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Abstract — Despite the rapid advancements in  

consumer electronics, the data transmitted by sensing devices in 
a smart home environment are still vulnerable to anomalies due 
to node faults, transmission errors, or attacks. This affects the 
reliability of the received sensed data and may lead to the 
incorrect decision making at both local (i.e., smart home) and 
global (i.e., smart city) levels. This study introduces a novel 
mobile agent-based cross-layer anomaly detection scheme, 
which takes into account stochastic variability in cross-layer 
data obtained from received data packets, and defines fuzzy 
logic-based soft boundaries to characterize behavior of sensor 
nodes. This cross-layer design approach empowers the 
proposed scheme to detect both node and link anomalies, and 
also effectively transmits mobile agents by considering the 
communication link-state before transmission of the mobile 
agent. The proposed scheme is implemented on a real testbed 
and a modular application software is developed to manage the 
anomaly detection system in the smart home. The experimental 
results show that the proposed scheme detects cross-layer 
anomalies with high accuracy and considerably reduces the 
energy consumption caused by the mobile agent transmission in 
the poor communication link-state situations1. 

Index Terms — Smart Home Sensor Networks, Mobile  
Agent, Anomaly Detection, Fuzzy Logic, Cross-Layer Design. 

I. INTRODUCTION 

The recent advancements in microsensor technology [1], [2], 
have realized the concept of the smart home envisaged in the last 
century [3]. The underlying device interconnection paradigm, 
namely, Wireless Sensor Network (or Smart Home Sensor 
Network in this case) connects sensing devices to set up a smart 
home [4], [5]. Typically, in a smart home sensor network, the 
sensor nodes sense their ambient environment or target objects 
and then transmit the readings to a central node managed by a 
user through custom-built application software. The sensor nodes 
and their transmitted data are, however, susceptible to in situ and 
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in transit anomalies. A software mobile agent-based anomaly 
detection scheme in such situations not only detects anomalies in 
a smart home sensor network, but also offers an automated 
service to verify the source of anomalies, before notifying a user 
about the anomalies [6], [7]. The in situ verification of a sensor 
node, which is believed to be a malicious node after receiving an 
anomalous observation, is carried out by the mobile agent by 
comparing the values of the received data with the stored values 
on the node. Over the course of the years, the research 
community has also investigated the roles of mobile agents for 
the random sampling of sensed data over the network, and 
sharing of the network control and anomaly information in 
networks [8], [9]. In the case of random sampling, mobile agents 
are randomly dispatched for the inspection of nodes. On the other 
hand, mobile agents are programmed to perform the 
collaborative exchange of anomaly and network related 
information in the latter case. Previous studies [6]-[9], however, 
do not consider the link-state between the communicating nodes 
before the transmission of the mobile agents. A poor 
communication link-state may cause errors in the data (or code) 
of the mobile agent during transmission, which may ultimately 
affect its designated functionality. 

The previous mobile agent-based anomaly detection 
schemes have defined crisp boundaries on sensed data in order 
to characterize the behavior of sensor nodes [6]-[9]. The use 
of crisp logic for anomaly detection may result in unnecessary 
generation of alarms in situations, when the values of the 
received data lie close to the normal profile bounds. Consider, 
for example, a smart home scenario, where a sensor node is 
designated to measure and report the room temperature, with 
normal behavior bounded by the closed interval [15ºC, 20ºC]. 
In this case, a value close to 15ºC or 20ºC, such as 14.9ºC or 
20.3ºC, will generate an unnecessary alarm. In such situations, 
fuzzy logic can be beneficial to define soft boundaries for 
decision making [10]. However, an anomaly detection scheme 
which characterizes the behavior of sensor nodes using only 
fuzzy logic is unable to consider the stochastic variability of 
the data to build the normal profile. Furthermore, the previous 
mobile agent-based anomaly detection schemes have not 
considered the communication link-state for anomaly 
detection and mobile agent transmission [6]-[9]. 

To address the above-stated limitations, this study has 
introduced a mobile agent-based cross-layer anomaly 
detection scheme. The proposed scheme employs statistical 
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procedures which consider the stochastic variability in the 
cross-layer data to define three regions, namely, normal, 
tolerance, and anomalous, over the cross-layer feature space. 
The normal region defines the normal behavior of a sensor 
node. The tolerance region is defined to account for those 
observations which lie close to the normal region. The 
proposed method decrements the trust value of a node if an 
observation from that node falls within the tolerance region, 
and the user will only be notified when the trust level falls 
below a predefined threshold. The mobile agent is transmitted 
for the in situ verification of the sensor node to verify the 
source of anomalies [6], [7], only if an observation falls in the 
anomalous region or the trust value reaches the lower bound. 
The soft boundaries between the tolerance and anomalous 
regions and the fuzzy logic-based rule-base are designed to 
detect cross-layer anomalies and to effectively transmit mobile 
agents. The proposed scheme is implemented on a real testbed 
and results indicate its ability to detect cross-layer anomalies 
with high accuracy, and to increase the network longevity. 

The main contributions of this study are following: (i) a 
regions computation method, based on statistical procedures, 
is proposed to define different regions for decision making 
about anomaly detection and mobile agent transmission, (ii) a 
fuzzy logic-based cross-layer rule-base is designed and a 
corresponding algorithm is presented to detect cross-layer 
anomalies and transmit a mobile agent after due consideration 
of the communication link-state, and (iii) the proposed 
methods are implemented on a real testbed and an application 
software is developed to manage the proposed anomaly 
detection system in smart homes. 

This paper is organized as follows: Section II elucidates the 
network model and architecture of the proposed cross-layer 
anomaly detection module. The details of the proposed 
scheme are described in Section III. The corresponding 
algorithm is presented in Section IV. The experiment set up, 
details of the application software, and results are discussed in 
Section V. Finally, conclusions are drawn in Section VI. 

II. NETWORK MODEL AND PROPOSED ANOMALY 

DETECTION ARCHITECTURE 

A. Network Model 

The WSN is assumed as a digraph, which can be formally 
defined as G = (V, E), where V represents the vertices (i.e., 
the sensor nodes) and E denotes the edges (i.e., the 
communication links) in a smart home sensor network. The 

nodes V = ii V3
1  create the smart home sensor network, 

where 1V  is a laptop node which works as a central network 

authority and is connected with m number of resource rich 

cluster head nodes, i.e., },...,,{ 212 mvvvV  . The nodes 

j
m
j VV 313   form m number of clusters, where 

}.,...,,,{ 113 jkjjjj sssvV   The notation jV3  denotes the 

jth cluster in the network, jv  represents the cluster head 

node in that cluster and, k  is the number of member sensor 
nodes in the cluster. The cardinality of the node sets must 

hold the relation |||||| 321 VVV  to create a hierarchical  

 
Fig. 1. Architecture of the cross-layer anomaly detection module. 

 

smart home sensor network, where 1V , 2V , and 3V  are the 

top, intermediate, and leaf level nodes, respectively.  

 The sensor nodes which belong to the 2V  and 3V  types are 

IEEE 802.15.4-compliant motes. The 2V  type nodes are  

resource rich, as they are equipped with additional memory 

and continuous power supply. On the other hand, the 3V  type 

nodes have limited memory and battery resources. The 3V  

type nodes are deployed to sense their environment, store 
sensed data and battery status in their memories for the in situ 
verification process, and then transmit those measurements to 

the corresponding 2V  type node. The 2V  type nodes detect 

cross-layer anomalies on the received data packets and 
transmit the mobile agents for the in situ verification after due 
consideration of the communication link-state. 

B. Architecture of Cross-Layer Anomaly Detection Module 

Each 2V  type node is equipped with a cross-layer anomaly 

detection module, which detects cross-layer anomalies and 
also performs the function of mobile agent transmission after 
considering the communication link-state. The cross-layer 
anomaly detection module consists of three logical 
components, namely, Controlling Unit, Mobile Agent, and 
Cross-Layer Expert System, as depicted in Fig. 1. 
 

1) Controlling Unit 
The controlling unit acts as a coordinator among the 

internal logical components of the cross-layer anomaly 
detection module and other entities of the network such as 

peer 2V  type nodes and the 1V   node to coordinate the 

anomaly detection and mobile agent transmission processes. 
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The controlling unit receives data packets from member 3V  

type nodes and passes them to the cross-layer expert system, 
which performs the tasks of the cross-layer anomaly detection 
and mobile agent transmission, and sends back the result to 
the controlling unit. 
The normal sensor reading is forwarded to the aggregation 
unit, which stores it for a predefined period of time and then 

transmits it to the 1V  node for further processing. In the case 

of an anomalous observation, the controlling unit triggers a 
mobile agent in order to carry out the in situ verification of the 

3V  type node to identify the source of the anomalies. 
 

2) Mobile Agent 
The mobile agent uses the values obtained from the 

previous data packets to carry out the task of the in situ 

verification on the 3V  type node. The mobile agent performs a 

match between both the stored values of the battery status and 
sensor readings with the values of the battery status and sensor 
readings which are brought by the mobile agent to perform the 

in situ verification. If the values are matched, then the 3V  type 

node is considered to be normal. Otherwise, the anomalous 

status of the node is reported to the corresponding 2V  type 

node. For further details of the in situ verification process, 
readers are referred to the previous studies [6], [7]. 

 

3) Cross-Layer Expert System 
A general fuzzy expert system fuzzifies crisp input data into 

fuzzy data and process them using a set of rules to obtain 
fuzzy output data [12]. Fuzzy output data is then defuzzified 
to obtain a crisp output value which causes the execution of 
the predefined corresponding action. The cross-layer expert 
system receives crisp values of the cross-layer features from 
the controlling unit and fuzzifies them using the membership 
functions presented in Section III-B. Then fuzzified input is 
processed for the cross-layer anomaly detection and mobile 
agent transmission decision making by the fuzzy logic  
cross-layer rule-base described in Section III-C. Finally, the 
defuzzification unit defuzzifies the fuzzy output by employing 
the maximum method, i.e., by selecting the value which has 
the maximum fuzzy membership function value. 

III. THE PROPOSED SCHEME 
A. Cross-Layer Feature Set 

The behavior of the 3V  type (i.e., IEEE 802.15.4-compliant 

sensor) nodes is characterized by node and communication link 
features. The node features are those features whose values are 

transmitted by 3V  type nodes to their corresponding 2V  type 

nodes. The node features include Sensor Reading (SR) and 
Battery Status (BS). The sensor readings may include, but are not 
limited to the measurements of temperature, pressure, and motion 
detection.  

The communication link-state is characterized by three 
features, namely, Link Quality Indicator (LQI), Received 

Signal Strength Indicator (RSSI), and Packet Error Rate 
(PER) for anomaly detection and mobile agent transmission 
decision making. The values of the communication link 

features are extracted by the 2V  type node from the received 

data traffic of a 3V  type node. The mote has an IEEE 

802.15.4/ Zigbee ready Radio Frequency (RF) transceiver 
chip which has 250 Kbps data rate and an adjustable 
transmission power [11]. The RF transceiver chip computes 
RSSI and average correlation (CORR) values of each received 
packet to determine the LQI value. The value of CORR 
indicates the raw link information within the closed interval 
[50, 110], from the worst to the best case values, respectively. 
This study has considered CORR = LQI to derive LQI values 
[13]. This shows that the sensor nodes do not need to perform 
any additional computation to compute the values of the RSSI 
and LQI features to make anomaly detection and mobile agent 
transmission decisions. 

The values of the PER feature are important for the correct 
execution of the in situ verification process, as the values of 
the SR and BS features obtained from the received data 
packets are later used for the verification process. If the errors 
in the received data packets are ignored, they may lead to an 
incorrect result of the in situ verification process. Therefore, 
only those packets which pass the 16-bit cyclic redundancy 
check (CRC) are considered as successfully received [13]. 
The PER is computed as the number of successfully received 
data packets over the number of total transmitted data packets. 

B. Regions Computation 
The limited available energy budget of sensor nodes demands 

careful transmission of mobile agents. The cross-layer anomaly 
detection module, therefore, partitions the feature space of every 

cross-layer feature of 3V  type nodes into three regions, namely, 

normal, tolerance, and anomalous. The normal region defines the 
normal behavior of sensor nodes. If the values of the cross-layer 
features of the received data packets do not lie within the normal 
region, but in its close proximity, then it would not be 
appropriate to immediately transmit a mobile agent to carry out 
the in situ verification process due to the energy expensive nature 
of the communication operation [14]. The cross-layer anomaly 
detection module considers this region to be a tolerance region 

and decrements the trust value of the 3V  type node after 

receiving the data packets with the values in the tolerance region. 

The mobile agent is only transmitted after the 2V  type node 

loses trust in the 3V  type node to a certain degree. The data 

packets having values outside the tolerance region are treated as 
anomalous and a mobile agent is immediately transmitted to 
carry out its designated task. The generalized method for regions 
computation for a single cross-layer feature is described below. 
Note that the proposed scheme computes these regions 
independently for all cross-layer features.  

Formally, let X  be the Universe of Discourse (UoD), 
representing the feature space of a single cross-layer feature of 
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a 3V  type node, where }.,,{ ATNX   In the UoD ,X  the 

fuzzy numbers ,, TN  and A  denote normal, tolerated, and 

anomalous regions, respectively. The domains of these fuzzy 
numbers are defined below. 

],[ ** dcN   

],[],[ **** fdcaT 

 ),[],( **  ebA   

In the above definitions, ,* lsaa   
l
rAbb *

, 

lnscc )/(*  , rnsdd )/(*  ,  
r
rAee *

, 

,* rsff   and the parameters *a  to 
*f  must satisfy the 

relation 
****** fedcba   in order to define the 

domains of the fuzzy numbers. The symbol s  represents the 
standard deviation of the n  number of sampled observations 

which are used to compute the regions. The notation rA  denotes 

the anomalous region bound. Note that the superscripts l  and 
r do not represent the power, instead these are the left and right 
side values of the parameters along the horizontal or x-axis. The 
left side value of a parameter is calculated by the subtraction, 
whereas the right side value is computed by the addition of the 
statistic value (obtained through a statistical procedure) from/ to 
the mean value of the feature. The variables a  to f are the user 

defined adjustment variables which are used to adjust the values 
of corresponding parameters to update the computed regions. 
The values of the adjustment variables are independent of the 
values of the parameters which are derived through the statistical 
procedures. The values of the bounds of the domains, in the 
above definitions of the fuzzy numbers, are determined through 
the statistical procedures applied on the n  sampled observations. 

The normal region, defined by the fuzzy number ,N  is 

computed through the standard deviation of the mean of n  

observations, i.e., ns / . Then the left and right sides of the 

mean ( x ) along the x-axis are bounded by the values 
lnscc )/(*   and rnsdd )/(*  , respectively, to 

define the normal behavior of the 3V  type node. 

Similarly, the boundaries of the tolerance region, defined  

by the fuzzy number ,T  are computed by the calculation  

of s  value on n  observations. Based on this computation,  

the bounds ])/(,[ ** ll nsccsaa  and 

],)/([ ** rr sffnsdd  define the left and right 

tolerance regions, respectively. Finally, the anomalous region 
is derived through the computation of the following formulas. 
 

2
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Fig. 2. Illustration of the membership functions. 
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Equations (1) and (2) define the upper bound of the left and 
lower bound of the right anomalous regions, respectively. 

Based on the above computations, the bounds 

],( * l
rAbb   and ),[ *  r

rAee  define the 

domains of the left and right anomalous regions, respectively, 
as shown along the x-axis in Fig. 2. 

Based on the values of the parameters, the membership 

function of the fuzzy number N  is defined as 
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Finally, the membership function of the fuzzy number A  is 
derived by 
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The realization of the membership functions of the fuzzy 

numbers ,, TN  and A  is shown in Fig. 2. Note that the 

fuzzy number N  has a crisp-valued membership function, 
which is a special case of the fuzzy membership functions. 
This design rationale is chosen to empower the cross-layer 

expert system to decrement the trust value of the 3V  type node 

as soon as the values of the observations of cross-layer 
features start falling in the regions defined by the fuzzy 
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number T , even if they are very close to the boundary of the 

fuzzy number .N  

Example 1. Consider, for example, a scenario where a 3V  

type node in a smart home senses its ambient environment and 
reports the temperature sensor readings to the corresponding 

2V  type node. Let X  be the UoD for the temperature sensor 

readings, n  = 50, x = 20.10, s = 3.39, and a  = b  = c  = 

d  = e  = f  = 0. This implies ns /  = 0.48. Thus, the 

normal region can be defined as lnscc )/([ *  =19.62, 

rnsdd )/(*  = 20.58 ] . Next, the tolerance regions 

can be demarked as  lsaa*[ 16.71,  cc*  

lns )/( = 19.62 ]  and  rnsdd )/([ *  20.58 
rsff *

= 23.49 ] . Finally, the anomalous regions can 

be computed as  l
rAbb*,(  18.17 ]  and 

 ee*[  r
rA  22.03, ) . Note that the values of the 

adjustment variables (i.e., a  to f ) are set as 0 in this 

example. In practice, however, a user can adjust these values 
to update the computed regions. Furthermore, the membership 
values can be assigned using (3) to (5). 

C. The Cross-Layer Rule-Base 

The cross-layer expert system is instrumented with  
the cross-layer rule-base which processes the received data 
traffic to make decisions about anomaly detection and mobile 
agent transmission. The cross-layer rule-base has IF 
antecedent(s), THEN consequent(s) rules, where antecedents 
have five input linguistic variables (i.e., cross-layer features), 
namely, Sensor Reading (SR), Battery Status (BS), Link 
Quality Indicator (LQI), Received Signal Strength Indicator 
(RSSI), and Packet Error Rate (PER). These input linguistic 
variables are connected through the AND logical operator. 
The term-set of each input linguistic variable has three values: 

,, TN  and ,A  as defined as fuzzy numbers in Section III-B. 

It is pertinent to mention that the granularity of the term-set 
can be increased or decreased as per the discretion of the user 
in order to tune the performance of the system. 

The consequent (i.e. output linguistic variable denoted by D ) 

has three decision values, namely, 1D , 2D , and 3D , where 1D  

denotes the decision of the aggregation of the sensed data for the 

case when the received data is found normal, 2D  causes 

decrement in the trust value, and 3D  triggers the mobile agent to 

perform the task of the in situ verification. The 1D , 2D , and 3D  

types of decisions have the triangular-shaped membership 

functions specified by the three parameters ( lt , mt , rt ), where lt , 

mt , and rt  are the left, middle, and right values along the x-axis. 

The parameters of the decision variables take the following values: 

1D = (0, 0.2, 0.4), 2D = (0.3, 0.5, 0.7), and 3D = (0.6, 0.8, 1). An 

important design characteristic of the rule-base is that the rules 

execute action 3D  even if the value of only one feature is 

anomalous. The formal syntax of the first rule in the rule-base, as 
an illustration, is given in the below equation. 

 )( SRNSR  )( BSNBS  )( LQINLQI     

          )( RSSINRSSI 1)( DDNPER PER       (6)   

Semantically, in the antecedent part of the above rule, the 
NSR, NBS, NLQI, NRSSI, and NPER are the normal values taken by 
the input linguistic variables SR, BS, LQI, RSSI, and PER, 
respectively. The consequent part causes the aggregation of 
the sensed data. The number of the input linguistic variables is 
5 in the proposed method and each variable can take 3 values. 
Thus, the total number of rules, with all possible 
combinations, is 243. The general structure of the complete 
rule-base is shown in TABLE I. 

TABLE I 
CROSS-LAYER RULE-BASE 

Rule No. SR BS LQI RSSI PER D 

1 NSR NBS NLQI NRSSI NPER D1 
2 TSR NBS NLQI NRSSI NPER D2 
3 ASR NBS NLQI NRSSI NPER D3 
. . . . . . . 

242 TSR ABS ALQI ARSSI APER D3 
243 ASR ABS ALQI ARSSI APER D3 

IV. THE ALGORITHM AND ANALYSIS 

A. The Algorithm 

The proposed algorithm runs on the resource rich 2V  type 

nodes after receiving the data traffic from the member 3V  

type nodes. The algorithm has two phases, namely, 
Initialization Procedure and Main Procedure. The 
Initialization Procedure is responsible for the computation of 
the regions. It is first executed at the time of the system 
deployment and then only executes if the user wishes to 
recompute the regions and update the rule-base. The 
Initialization Procedure takes the values of the n  number of 
sampled observations of the cross-layer features along with 
the value of the n  itself as input to compute the parameters 

,x  lns )/( , rns )/( , ls , rs , 
l
rA , and .r

rA  The 

regions are then computed using these values and the 
membership functions are defined by employing (3) to (5). 
The user-defined heuristic rule-base is generated after the 
execution of the first phase. 

The Main Procedure performs the functions of the anomaly 
detection and mobile agent transmission by employing the 
rule-base. This phase executes after receiving every data 

packet from the member 3V  type nodes. In this phase, the 

cross-layer anomaly detection module extracts the crisp values 
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of the cross-layer features, namely, SR, BS, LQI, and RSSI 
from the received data packets and also computes the value of 
PER. These values are then fuzzified using the membership 
functions defined in (3) to (5) and processed by the  
cross-layer rule-base. This is followed by the defuzzification 
of the decision variable, using the maximum method (as 
discussed in Section II-B-3), to execute actions, namely, 
aggregation of the sensor reading, decrement in the trust count 

of 3V  type node, or transmission of the mobile agent. The 

pseudocode for the proposed methods is given in Algorithm 1. 
  
Algorithm 1: Cross-Layer Anomaly Detection and Mobile 
Agent Transmission 
Phase 1: Initialization Procedure 
Input n  sampled observations and value of n   

 for SR, BS, LQI, RSSI, PER  do 
Step 1: Compute: Eset = {E(1), E(2), E(3), E(4), E(5), 

E(6), E(7)}           // where E(1)= x , E(2)= ls , 

E(3)= rs , E(4)= lns )/( , E(5)= rns )/( , 

E(6)= 
l
rA , E(7) = 

r
rA    

Step 2: EstReg ( Eset ) // estimate regions for all features 
Step 3: ConstructMemb )( xM N

, )( xM T
, )( xM A

 

 // construct membership functions for all features 
end for 

Output Membership functions 

Phase 2: Main Procedure 
Input DatPkt          // data packet 

RlBs             // cross-layer rule-base 
 for each DatPkt do 
Step 1:    GetVal ( SR, BS, LQI, RSSI, PER ) 
Step 2:    Fuzzify: Fuzzset={fuzz( SR ), fuzz( BS ),  

   fuzz( LQI ), fuzz( RSSI ), fuzz( PER )}  
   // using equation (3) to (5) for every feature 
       for Fuzzset={fuzz( SR ), fuzz( BS ),  
            fuzz( LQI ), fuzz( RSSI ), fuzz( PER )} do 

Step 3:             EvalRlBs( Fuzzset )   // evaluate rule-base 
       end for 

Step 4:    DefuzzDes( D1, D2, D3 )  // defuzzify decision 
Step 5:    if D = = D1 then       // checking decision 
Step 6:       Agg( SR ) � Str ( SR, BS, LQI, RSSI, PER )      

    // aggregate SR and store values of all features 
Step 7:    else if  D = = D2 then    // check decision 
Step 8:       DecrTrst( Tr )            // decrement trust value 
Step 9:     else Trnsmt MA           // transmit mobile agent 
     end if 
 end for 
Output Aggregate SR and store SR, BS, LQI, RSSI, PER, 

NewTrust, or transmit MA 

B. Computation Complexity 

Proposition 1. (i) The computation cost of the Phase 1 of the 
proposed algorithm is O(n) and (ii) Phase 2 is O(n2). 
 

Proof. (i) The processes of the computation of the values of 
the statistical parameters, regions estimation, and construction 
of the membership functions take constant time for each 
process for n number of cross-layer features. Thus, 
considering n(1+1+1) as the total complexity, the computation 
cost of the Phase 1 is  O(n). 

(ii)  Phase 2 takes constant time to perform each of the 
processes, namely, obtaining values of the cross-layer features 
from the received data packets, fuzzification, defuzzification, 
and decision making processes on n features. Next, n time is 
taken by Phase 2 to process n number of rules. Thus, the 
computation complexity of Phase 2 is O(n2)                           ■ 
 

Note that the above proofs have the relation O(n2) > O(n), 
because of the fact that Phase 2 involves the processing of the 
cross-layer rule-base, which is a computationally expensive 
operation as compared to the rest of the tasks in the algorithm.   

V.  PERFORMANCE EVALUATION 

The performance of the proposed scheme is examined in terms 
of the detection accuracy, energy and memory consumptions, 
and processing time estimation. 

As a proof of the concept, the proposed scheme is 
implemented on a real testbed based on the two sensor nodes 
and a laptop node, representing a minimal working smart 

home sensor network. One mote was deployed as a 3V  type 

node, which was responsible for sensing its ambient 
environment and reporting the temperature readings to the 

resource rich 2V  type node. The 2V  type node was 

responsible for anomaly detection, aggregation and then 
transmission of the aggregated sensed data to the laptop node, 

and mobile agent transmission to the 3V  type node for the in 

situ verification process. A software application was 
developed and deployed on the testbed to manage the anomaly 
detection system. The TinyOS, object oriented programming 
language, and relational database management system were 
used to build the complete application software package. 

The developed software is made up of five functional 
layers. The lower layer (i.e. layer 5) performs the core 
functions such as sensing the ambient temperature and 

performing the in situ verification on the 3V  type node, the 

cross-layer anomaly detection and mobile agent transmission 

on the 2V  type node, and the regions computation and update 

on the 1V  type node. Layer 4 handles the storage functionality 

across the network. On the 3V  type node, it stores the sensed 

data and battery status, which are later used by the mobile 
agent for the in situ verification process. Layer 4 stores the 
aggregated data, the cross-layer rule-base, and the trust value 

on the 2V  type node. Finally, on the 1V  type node, the 

anomaly detection reports which are transmitted by the 2V  

node and information about the identities of the nodes in the 
network are stored by layer 4. 
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Fig. 3. GUI of the configuration panel. 

 

Layer 3 defines the communication interfaces on all types of 
nodes and performs the following key functionalities: (i) the 

transmission of the sensed data from the 3V  to 2V  type node, 

(ii) the anomaly detection reports and the aggregated data 

transmission from the 2V  to 1V  type node, (iii) the 

transmission of the mobile agent for the in situ verification 

from the 2V  to 3V  type node, and (iv) the transmission of the 

in situ verification result from the 3V  to 2V  type node. The 

next layer (i.e., layer 2) extracts the information from the 
received data packets on the receiver side and hands them 
over to layer 5 to perform its functionalities. On the other 
hand, on the transmission side, layer 2 builds the packets and 
passes them to layer 3 for transmission. Finally, layer 1 
provides the Graphical User Interfaces (GUIs) to manage and 
control the anomaly detection system in the smart home. 

The application software is composed of two modules, 
namely, Configuration Panel and Report Panel. Note that due 
to the modular approach, the available options on the GUIs of 
the modules can be modified or even new modules can be 
included as per the preferences of the user. The configuration 
panel window has three components, namely, Node 
Configuration, Regions Computation, and Rules Definition. 
The Node Configuration component is responsible for 
defining types of nodes such as temperature, pressure, and 
motion sensors, and also defining identities of nodes and 
location of nodes with respect to the rooms and network 
segments within the smart home. The Node Configuration 
component also has an option to increase or decrease the trust 
level of a chosen node. It also enables the user to view a 
preloaded network map to determine the location of sensor 
nodes within the network. The Regions Computation 
component can be used to compute or adjust the values of the 
parameters in order to define regions. The third component, 
namely, Rules Definition offers a service to define fuzzy rules. 
The GUI of the Configuration Panel is shown in Fig. 3. 

The Report Panel provides a facility to access the anomalies 
report. The reports can be generated with respect to the 
identity of the network segment, room identity, and sensor  

 
Fig. 4. GUI of the report panel. 

 

type for selected date and duration of time. Three anomalies 
records, in the reverse chronological order, are displayed 
within the Report Panel window. A complete report can be 
viewed by clicking on the “detailed view” button. The GUI of 
the Report Panel is shown in Fig. 4. 

In order to compute the regions and consequently setting up the 
cross-layer expert system for the experiments, the data traffic of 

1000 iterations from the 3V  to 2V  type node was sampled. The 

values of the features SR, BS, LQI, and RSSI of each data packet 
were saved. On the other hand, the values of the PER were 
computed for every five data packets. The observations of the node 
and link features are plotted in Fig. 5 and Fig. 6, respectively, and 
the statistics of the observations are given in TABLE II.  

The value of the parameter n  was set as 50 and as a 
consequence the values given in TABLE III were obtained to 
define the regions for the experiments. The 10% randomly 
generated anomalous traffic was included in the dataset. The 
cross-layer rule-base was created using the configuration panel 
and by following the structure described in Section III-C. The 
size of the developed mobile agent was 762 bytes including 
both code and data. The mobile agent cannot be transmitted as a 
single data packet because of its large size [15]. Therefore, it 
was segmented into the eight packets. The first seven packets 
had 7 × (102 + 25) = 889 bytes size, where 102 and 25 were 
payload and header sizes, respectively. Similarly, the last packet 
had the size of 1 × (48 + 25) = 73 bytes. The trust decrement 
value was set as 0.33 for the observations in the tolerance 
region. The mobile agent was transmitted only if the trust value 
was 0. The trust value was reset to 1 whenever it reached to 0 
for experimentation purpose. In practice, however, the proposed 
algorithm will generate an alarm to the user as soon as the trust 
value will reach to the lower bound. 

In order to provide the baseline to the detection  
accuracy results, the experiments were also performed with a 
well-established crisp-logic classification algorithm, namely, 
decision tree. The detection accuracies for the crisp-logic case  
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Fig. 5. Node features. 

 
Fig. 6. Link features. 

 

TABLE II 
SAMPLED CROSS-LAYER DATA STATISTICS 

Feature 
Category 

Feature Mean 
Standard 
Deviation 

Node 
SR 20.08 1.43 
BS 53.70 0.50 

Link 
RSSI -76.65 0.33 
LQI 106.75 1.28 
PER 0.0033 0.001 

 

TABLE III 
CROSS-LAYER EXPERT SYSTEM PARAMETERS 

Feature *a  
*b  

*c  *d  
*e  

*f  

SR 18.65 19.26 19.88 20.28 20.90 21.51 
BS 53.20 53.41 53.63 53.77 53.99 54.20 

RSSI -76.98 -76.83 -76.70 -76.60 -76.46 -76.32 
LQI 105.47 106.02 106.57 106.93 107.48 108.03 
PER 0.0020 0.0024 0.0029 0.0031 0.0036 0.0040 

 

were 98.8%, 98.5%, 98.7%, 98.4%, and 98.7% for SR, BS, 
LQI, RSSI, and PER features, respectively. On the other 
hand,the detection accuracy was steady at 100% for the 
proposed scheme, as shown in Fig. 7. The proposed scheme, 
however, requires the domain expertise to appropriately setup 
the cross-layer rule-base to detect anomalies with high 
accuracy. 

 For estimation of the energy consumption by the mobile 
agent transmission, the experiments were performed by 
employing the cross-layer approach (i.e., the proposed  

      
Fig. 7. Detection accuracy. 

 

 
Fig.8. Energy consumption. 

 

TABLE IV 
MEMORY, PROCESSING TIME, AND ENERGY RESULTS 

Procedure 
RAM 
(bytes) 

ROM 
(bytes) 

Processing 
Time (ms) 

Energy 
Consumption (μJ) 

Phase 1 81 4013 12.73 113.12 
Phase 2 1439 73303 282.86 2554.76 

 

scheme) and by without employing the cross-layer approach 
(i.e., the existing schemes [6]-[9]). In the case of the existing 
schemes (i.e., without consulting the communication link-state 
for the mobile agent transmission decision), the energy 
consumption for the mobile agent transmission was between 
3764.32 μJ to 18821.60 μJ for 200 to 1000 data packets, 
respectively. On the contrary, in the case of the proposed 
scheme, the energy consumption was between 1613.28 μJ to 
10217.44 μJ for 200 to 1000 data packets, respectively, as 
shown in Fig. 8. The results of these experiments indicate that 
the proposed scheme can save 42.85% to 54.29% energy as 
compared to the existing schemes, which do not consider the 
communication link-state before the transmission of mobile 
agents. 

The algorithm implementation results for the memory 
consumption, processing time, and energy consumption are 
given in TABLE IV. These results establish two facts: (i) the 
proposed algorithm is suitable for the low resource sensor 
nodes and (ii) the implementation results are consistent with 
the theoretical results presented in Section IV-B. 

The key findings from the experiments are following: (i) 
initially the domain knowledge is required to properly setup 
the proposed anomaly detection system, (ii) the user can then 
control/ track the system performance through user friendly 
configuration/ report panel, (iii) the proposed scheme can 
detect cross-layer anomalies with high accuracy, (iv) in the 
case of the poor communication link-state, the mobile agent 
cannot be reliably transmitted and the anomaly detection 
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system has to rely on other actions such as notifying the user 
about anomalies, and (v) the proposed scheme offers energy 
efficient and more reliable service to transmit mobile agent. 

VI. CONCLUSION 

A robust anomaly detection system is indispensable in the 
smart home to timely notify users about the anomalies caused 
by the transmission errors, node faults, or attacks. This study 
has contributed towards the design and implementation of a 
novel cross-layer anomaly detection scheme for smart home 
sensor networks. The proposed scheme employs simple, yet 
practically effective statistical procedures along with the fuzzy 
logic to detect cross-layer anomalies. It also offers the facility 
to transmit mobile agents after consideration of the 
communication link-state. The proposed scheme is 
implemented on a testbed and results indicate its ability to 
detect cross-layer anomalies with high accuracy and also its 
capability to decrease the energy consumption caused by the 
mobile agent transmissions in the poor communication  
link-state situations. An application software is developed to 
manage the anomaly detection system in a smart home 
environment, which empowers the user to adjust the 
statistically derived values of the parameters to tune the 
performance of the system. The modular design of the 
application software makes it suitable for integration into the 
main application software, which controls the smart home. 

Future work on the proposed scheme will aim to achieve 
two primary goals: (a) building different profiles for different 
natures of sensor nodes with respect to their hardware and 
designated roles in the smart home, and (b) incorporating  
role-based access control mechanism into the application 
software to offer different levels of privileges to the system 
administrator and users. 
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