay decreases

with increasing relative speed of nanomachines. On the

other hand, in Fig. 9(b) and Fig. 9(c), average through-

put and system throughput increase with E[υnn]. This

is because, by increasing the relative speed of nanoma-

chines the collision rate is amplified and this causes more

nanomachines to get infected. Therefore, the number of

information transfers in MAMNET increases, which yields

a higher throughput. Moreover, the message is delivered to

an infostation more quickly.

Fig. 9(a), Fig. 9(b) and Fig. 9(c) also show the effect

of r on E[Td], Tavg and Tsys, respectively. The increase

in r also causes collision rate to increase and this yields

a higher throughput and lower message delivery delay.

Actually, r is analogous to the transmission range of

mobile nodes in traditional mobile ad hoc networks. The

larger the transmission range, the higher the probability

of meeting of nodes. However, the transmission range is

limited in traditional mobile ad hoc networks because of

limited power. Similarly, it seems reasonable to make larger

nanomachines to increase the performance, however, one

has to consider that these nanomachines can be used in

applications where the dimensions of the nanomachines is

a critical issue.
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number of infected nanomachines at the instant of message delivery.

6.2 Effect of Relative Speed and Size of Infosta-
tions

Here, the effects of relative speed and the size of info-

stations on performance are discussed. E[Td], Tavg and

Tsys are shown for different infostation radius values with

varying relative speed in Fig. 10(a), Fig. 10(b) and Fig.

10(c), respectively. Increasing ri and E[υni] increases the

collision rate Ric of nanomachines and infostation. There-

fore, the interactions between nanomachines and infostation

increase which further yield a better delay performance and

higher average throughput.

However, the system throughput performance does not

have such a direct relation. This is because, system through-

put is defined as the average number of spike bits trans-

mitted in the system until the offloading of a message.

For E[υni] = 0.1, the collision rate of nanomachines and

infostations are extremely low, creating a high message

delivery delay. Until the delivery of the message almost

all of the nanomachines get infected. Doubling E[υni]
causes the message delivery delay to decrease significantly.

However, the number of infected nanomachines does not

change at the same pace (Fig. 10(d)). Thus, the throughput

increases significantly because of the significant decrease

in average message delivery delay. Further increasing of

E[υni] causes message delivery delay to decrease, and also

the number of infected nanomachines decreases as well.

Therefore, the system throughput performance decreases.

6.3 Effect of Contact Time

In Fig. 11(a), average message delay and system throughput

are shown with varying contact time. A long contact time

yields a high adhesion probability and more of the colli-

sions result with successful adhesion. Therefore, E[Td] de-

creases and Tsys increases with increasing τc. In Fig. 11(a),

after a certain value of τc, the performance of MAMNET

does not change. The reason can be observed more clearly
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in Fig. 11(b). The contact time of nanonodes has only an

effect on the adhesion probability. Actually, at τc = 1.1
second, the adhesion probability becomes 1, and after that

point, the adhesion rate does not change. For τc = 0.75
second, adhesion probability (Ra) is 0.3, i.e., approximately

one third of the collisions resulted in successful adhesion.

On the other hand, for τc = 1.1, Ra = 1, i.e., all the

collisions resulted in successful adhesion. Thus, E[Td] and

Tsys become constant after τc = 1.1 second.

6.4 Effect of Number of Bonds Required for Suc-
cessful Adhesion

Another critical parameter defined in Section 3 was the

number of bonds required for successful adhesion. The

effect of number of bonds required for successful adhesion

on MAMNET performance is analyzed in Fig. 11(c). With

the increase in the number of bonds required for successful

adhesion, the adhesion of nanomachines becomes more

difficult. Therefore, the adhesion probability decreases,

which implies a decrease in the interaction of nanoma-

chines. Hence, average message delivery delay increases

and system throughput decreases with increasing number

of bonds required for successful adhesion.

6.5 Effect of Molecular Neuro-Spike Communica-
tion Parameters

Here, the effects of molecular neuro-spike communica-

tion parameters on MAMNET performance are explored.

Synaptic variability, threshold used for spike detection

and signal-to-noise ratio on post-synaptic potential affect

molecular neuro-spike communication and thus, MAMNET

performance.

In Fig. 12(a), average message delivery delay is shown

with varying θ for different SNR. The effect of SNR
on delay performance is obvious. With decreasing SNR,

the transmission probability of information decreases and

this yields higher delays. The effect of the threshold used

for spike detection is more complicated. In Chapter 4,

it is pointed out that the choice of the threshold for

detection of spikes is very important for molecular neuro-

spike communication. There exists a critical value for θ
to achieve a high channel performance. In Fig. 12(a), the

average message delivery delay decreases until a certain

value of θ. After that point, E[Td] starts to increase. This

is because of the effect of θ on transmission probability.

In Fig. 12(b), the effects of the threshold used for spike

detection on transmission probability and average message

delivery delay are shown. It can be seen that, there exists a

critical value of θ which makes the transmission probability

maximum.

Similar arguments follow for the average throughput

and system throughput. The threshold value that makes

the transmission probability maximum also maximizes the

throughput. In Fig. 12(c) and 12(d), a reverse hook shape

exists for the average throughput and system throughput

with varying threshold. From Fig. 12(a), Fig. 12(c) and

Fig. 12(d), we deduce that the critical value of threshold

slightly changes with different SNR values. Therefore, a

threshold that goes well with all SNR values should be

chosen to achieve low message delivery delay and high

system throughput.

6.6 Effect of Number of Spike Bits Contained in a
Message

The number of spike bits used to encode a message is

a critical parameter. Because of the limited capabilities

of nanomachines, we do not expect them to generate a

large amount of information. Nanomachines sensing the

environment, generates information about the observed

phenomena. The information generated by nanomachines

are on the order of a few dozen of spike bits. The predefined

message strings, and their length are determined before

the deployment, and hence, nanomachines are accordingly

programmed. The length of the messages depends on the

diversity of the phenomena that is desired to be observed in

the deployment environment, e.g., with 8 bits 256 different

phenomena can be represented.

In Fig. 13(a), the performance of MAMNET is shown

for varying n. With increasing n, the performance of

MAMNET decreases. This is due to the decreased trans-

mission probability of a message. Note that, the successful

transmission probability of a message given in (24) expo-

nentially decreases with increasing message length. This

causes fewer nanomachines to get infected, and eventually,

a higher message delivery delay. On the other hand, having

more number of spike bits transmitted in a single message,

one can expect a higher system throughput. However,

the decrease in the successful message transmission prob-

ability overcomes the increase in the number of spike

bits contained in a message. Therefore, system throughput

decreases with increasing number of spike bits contained

in a message.

6.7 Effect of Number of Nanomachines

The number of nanomachines in MAMNET is also a critical

parameter for the performance MAMNET. In Fig. 13(b), av-

erage message delay and system throughput are shown for

varying number of nanomachines. The increasing number

of nanomachines increases the connectivity in MAMNET.

Therefore, the message can be delivered to an infostation in

a lower time. Furthermore, the system throughput increases

with increasing number of nanomachines.

7 CONCLUSION

In this paper, using the stochastic models for collision and

adhesion of nanomachines we first derive the rates for the

interaction of nanomachines. Then, using the principles of

neural communication we provide a new communication

paradigm for the realization of mobile ad hoc molecular

nanonetworks. We also investigate the performance of

molecular neuro-spike channel model by examining single

spike bit error probability and mutual information. Then

we model the flow of a single message in MAMNET by
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Fig. 11. (a) Average message delay and system throughput with varying contact time. (b) Adhesion probability
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Fig. 13. Average message delay and system throughput with varying (a) number of spike bits contained in the

message. (b) number of nanomachines.

using the principles of infectious disease spreading. We

evaluate the performance of MAMNET based on average

message delivery delay and system throughput expressions.

Our models and numerical analysis clearly show that a

mobile ad hoc nanonetwork can be realized with sufficiently

low message delivery delay and sufficiently high system

throughput. Numerical results also reveal that it is impera-

tive to efficiently and effectively regulate the parameters to

achieve better performance.
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