
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2007, Article ID 36871, 13 pages
doi:10.1155/2007/36871

Research Article

Mobile Agent-Based Directed Diffusion in Wireless
Sensor Networks

Min Chen,1 Taekyoung Kwon,2 Yong Yuan,3 Yanghee Choi,2 and Victor C. M. Leung1

1 Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
2 School of Computer Science and Engineering, Seoul National University, Seoul 151-744, South Korea
3 Department of Electronics and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Received 29 November 2005; Revised 12 May 2006; Accepted 16 July 2006

Recommended by Deepa Kundur

In the environments where the source nodes are close to one another and generate a lot of sensory data traffic with redundancy,
transmitting all sensory data by individual nodes not only wastes the scarce wireless bandwidth, but also consumes a lot of battery
energy. Instead of each source node sending sensory data to its sink for aggregation (the so-called client/server computing), Qi et
al. in 2003 proposed a mobile agent (MA)-based distributed sensor network (MADSN) for collaborative signal and information
processing, which considerably reduces the sensory data traffic and query latency as well. However, MADSN is based on the
assumption that the operation of mobile agent is only carried out within one hop in a clustering-based architecture. This paper
considers MA in multihop environments and adopts directed diffusion (DD) to dispatch MA. The gradient in DD gives a hint to
efficiently forward the MA among target sensors. The mobile agent paradigm in combination with the DD framework is dubbed
mobile agent-based directed diffusion (MADD). With appropriate parameters set, extensive simulation shows that MADD exhibits
better performance than original DD (in the client/server paradigm) in terms of packet delivery ratio, energy consumption, and
end-to-end delivery latency.

Copyright © 2007 Min Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Recent years have witnessed a growing interest in deploying
a sheer number of microsensors that collaborate in a dis-
tributed manner on sensing, data gathering, and processing.
In contrast with IP-based communication networks based on
global addresses and routing metrics of hop counts, sensor
nodes normally lack global addresses. Also, as being unat-
tended after deployment, they are constrained in energy sup-
ply (e.g., small battery capacity).

These characteristics of sensor networks require energy
awareness at most layers of protocol stacks. To address such
challenges, most of researches focus on prolonging the net-
work lifetime, allowing scalability for a large number of sen-
sor nodes, or supporting fault tolerance (e.g., sensor’s failure
and battery depletion) [2, 3]. Most energy-efficient proposals
are based on the traditional client/server computing model,
where each sensor node sends its sensory data to a back-
end processing center or a sink node. Because the link band-
width of a wireless sensor network is typically much lower
than that of a wired network, a sensor network’s data traffic

may exceed the network capacity. To solve the problem of
the overwhelming data traffic, Qi et al. [1] proposed the mo-
bile agent-based distributed sensor network (MADSN) for
scalable and energy-efficient data aggregation (this aggrega-
tion process is called collaborative signal and information
processing in [1]). By transmitting the software code, called
“mobile agent (MA)” to sensor nodes, the large amount
of sensory data can be reduced or transformed into small
data by eliminating the redundancy. For example, the sen-
sory data of two closely located sensors are likely to have re-
dundant or common part when the data of two sensors are
merged. Therefore, data aggregation is a necessary function
in densely populated sensor networks in order to reduce the
sensory data traffic. However, MADSN operates based on the
following assumptions: (1) the sensor network architecture is
clustering based; (2) source nodes are within one hop from
a clusterhead; (3) much redundancy exists among the sen-
sory data which can be fused into a single data packet with
a fixed size. These assumptions pose much limitation on the
range of applications which can be supported by MADSN.
This limitation of clustering can be addressed by a flat sensor

2 EURASIP Journal on Advances in Signal Processing

Segment ROI

(region of interest)

2

Collect reduced data

3

Migrate to sink node
1 Migrate to target region

Figure 1: Mobile agent-based image sensor querying.

network architecture, which may be suitable for a wide range
of sensor applications. Thus, we will consider MA in multi-
hop environments with the absence of a clusterhead. With-
out clusterhead, we have to answer the following questions.
(1) How is an MA routed from sink to source, from source to
source, and from source to sink in an efficient way? (2) How
does an MA decide a sequence to visit multiple source nodes?
(3) If the sensory data of all the source nodes cannot be
fused into a single data packet with a fixed size, will the MA
paradigm still perform more efficiently than the client/server
computing model? How about in the environments where
the source nodes are not close to one another, and the sen-
sory data do not have enough redundancy?

With the development of WSN, “one-deployment mul-
tiple applications” is a trend due to the application-specific
nature of sensor networks. Such a trend must require sensor
nodes to have various capabilities to handle multiple appli-
cations, which is economically infeasible. In general, using
memory-constrained embedded sensors to store every possi-
ble application in their local memory is impossible. Thus, a
way of dynamically deploying a new application is needed.

To have an in-depth look at problems we mentioned
above and why the MA is necessary, we investigate the fol-
lowing scenario of an image recognition application in wire-
less sensor networks. In Figure 1, we assume that a number
of image sensors are deployed to monitor a remote region.
Transmitting the whole pictures taken by individual sensors
to a sink node may be overwhelming for the wireless link,
or even unnecessary in the case that the sink node needs
only the region of interest (ROI) of the picture (e.g., human
face or vehicle identification number plate). Thus, instead of
transmitting the whole picture, a source node extracts the
ROI from the whole picture using an image segmentation
algorithm. However, a single kind of image segmentation al-
gorithm cannot achieve fairly good performance for all kinds
of images to be extracted. For example, a code for segment-
ing a face image will be different from the one for segment-
ing a vehicle identification number plate. However, a sensor
network may require various image processing algorithms to

handle different kinds of images of interest. It is impossible
to keep all kinds of codes in a sensor node’s limited memory.
In order to solve this problem, the sink node can dispatch
an MA carrying a specific image segmentation code to the
sensors of interest. Carrying a special processing code, the
MA enables a source node to perform local processing on the
sensed data as requested by the application. When the MA
reaches and visits the sensors of interest, the image data at
each target sensor node can be reduced into a smaller one by
image-segment processing.

Since multiple hops may exist among target source nodes,
the migration behavior of the MA becomes complicated and
it is important to find out a way to dispatch the MA efficiently
among the sensors of interest. Directed diffusion (DD) [4, 5]
is a prominent example of data-centric routing based on ap-
plication layer context and local interactions. The gradient
in DD gives a hint to efficiently forward the MA among tar-
get sensors. The MA paradigm in combination with the DD
framework is dubbed mobile agent-based directed diffusion
(MADD). This paper investigates this combination: is it fea-
sible to conduct DD with the mobile agent paradigm? How
does MA operate in detail? In which condition does MADD
outperform DD in terms of energy consumption and end-
to-end delay?

This study also provides insights into the behavior of
MA in multihop wireless environments, contributing to
a better understanding of this novel combination of mo-
bile agent paradigm and a holistic DD framework. Exten-
sive simulation-based comparison between original DD and
MADD shows that, depending on the parameters, MADD
can significantly reduce the energy consumption and end-
to-end delay. The rest of this paper is organized as follows.
Section 2 presents related work. We describe MADD design
issues and algorithm in Sections 3 and 4, respectively. Sim-
ulation model and results are explained in Sections 5 and 6,
respectively. Finally, Section 7 will conclude the paper.

2. RELATED WORK

Recently, mobile agents have been proposed for efficient data
dissemination in sensor networks [1, 6–12]. In a typical
client/server-based sensor network, the occurrence of cer-
tain events will alert sensors to collect data and send them
to a sink node. However, the introduction of a mobile agent
(MA) leads to a new computing paradigm, which is in con-
trast to the traditional client/server-based computing. The
MA is a special kind of software which visits the network
either periodically or on demand (when the application re-
quires). It performs data processing autonomously while mi-
grating from node to node. Although there are advantages
and disadvantages (code caching, safety, and security) of us-
ing MAs [3] in a particular scenario, their successful applica-
tions range from e-commerce [6] to military situation aware-
ness [7]. They are found to be particularly useful for data fu-
sion tasks in distributed sensor networks. The motivations
for using MAs in distributed sensor networks have been ex-
tensively studied in [1].

As mentioned in Section 1, this paper will adopt DD for
routing MA. DD [4] is a data-centric dissemination protocol

Min Chen et al. 3

for sensor networks. It provides the following mechanisms:
(a) for a sink node to flood a query toward the sensors of
interest (say, sensors detecting event), (b) for intermediate
nodes to set up gradients to send data along the routes to-
ward the sink node. DD provides high quality paths, but
requires an initial flood of the query to explore paths. In
DD, the publish/subscribe mechanism provides a sensor net-
work with application context by attribute-based naming.
Attribute-based naming specifies which sensors are respon-
sible for responding queries, and how intermediate sensors
perform in network processing. Attributes describe the data
which a sink node desires, by specifying sensor types, desired
data rate, and possibly some geographical region. A moni-
toring node becomes a sink, creating attributes of interest
specifying a particular kind of data. The interest is propa-
gated over the network towards sensor nodes in the specified
region. A key feature of DD is that every sensor node can
be application-aware, which means that nodes store and in-
terpret interests, rather than simply forwarding them along.
Each sensor node that receives an interest maintains a table
that contains which neighbor(s) sent that interest. To such a
neighbor, it sets up a gradient. A gradient is used to evaluate
the eligibility of a neighbor node as a next hop node for data
dissemination. After setting up a gradient, the sensor node
redistributes the interest by broadcasting the interest. As in-
terests travel across the network, sensors that match interests
are triggered and the application activates its local sensors to
begin collecting and sending data.

3. OVERVIEW OF THE MADD DESIGN

In this section, we discuss the key design issues of MADD. Be-
fore describing them, we first present our assumptions about
MADD and its applications.

(1) Compared with the distance to the sink node, the tar-
get sensor nodes are geographically close to each other.

(2) Only source nodes matching interest packets will store
the processing code carried by an MA. The sink does
not flood processing code to the whole network, since
the associated communication overhead may be too
high. For example, shipping a mobile agent with face
detection code would incur an overhead of over 1 MB.
However, most of the sensor nodes may not be queried
by this application at all.

(3) Processing code is stored in the source node when the
MA visits it at the first time. The processing code will
be operating until the task is scheduled to finish. It may
be discarded when the task is finished.

(4) The locally processed data in each source node will be
aggregated into the accumulated data result of the MA
by a certain aggregation ratio.

3.1. Application redundancy eliminating by
MA-assisted local processing

As described in Section 1, due to the application-specific
nature of sensor networks, a sensor should have various
capabilities to handle multiple applications. However, it is

unrealistic for a memory-constrained embedded sensor to
store every possible application code in its local memory.
The introduction of MA not only provides an efficient way
of dynamically deploying a new application, but also allows
a source node to perform local processing on the raw data
as requested by the application. This capability enables a re-
duction in the amount of data to be transmitted since only
relevant information will be extracted and transmitted. Let r
(0 < r < 1) be the reduction ratio by the MA-assisted local
processing, let Sidata be the size of raw data at source i, and let
Ri be the size of reduced data. Then,

Ri = Sidata · (1− r). (1)

3.2. Aggregation

The degree of sensed data correlation among sensors is
closely related to the distance between sensors so that it is
very likely for closely located sensors to generate redundant
sensed data. Therefore, data aggregation, which eliminates
unnecessary data transmissions, is a necessary function in
densely populated sensor networks in order to refine the
sensed data as well as to extend the network lifetime. Because
the aggregation decisions are made as the data is dissemi-
nated in the network, this is also referred to as in-network
processing.

In DD, different data packets which are completely/
partially redundant each other are forwarded to the sink
through multiple paths with a low probability to be aggre-
gated. This aggregation technique can be considered as op-
portunistic aggregation.

In contrast, the MA aggregates individual sensed data
when it visits each target source. Though this kind of aggre-
gation technique is typically used in clustering or aggregation
tree-based data dissemination protocols, the aggregation in
MADD does not need any overhead to construct these special
structures. Note that MADD builds the gradient for routing
as DD does, and does not need more control overhead than
DD.

We calculate the size of data result accumulated by the
MA using the similar method in [9]. A sequence of data result
can be fused with an aggregation ratio (ρ, 0 ≤ ρ ≤ 1). Let
Sima be the amount of accumulated data result after the MA
leaves source i, where Ri is the amount of data that will be
aggregated by ρ. Then,

S1
ma = R1,

S2
ma = R1 + (1− ρ) · R2

...

Sima = Si−1
ma + (1− ρ) · Ri

= R1 +
i
∑

k=2

(1− ρ) · Rk .

(2)

In (2), there is no data aggregation in the first source. The
value of ρ is dependent on the type of application. For the im-
age processing application described in Section 1, when we
fuse two ROI images, effective data fusion can be attained

4 EURASIP Journal on Advances in Signal Processing

Data collection is finished at the last source

8

7
6

5

4
3

2

1

Intermediate node

Source node

Sink node

Target region

Mobile agent

Figure 2: Gradient-based solution for deciding the order of source
nodes to be visited.

only if statistical characteristics of the image are known (e.g.,
Slepian-Wolf coding schemes [13]), which implies that data
aggregation may not be achieved efficiently. By comparison,
the application considered in [1] is an extreme example,
where the sensory data can be fused into a data with fixed
size (say, ρ = 1).

3.3. Efficient routing

The order of source nodes to be visited by the MA can have
a significant impact on energy consumption. Finding an op-
timal source-visiting sequence is an NP-complete problem.
In [10], a genetic algorithm-based solution to compute an
approximate solution is presented. Though global optimiza-
tion can be achieved using genetic algorithm, it is not a
lightweight solution for sensor nodes that are constrained
in energy supply. This paper adopts a gradient-based solu-
tion (in Section 4.3) for the MA to dynamically decide the
route. Figure 2 gives an example of deciding source-visiting
sequence through the gradient-based solution.

4. THE MADD ALGORITHM

Section 4.1 gives an overview of the algorithm. Section 4.2
describes the structure of the MADD packet. Section 4.3 il-
lustrates MADD with the details. Then, we give a simple per-
formance analysis in Section 4.4

4.1. Algorithm overview

The flowchart of the MADD protocol is shown in Figure 3.
Once receiving a new task as requested by an application, the
sink initially floods an interest packet to find out the sources
which will perform the task. If the sources in the target re-
gion receive the interest packets, they flood exploratory data

to the sink individually. Then, the sink will receive these ex-
ploratory data packets from various sources and decide the
list of sources that will be visited by an MA. In the list, there
are two sources whose positions are important, namely, the
first source which the MA will visit (FirstSrc) and the last
source (LastSrc).

The MA-related operation begins at the point of the sink
dispatching MA and ends when the MA returns to the sink
with collected results. The whole route can be generally di-
vided into three parts demarcated by FirstSrc and LastSrc
(i.e., from the sink to FirstSrc, from FirstSrc to LastSrc, and
from LastSrc to the sink).

In most cases, each source is expected to generate the sen-
sory data periodically with some interval, which means the
same code (MA) needs to be stored for multiple runnings.
Thus, when the MA arrives at the FirstSrc, it will be stored.
Then, FirstSrc sets a Create-MA-Timer, which is used to trig-
ger the next round to dispatch the MA to collect data from
the relevant sources again. Obviously, the interval between
the successive rounds will be equal to the sensory data gener-
ating rate which is set to the value of the Create-MA-Timer.
This round will be repeated until the task is finished. A round
can also be defined as the interval from the time that an MA
collects the data packet in the FirstSrc to the time that it col-
lects the data packet in LastSrc. At the end of the last round,
the task is finished.

When the Create-MA-Timer expires, FirstSrc starts a new
round by dispatching the MA along all the sensors. After an
MA visits the LastSrc, it discards the processing code and car-
ries the aggregated result to the sink. The sink will be ex-
pected to receive an MA by the desired data rate until the
task is finished.

Based on the above illustration, the differences between
MADD and client/server-based WSN can be listed as follows.

(1) All the relevant sources in client/server-based WSN
send sensory data individually with a specified inter-
val; while in MADD, a single MA visiting all the rele-
vant sources will collect the data. The interval between
reports to the sink is decided by the dispatching rate of
the MA.

(2) In client/server-based WSN, data results are sent back
in parallel from all sources, or return to the sink; while
in MADD, data is collected by the MAs visiting all the
target sensors along a single path.

4.2. Mobile agent packet format

The information contained in an MA packet is shown in
Figure 4. The pair of SinkID and MA SeqNum is used to iden-
tify an MA packet. Whenever a sink dispatches a new MA
packet, it will increment the MA SeqNum. FirstSrc and Last-
Src are the source nodes scheduled to be visited firstly and
lastly by the MA, respectively. The pair of FirstSrc and Last-
Src indicates the beginning and ending points of MA’s data
gathering. RoundIdx is the index of current round. The value
is initially set to 1 by the sink in the first round, and will
be incremented by the FirstSrc in the following rounds. Las-
tRoundFlag indicates that the current round is the last round

Min Chen et al. 5

Idle state

A
Receive new task

(I am a sink)
Flood interest

A
Receive interset
(I am a source)

Flood exploratory

data (E-data)

B

Receive E-datas
sent by n sources

(I am the sink)

Create MA
Set FirstSrc
and SrcList
to the MA

Dispatch MA

C
Visited by MA

(I am FirstSrc)
Store the MA

Start
Create-MA-Timer

No

D

Expire

Create-MA-Timer
(I am FirstSrc)

Create MA by

copying the

stored one
Last round?

Yes

E
Visited by MA

(I am non-FirstSrc)
Am I the LastSrc

in the SrcList?

No MA collects data and
migrates to NextSrc

in the SrcList

Yes MA collects data and
migrates to the sink

Figure 3: Flowchart of the basic MADD protocol.

Fixed attributes

SinkID MA SeqNum FirstSrc LastSrc RoundIdx LastRoundFlag

Variable attributes

NextSrc NextHop ToSinkFlag SrcList

Payload

Processing code Data

Figure 4: MA packet structure.

of the whole task. The flag is set by FirstSrc. When an MA
with LastRoundFlag set arrives at a source node, it can make
the system unmount the corresponding processing code after
its execution.

When an MA migrates, it may change variable attributes.
NextSrc specifies the next destination source node to be vis-
ited. NextHop indicates the immediate next hop node which
is an intermediate sensor node or a target source node. If
NextHop is equal to NextSrc, it means that the next hop
node is current destination source. SrcList contains the iden-
tifiers (IDs) of target sensor nodes that remain to be visited
in the current round. It does not contain any information
of source-visiting sequence since NextSrc is dynamically de-
cided when an MA arrives at a source node (except LastSrc).
SrcList initially contains all the IDs of source nodes when an
MA is created. The corresponding ID will be deleted after the
MA visits the source node. If all the target sources have been

visited by the MA, ToSinkFlag is set to indicate that the des-
tination of the MA is the sink. NextSrc, NextHop, SrcList, and
ToSinkFlag hint the dynamical route of MA migration. Pay-
load includes two kinds of data. One is ProcessingCode which
is used to process sensed data; the other is Data which carries
the accumulated data result. The size of Data is zero when an
MA is generated, and increases while the MA migrates from
source to source.

4.3. Detailed illustration of MADD protocol and
gradient-based MA routing

The proposed MADD mechanism is based on the original
DD (two-phase pull DD). In this DD, the sink initially dif-
fuses an interest for notifications of low-rate exploratory
events which are intended for path setup and repair. The gra-
dients set up for exploratory events are called exploratory
gradients. The multiple exploratory gradients can enable fast
recovery from failed paths or reinforcement of empirically
better paths. Once target sources receive the corresponding
interest, they send exploratory data, possibly along multi-
ple paths, toward the sink. The initial flooding of the inter-
est, together with the flood of the exploratory data, consti-
tutes the first phase of two-phase pull DD. If the sink has
multiple previous hop nodes, it chooses a preferred neigh-
bor to receive subsequent data messages for the same interest
(e.g., the one which delivered the exploratory data earliest).
To do this, the sink reinforces the preferred neighbor, which
in turn, reinforces its preferred previous hop node, and so
on. Periodically, the source sends additional exploratory data

6 EURASIP Journal on Advances in Signal Processing

A B C

D

14

15

13

12

16
17

11
10

9
8

7

6
5

4

1
2

3

E
Sink

Sink node

Intermediate node

Intermediate source node

First source node

Last source node

Positive reinforcement

Mobile agent migrates

toward event region

Mobile agent migrates

among source nodes

Mobile agent migrates

along reinforced path

Figure 5: Second phase of MADD.

messages to adjust gradients in the case of network changes
(due to node failure, energy depletion, or mobility), tempo-
rary network partitions, or to recover from lost exploratory
messages. The path reinforcement and the subsequent trans-
mission of data along reinforced paths constitute the second
phase of two-phase pull DD. The first phase of MADD is
identical to that of DD, however, in addition to path rein-
forcement, in the second phase, an MA is sent to target source
nodes matching the sink’s interests.

Figure 5 depicts the detailed operation of the second
phase in the MADD scheme. At the end of the first phase,
the target sensor nodes generate multiple exploratory mes-
sage flows to the sink. Since the ultimate goal is the detection
of events in sensor networks [14], the sink may stop handling
any exploratory message flows if it considers that the number
of source nodes is large enough to meet the requirement of
reliable event detection. Thus all the source nodes or only
a subset of these nodes will be chosen to be visited by MA.
Among the target source nodes to be visited, the sink will
choose the first and last source nodes. Then, the sink gen-
erates an MA with the packet format described in Figure 4,
and dispatches it to the first source. At the same time, the
sink reinforces the path to the last source. When the MA ar-
rives at the first source node, it is stored in the node. We di-
vide the whole task period into rounds, where each round
requires the MA to visit all the chosen target sensors and to
return the data result to the sink. The MA starts from the first

source (or from the sink only in the first round) and arrives
at the last source. Finally, the MA will carry the data result
to the sink along the reinforced path. In the first round, in
addition to that the MA moves from source to source to col-
lect and aggregate information, it also copies processing code
into the memory of each source node. At the beginning of
each round, the first source node will construct another MA
from its memory and dispatch it to initiate the new round.
Since processing code has already resided in each source node
after the first round, the MA does not carry the processing
code any more in the following rounds. When the whole task
is finished, all the source nodes will discard the processing
code.

In the first phase of MADD, the initial flooding of the
interest enables each sensor node (e.g., intermediate sensor
node or source node) to set up exploratory gradients [15]
which are used to deliver exploratory messages intended for
path setup and repair. The exploratory gradients, which are
denoted as exp., are shown in Figure 6(a). After path rein-
forcement, the updated gradients are shown in Figure 6(b).
The gradient to deliver MA is denoted by MA. The identifier
of each node is equal to the one in Figure 5.

In MADD, target source nodes flooding exploratory mes-
sages enable sensor nodes to set up ToSourceEntry, which is
a kind of gradient toward each target source. ToSourceEntry
is used for MA to roam among source nodes. In this paper, a
time-to-live (TTL) field is set in exploratory message to man-
date only the sensor nodes within the target region to set up
their ToSourceEntries. The value of TTL is decreased as ex-
ploratory message is propagated hop by hop. If the value is
equal to 0, sensor nodes do not set up ToSourceEntry any
more. Among all the neighbors of a sensor node, only the
neighbor who first relays the exploratory message of a spe-
cific target source will be chosen as the sensor node’s Nex-
tHop in the ToSourceEntry. In Figure 5, nodes A, B, C, and
D are the target source nodes. The ToSourceEntries set up by
nodes A, B, C, 16, and D are shown in Figure 7.

Based on the gradients and ToSourceEntries, a migrating
route is decided by the following three operating elements.

(1) Choose FirstSrc and LastSrc. According to (2), the size
of an MA is the minimum in FirstSrc while it becomes
the maximum in LastSrc. Thus, to reduce total com-
munication overhead, FirstSrc should be the farthest
target sensor from the sink, while LastSrc should be the
closest one. In this paper, the target source which is the
last (first) to send exploratory messages to the sink is
chosen as FirstSrc (LastSrc). The sink will reinforce the
path to LastSrc.

(2) Decide source-visiting sequence. Except that FirstSrc and
LastSrc are chosen by the sink, the sequence of visiting
the other source nodes is dynamically decided by each
target sensor in SrcList. For example, when an MA ar-
rives at node A in Figure 5, the node will choose the
closest next source node based on its ToSourceEntry
shown in the first row of Figure 7. Since the lowest la-
tency of node B is the least, it implies that node B is
the closest source node from node A and is chosen as
NextSrc.

Min Chen et al. 7

Gradient (interest SeqNum = 1)

D
Direction 7 10 13 16 17 11
type exp. exp. exp. exp. exp. exp.

7
Direction 5 6 10 D 11 8
type exp. exp. exp. exp. exp. exp.

5
Direction 4 6 7 8 2 1
type exp. exp. exp. exp. exp. exp.

2
Direction E 1 5 3 — —
type exp. exp. exp. exp. — —

(a)

Gradient (interest SeqNum = 1)

D
Direction 7 10 13 16 17 11
type MA exp. exp. exp. exp. exp.

7
Direction 5 6 10 D 11 8
type MA exp. exp. exp. exp. exp.

5
Direction 4 6 7 8 2 1
type exp. exp. exp. exp. MA exp.

2
Direction E 1 5 3 — —
type MA exp. exp. exp. — —

(b)

Figure 6: Gradients to the sink. (a) Before reinforcement. (b) After
reinforcement.

ToSourceEntry (exploratory message SeqNum = 5)

Source A B C D

A
NextHop — B B 14
Lowest Latency (ms) — 4.46 8.24 16.32

B
NextHop A — C C
Lowest Latency (ms) 4.47 — 4.43 12.89

C
NextHop B B — 16
Lowest Latency (ms) 8.16 4.32 — 8.52

16
NextHop 15 C C D
Lowest Latency (ms) 9.65 7.56 4.86 5.08

D
NextHop 10 16 16 —
Lowest Latency (ms) 14.15 12.67 8.73 —

Figure 7: ToSourceEntry setup after exploratory messages flooding.

(3) Find the next hop node to route an MA along the entire
path from sink to source, source to source, and source to
sink. Dispatched by the sink, an MA migrates to First-
Src in the same manner as a reinforcement message
is forwarded in original DD. When the MA migrates
among target sources, its next hop node will be de-
cided according to current node’s ToSourceEntry. The
MA will return to the sink using the reinforced path
(e.g., path D-7-5-2-E in Figure 5).

4.4. Performance analysis

In this section, we present a simple analysis that evaluates the
key performance metrics of DD and MADD, including the
average end-to-end delay for a data packet delivery (Tete) and
the cumulative energy consumption involved in forwarding
data packets from all the source nodes to the sink in one
round(E).

Let Tdd and Tma denote Tete of DD and MADD, respec-
tively. It accounts for all possible delays during data dissem-
ination, caused by queuing, retransmission due to collision
at the MAC, and transmission time. Let H be the number
of hops along the path between LastSrc and the sink, which
is actually the lowest latency path among all the source-sink
pairs. Let H + h be the average number of hops of all the
source-sink pairs in DD. Sdata is the size of sensed data and Sh
is the size of packet header. Let vn be the data rate at MAC
layer; let tctrl be the total delay for control messages (say,
ACK) during a successful data transmission. In DD, multi-
ple data results sent in parallel from all sources are likely to
contend for the channel (CSMA-CA) and potentially collide,
which causes additional delay for data retransmissions, espe-
cially as the number of source nodes becomes large. Let taccess

be the average latency to transmit a data packet successfully
in DD. Let Tr be the average latency for path reinforcement.
Let ndata be the number of data packets delivered to the sink
during the task. Then, Tdd is equal to

Tdd =
Tr

ndata
+

(

Sdata + Sh
vn

+ tctrl + taccess

)

· (H + h)

≈

(

Sdata + Sh
vn

+ tctrl + taccess

)

· (H + h)

(

if ndata ≫ 1
)

.

(3)

In MADD, Tma is the average time interval between the
time an MA is created and the time the MA returns to the
sink. Let Tp be the delay of the MA migrating from the sink
to the FirstSrc; letTroam be the average latency of MA roaming
from the FirstSrc to the LastSrc; let Tback be the average delay
of MA migrating from the LastSrc to the sink.

Let τ be the MA accessing delay (e.g., the time for an MA
to amount processing code in target source). Let Sp be the
size of processing code; let vp be the data processing rate; let
Sima be the size of MA at source i; let N be the number of
source nodes. Then, Troam is equal to

Troam =

N
∑

i=1

(

τ +
Sdata

vp
+
Sima + Sp + Sh

vn
+ tctrl

)

. (4)

In (4), Sima is equal to

Sima = Si−1
ma + Sdata ·

(

1− ri
)

·

(

1− pi
)

. (5)

Let SNma be the size of an MA packet after the MA visits
LastSrc. Then, Tback is equal to

Tback =

(

SNma + Sh
vn

+ tctrl

)

·H. (6)

8 EURASIP Journal on Advances in Signal Processing

Then, Tma can be calculated as follows:

Tma =
Tp

ndata
+ Troam + Tback

≈ Troam + Tback

(

if ndata ≫ 1
)

.

(7)

Let Edd and Ema denote E of DD and MADD, respectively.
Let mtx and mrx be the energy consumption for receiving and
transmitting a bit, respectively. Let b be the fix energy cost
to transmit a packet. Let ectrl be the energy consumption of
control messages exchanged for a successful data transmis-
sion. Let eretx be the energy consumption of packet retrans-
missions for a successful data transmission in case of conges-
tion in DD. Then, Edd is equal to

Edd =
((

Sdata + Sh
)

·

(

mtx + mrx

)

+ b + ectrl + eretx

)

· (H + h) ·N.
(8)

In MADD, let Ep be the energy consumption of MA mi-
grating from the sink to the FirstSrc; let Eroam be the aver-
age energy consumption of MA roaming from the FirstSrc
to LastSrc; let Eback be the average energy consumption of
MA migrating from the LastSrc to the sink. Let mp be the en-
ergy consumption for processing a bit. Then, Eroam is equal
to

Eroam =

N
∑

i=1

(

Sdata ·mp +
(

Sima + Sp + Sh
)

·

(

mtx + mrx

)

+ b + tctrl

)

.

(9)

Eback is equal to

Eback =
((

SNma + Sh
)

·

(

mtx + mrx

)

+ b + tctrl

)

·H. (10)

Finally, Ema can be calculated as follows:

Ema =
Ep

ndata
+ Eroam + Eback

≈ Eroam + Eback

(

if ndata ≫ 1
)

.

(11)

5. THE SIMULATION MODEL

5.1. Simulation settings

In order to demonstrate the performance of MADD, we
choose a client/server-based scheme (i.e., DD) to compare
with MADD. We use OPNET [16, 17] for discrete event
simulation. Figure 8 illustrates our sensor network. Figure 9
shows the protocol stack of our sensor node model; it in-
cludes application layer, routing layer, data link layer, and
physical layer. Each task requires periodic transmission of
data packets with a constant bit rate (CBR) of 1 packet/s. The
sensor nodes are battery operated except the sink. The sink is
assumed to have infinite energy supply. We assume that both
the sink and sensor nodes are stationary. The sink is located
close to one corner of the area, while the target sensor nodes
are specified at the other corner. We use the energy model
in [18]. The energy consumption parameters are shown in

Sensor nodes
Sink

Target region

Figure 8: Sensor network model.

Sensor

App manager

MADD routing

Wlan mac intf

Wirless lan mac

Wlan port rx 0 Wlan port tx 0

Application layer

1. Sensor module: constant bit rate (CBR)

real-time & best-effort traffic generator

2. App manager module:

application-specific in-network processing

Routing layer

MADD and directed diffusion routing

Data link layer

IEEE 802.11 implementation + interface

Physical layer

WLAN receiver (rx) + WLAN transmitter (tx)

Figure 9: Sensor node model.

Table 1. Every node starts with the same initial energy bud-
get (4,500 W·s) [18]. We use the following equation to cal-
culate the energy consumption in three states (transmitting,
receiving, or overhearing):

m× PacketSizeMAC + b + Pidle × t × 1000 (µW · s). (12)

Note that to express power consumption in idle state, Pidle,
in µW unit, 1000 is multiplied. In (12), m represents the in-
cremental cost compared to the power consumption in idle
state, b represents the fixed cost independent of the packet
size, t represents the duration of the state, and PacketSizeMAC

represents the size of the MAC packet.
The parameter values used in the simulations are pre-

sented in Table 2. The basic settings are common to all the ex-
periments. For each experiment, we simulate for sixty times
with different random seeds and get the average results.

Min Chen et al. 9

Table 1: Energy consumption parameters configuration of lucent
IEEE802.11 WaveLAN card [17].

Normalized initial energy of sensor node (W·sec) 4500

Incremental cost
(µW·s/bytes)

mtx 1.9

mrecv 0.5

moverhearing 0.39

btx 454

Fixed cost (µW·s) brecv 356

boverhearing 140

Pidle (mW) 843

Table 2: Simulation setting.

Basic specification

Network size 500 m× 500 m

Topology configuration mode Randomized

Total sensor node number 1500

Data rate at MAC layer (vn) 1 Mbps

Transmission range of sensor node 60 m

Long retry limit Default: 4

Short retry limit Default: 7

Sensed traffic specification

Number of source nodes (N) Default: 5

Size of sensed data (Sdata) Default: 1 KB

Size of control message Default: 128 B

Sensed data packet interval Default: 1 s

Duration Default: 300 s

MADD specification

Raw data reduction ratio (r) in (1) Default: 0.8

Aggregation ratio (ρ) in (2) Default: 0.2

MA accessing delay (τ) in (4) Default: 10 ms

Data processing rate (vp) in (4) Default: 50 Mbps

Size of processing code (Sproc) Default: 2 MB

5.2. Performance metrics

In this section, five performance metrics are evaluated.

(i) Reliability (packet delivery ratio). It is denoted by P. It is
the ratio of the number of data packets delivered to the
sink to the number of packets generated by the source
nodes.

(ii) Energy consumption per successful data delivery. It is
denoted by e. It is the ratio of network energy con-
sumption to the number of data packets successfully
delivered to the sink. The network energy consump-
tion includes all the energy consumption by transmit-
ting and receiving during simulation. As in [1], we do
not account energy consumption for idle state, since
this part is approximately the same for all the schemes
simulated. Let Etotal be all the energy consumption by

transmitting, receiving, and overhearing during sim-
ulation. Recall that ndata denotes the number of data
packets delivered to the sink. Then, e is equal to

e =
Etotal
ndata

. (13)

(iii) Average end-to-end packet delay. It is denoted by Tete.
And we also use Tdd and Tma to denote the average
end-to-end delays in DD and MADD, respectively. It
includes all possible delays during data dissemination,
caused by queuing, retransmission due to collision at
the MAC, and transmission time.

(iv) Energy∗delay/reliability. In sensor networks, it is im-
portant to consider both energy and delay. In [19], the
combined energy∗delay metric can reflect both the en-
ergy usage and the end-to-end delay. Furthermore, in
unreliable environment, the reliability is also an im-
portant metric. In this paper, we adopt the following
metric to evaluate the integrated performance of relia-
bility, energy, and delay:

η =
e · Tete

P
. (14)

6. PERFORMANCE EVALUATION

In this section, we compare the above performance met-
rics of DD and MADD, and determine the conditions un-
der which MADD is more efficient than DD by simulation.
Though these conditions are affected by many parameters,
only a set of important parameters is chosen, such as the du-
ration of the task (Ttask), reduction ratio (r), aggregation ra-
tio (ρ), size of sensed data of each sensor (Sdata). If we set ρ
to 0, it means that data aggregation does not work, all the re-
duced sensed data are concatenated. When MADD is applied
to a wide range of applications, the consideration of varying
both r and ρ is necessary. In the image processing applica-
tion described in Section 1, if the target camera sensors are
sparsely distributed, the redundancy between two ROI im-
ages is low, which implies that the value of ρ would be small
(e.g., ρ = 0.2). In the following sections, several groups of
simulations are evaluated. Only one parameter (e.g., Ttask, r,
ρ, and Sdata) is changed in each group while the other param-
eters are fixed.

6.1. Comparison of MADD and DD with
variable duration of task

In these experiments, we change Ttask from 10 seconds to
600 seconds. In Figure 10, e decreases as Ttask increases in
both DD and MADD.

When the Ttask is small (i.e., lower than 60 seconds),
MADD has higher e than DD because MADD consumes en-
ergy (Ep) to transmit processing code from the sink to the
target region. Note that Ep is a fixed value. If Ttask is small,
ndata is small, and e is large. However, when Ttask is beyond
90 seconds with r equal to 0.8 and ρ equal to 0.2, MADD has
lower e than DD. Thus, to amortize the cost of shipping the

10 EURASIP Journal on Advances in Signal Processing

0 100 200 300 400 500 600

Duration (s)

0

1

2

3

4

5

6

7

8

9
�105

E
n

er
gy

co
n

su
m

p
ti

o
n

p
er

su
cc

es
sf

u
l

d
at

a
d

el
iv

er
y

(m
W

/s
)

Client/server

MA r = 0.9 p = 0.1

MA r = 0.8 p = 0.2

Figure 10: The impact of Ttask on e.

processing code once to source node, the source should pro-
cess enough long streams of data.

6.2. Comparison of MADD and DD with
variable MA accessing delay

In these experiments, we change τ from 0 seconds to
0.05 seconds. In Figure 11, Tdd is constant since changing
τ has no effect on DD. Since the delay of τ is introduced
when MA visits each source, τ causes Tma increase fast if the
value is set to a large value. In Figure 11, when τ is beyond
0.042 seconds with r equal to 0.8 and ρ equal to 0.2, MADD
has larger end-to-end delay than DD. The value of τ is de-
pendent on the middleware environments of mobile agent
system.

6.3. Comparison of MADD and DD with
variable size of sensed data

In these experiments, we change the size of sensed data of
each sensor (Sdata) from 0.5 KB to 2 KB by increasing 0.25 KB
each time, and keep the other parameters in Table 2 un-
changed. For MADD, several groups of simulations are eval-
uated with variables r and ρ.

In Figure 12, MADD always outperforms DD in terms of
P. In MADD, only single data flow is sent for each round. In
contrast, multiple data flows from individual source nodes
are sent in DD. Thus, congestion in DD is more likely to hap-
pen than in MADD. When Sdata increases, the congestion is
more serious and P of DD will decrease more.

In Figure 13, the energy consumption of DD is larger
than that of MADD in most cases. The larger is r or ρ, the
smaller is e in MADD. When r is equal to 0.9 and ρ is equal to
1, e is lowest among all the simulations, and it is insensitive to

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Mobile agent access delay (s)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A
ve

ra
ge

en
d

-t
o

-e
n

d
p

ac
ke

t
d

el
ay

(m
W

/s
)

Client/server
MA r = 0.9 p = 0.1

MA r = 0.8 p = 0.2

Figure 11: The impact of τ on Tete.

0.5 1 1.5 2

Sensed data size (KB)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
ac

ke
t

d
el

iv
er

y
ra

ti
o

Client/server

MA r = 0.9 p = 1
MA r = 0.9 p = 0.5

MA r = 0.9 p = 0.2

MA r = 0.8 p = 0.2

MA r = 0.7 p = 0.2

MA r = 0.6 p = 0.2
MA r = 0.5 p = 0.2

MA r = 0.4 p = 0.2

Figure 12: The impact of Sdata, r, and ρ on P.

the increase of Sdata. If ρ = 1, all the sensory data will be fused
into a data with fixed size. We expect that as ρ decreases, the
advantages of MADD will decrease. As we take a conservative
approach in evaluation, we will set ρ to a small value in most
scenarios. Given ρ fixed to 0.2, when r is beyond 0.6, e of
MADD is always less than that of DD, and the performance
gain of MADD increases as r increases.

When r is less than 0.4, MADD tends to have larger e,
since the smaller is r, the larger is the size of the accumulated
data result.

Min Chen et al. 11

0.5 1 1.5 2

Sensed data size (KB)

0

0.5

1

1.5

2

2.5
�105

E
n

er
gy

co
n

su
m

p
ti

o
n

p
er

su
cc

es
sf

u
l

d
at

a
d

el
iv

er
y

(m
W

/s
)

Client/server

MA r = 0.9 p = 1
MA r = 0.9 p = 0.5

MA r = 0.9 p = 0.2

MA r = 0.8 p = 0.2

MA r = 0.7 p = 0.2

MA r = 0.6 p = 0.2
MA r = 0.5 p = 0.2

MA r = 0.4 p = 0.2

Figure 13: The impact of Sdata, r, and ρ on e.

0.5 1 1.5 2

Sensed data size (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

en
d

-t
o

-e
n

d
p

ac
ke

t
d

el
ay

(s
)

Client/server

MA r = 0.9 p = 1
MA r = 0.9 p = 0.5

MA r = 0.9 p = 0.2

MA r = 0.8 p = 0.2

MA r = 0.7 p = 0.2

MA r = 0.6 p = 0.2
MA r = 0.5 p = 0.2

MA r = 0.4 p = 0.2

Figure 14: The impact of Sdata, r, and ρ on Tete.

In Figure 14, Tma exhibits similar trend as e of MADD.
And Tma is more sensitive to Sdata than e. When ρ is equal to
0.2 and r is less than 0.6, MADD tends to have larger end-to-
end packet delay than DD.

In Figures 12, 13, and 14, MADD exhibits more consis-
tent and relatively higher reliability, lower energy consump-
tion than DD by compromising end-to-end delay bound

0.5 1 1.5 2

Sensed data size (KB)

0

0.5

1

1.5

2

2.5
�105

E
n

er
gy

�

d
el

ay
/r

el
ia

b
il

it
y

Client/server

MA r = 0.9 p = 1
MA r = 0.9 p = 0.5

MA r = 0.9 p = 0.2

MA r = 0.8 p = 0.2

MA r = 0.7 p = 0.2

MA r = 0.6 p = 0.2
MA r = 0.5 p = 0.2

MA r = 0.4 p = 0.2

Figure 15: The impact of Sdata, r, and ρ on η.

possibly in most scenarios. These figures also give hints that
MADD should choose r and ρ appropriately. Given ρ fixed,
to find the bounds of r in terms of η, Figure 15 is plotted. It
can be observed that MADD has no advantage if ρ is equal
to 0.2 and r is smaller than 0.4. Note that the value of r and
ρ is dependent on the type of application. Before we adopt
MADD for data dissemination, the features of the applica-
tion should be investigated. MADD will be selected if enough
high r and/or ρ can be attained.

7. CONCLUSIONS

Recently, mobile agents have been proposed for efficient
data dissemination in sensor networks. In [1], the au-
thors proposed mobile agent-based distributed sensor net-
work (MADSN) for cluster-based sensor networks. MADSN
has many advantages (e.g., scalability, extensibility, energy
awareness, reliability), and it is more efficient for sensor net-
works than the client/server architecture. However, MADSN
operates based on the following assumptions: (1) the sen-
sor network architecture is clustering based; (2) source nodes
are within one hop from a clusterhead; (3) much redun-
dancy exists among the sensory data which can be fused
into a single data packet with a fixed size. These assump-
tions pose much limitation on the range of applications
which can be supported by MADSN. This paper investigates
a scenario of image processing application over wireless sen-
sor networks, where multiple hops may exist between target
source nodes, and the sensory data packets may not be aggre-
gated efficiently. Such applications pose additional challenges
of designing a mobile agent-based architecture over sensor
network. To address such challenges, this paper proposes a
novel combination of mobile agent paradigm and a holistic

12 EURASIP Journal on Advances in Signal Processing

sensor network architecture—directed diffusion. The com-
bined framework is dubbed mobile agent-based directed dif-
fusion (MADD). On top of DD, a gradient-based routing
scheme is proposed for mobile agent to efficiently migrate
from sink to source, source to source, and source to sink. We
verify the efficacy of MADD by extensive simulations. The
simulation results show that the end-to-end delay of MADD
is worse than that of DD in certain conditions, but in most
cases, the MADD’s performance in terms of energy con-
sumption is better than that of DD. Thus, for the scenarios
where energy consumption is of primary concern, MADD
exhibits substantially longer network lifetime than DD.

ACKNOWLEDGMENTS

This work was supported by Grant no. (R01-2004-000-
10372-0) from the Basic Research Program of the Korea Sci-
ence and Engineering Foundation, and was supported in part
by the Canadian Natural Sciences and Engineering Research
Council under Grant STPGP 322208-05.

REFERENCES

[1] H. Qi, Y. Xu, and X. Wang, “Mobile-agent-based collaborative
signal and information processing in sensor networks,” Pro-
ceedings of the IEEE, vol. 91, no. 8, pp. 1172–1183, 2003.

[2] J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wire-
less sensor networks: a survey,” IEEE Wireless Communications,
vol. 11, no. 6, pp. 6–28, 2004.

[3] K. Akkaya and M. Younis, “A survey on routing protocols for
wireless sensor networks,” Ad Hoc Networks, vol. 3, no. 3, pp.
325–349, 2005.

[4] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed dif-
fusion: a scalable and robust communication paradigm for
sensor networks,” in Proceedings of the 6th Annual ACM/IEEE
International Conference on Mobile Computing and Network-
ing (MOBICOM ’00), pp. 56–67, Boston, Mass, USA, August
2000.

[5] F. Silva, J. Heidemann, R. Govindan, and D. Estrin, “Directed
diffusion,” Tech. Rep. ISI-TR-2004-586, USC/Information Sci-
ences Institute, Los Angeles, Calif, USA, January 2004, to ap-
pear in Frontiers in Distributed Sensor Networks, S. S. Iyengar
and R. R. Brooks, Eds.

[6] C. G. Harrison and D. M. Chess, “Mobile agents: are they a
good idea?” Tech. Rep. RC 1987, IBM T. J. Watson Research
Center, Yorktown Heights, NY, USA, March 1995.

[7] P. Dasgupta, N. Narasimhan, L. E. Moser, and P. M. Melliar-
Smith, “MAgNET: mobile agents for networked electronic
trading,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 11, no. 4, pp. 509–525, 1999.

[8] K. N. Ross, R. D. Chaney, G. V. Cybenko, D. J. Burroughs, and
A. S. Willsky, “Mobile agents in adaptive hierarchical Bayesian
networks for global awareness,” in Proceedings of the IEEE In-
ternational Conference on Systems, Man and Cybernetics, vol. 3,
pp. 2207–2212, San Diego, Calif, USA, October 1998.

[9] Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, and C.-F. Huang, “Location
tracking in a wireless sensor network by mobile agents and its
data fusion strategies,” Computer Journal, vol. 47, no. 4, pp.
448–460, 2004.

[10] Q. Wu, N. S. V. Rao, J. Barhen, et al., “On computing mobile
agent routes for data fusion in distributed sensor networks,”

IEEE Transactions on Knowledge and Data Engineering, vol. 16,
no. 6, pp. 740–753, 2004.

[11] C.-Y. Chong and S. P. Kumar, “Sensor networks: evolution, op-
portunities, and challenges,” Proceedings of the IEEE, vol. 91,
no. 8, pp. 1247–1256, 2003.

[12] M. Chen, T. Kwon, and Y. Choi, “Data dissemination based
on mobile agent in wireless sensor networks,” in Proceedings
of 30th Annual IEEE Conference on Local Computer Networks
(LCN ’05), pp. 527–529, Sydney, Australia, November 2005.

[13] J. Bajcsy and P. Mitran, “Coding for the Slepian-Wolf problem
with turbo codes,” in Conference Record / IEEE Global Telecom-
munications Conference (GLOBECOM ’01), vol. 2, pp. 1400–
1404, San Antonio, Tex, USA, November 2001.

[14] Y. Sankarasubramaniam, Ö. B. Akan, and I. F. Akyildiz, “ESRT:
event-to-sink reliable transport in wireless sensor networks,”
in Proceedings of the International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc ’03), pp. 177–188,
Annapolis, Md, USA, June 2003.

[15] F. Zhao, J. Shin, and J. Reich, “Information-driven dy-
namic sensor collaboration,” IEEE Signal Processing Magazine,
vol. 19, no. 2, pp. 61–72, 2002.

[16] http://www.opnet.com.

[17] M. Chen, OPNET Network Simulation, Tsinghua University
Press, Beijing, China, 2004.

[18] L. M. Feeney and M. Nilsson, “Investigating the energy con-
sumption of a wireless network interface in an ad hoc net-
working environment,” in Proceedings of 20th Annual Joint
Conference of the IEEE Computer and Communications So-
cieties (INFOCOM ’01), vol. 3, pp. 1548–1557, Anchorage,
Alaska, USA, April 2001.

[19] S. Lindsey, C. Raghavendra, and K. M. Sivalingam, “Data gath-
ering algorithms in sensor networks using energy metrics,”
IEEE Transactions on Parallel and Distributed Systems, vol. 13,
no. 9, pp. 924–935, 2002.

Min Chen was born in December 1980.
He received B.S., M.S., and Ph.D. degrees
from Department of Electronic Engineer-
ing, South China University of Technol-
ogy, in 1999, 2001, and 2004, respectively.
He is a Postdoctoral Fellow in Commu-
nications Group, Department of Electri-
cal and Computer Engineering, University
of British Columbia. He was a Postdoc-
toral Researcher in Multimedia and Mobile
Communications Laboratory, School of Computer Science and En-
gineering, Seoul National University in 2004 and 2005. His current
research interests include wireless sensor network, wireless ad hoc
network, and video transmission over wireless networks.

Taekyoung Kwon has been an Assistant
Professor in the School of Computer Sci-
ence and Engineering, Seoul National Uni-
versity (SNU) since 2004. Before joining
SNU, he was a Postdoctoral Research As-
sociate at UCLA and at City University
New York (CUNY). He obtained B.S., M.S.,
and Ph.D. degrees from the Department
of Computer Engineering, SNU, in 1993,
1995, 2000, respectively. During his gradu-
ate program, he was a visiting student at IBM T. J. Watson Research
Center and at University of North Texas. His research interest lies

http://www.opnet.com

Min Chen et al. 13

in sensor networks, wireless networks, IP mobility, and ubiquitous
computing.

Yong Yuan received the B.E. and M.E. de-
grees from the Department of Electron-
ics and Information in Yunnan University,
Kunming, China, in 1999 and 2002, respec-
tively. Since 2002, he has been studying at
the Department of Electronics and Infor-
mation in Huazhong University of Science
and Technology, China, as a Ph.D. candi-
date. His current research interests include
wireless sensor network, wireless ad hoc
network, wireless communication, and signal processing.

Yanghee Choi received B.S. degree in elec-
tronics engineering from Seoul National
University, M.S. degree in electrical en-
gineering from Korea Advanced Institute
of Science, and Doctor of Engineering
degree in Computer Science from Ecole
Nationale Superieure des Telecommunica-
tions (ENST) in Paris, in 1975, 1977, and
1984, respectively. Before joining the School
of Computer Engineering, Seoul National
University, in 1991, he was with Electronics and Telecommunica-
tions Research Institute (ETRI) during 1977–1991, where he served
as Director of Data Communication Section, and Protocol En-
gineering Center. He was Research Student at Centre National
d’Etude des Telecommunications (CNET), Issy-les-Moulineaux,
during 1981–1984. He was also Visiting Scientist to IBM T. J. Wat-
son Research Center for the year 1988-1989. He is now leading the
Multimedia and Mobile Communications Laboratory in Seoul Na-
tional University. He is Vice-President of Korea Information Sci-
ence Society. He was Editor-in-Chief of KISS journals and also
Chairman of the Special Interest Group on Information Network-
ing. He has been an Associate Dean of research affairs at Seoul Na-
tional University. He was President of Open Systems and Internet
Association of Korea. His research interest lies in the field of multi-
media systems and high-speed networking.

Victor C. M. Leung received the B.A.S.
(Hons.) and Ph.D. degrees, both in elec-
trical engineering, from the University of
British Columbia (UBC), in 1977 and 1981,
respectively. He was the recipient of many
academic awards, including the APEBC
Gold Medal as the Head of the 1977 grad-
uate class in the Faculty of Applied Science,
UBC, and the NSERC Postgraduate Schol-
arship. From 1981 to 1987, he was a Senior
Member of Technical Staff and Satellite Systems Specialist at MPR
Teltech Ltd. In 1988, he was a Lecturer in Electronics at the Chinese
University of Hong Kong. He returned to U.B.C. as a faculty mem-
ber in 1989, where he is a Professor and holder of the TELUS Mobil-
ity Research Chair in Advanced Telecommunications Engineering
in the Department of Electrical and Computer Engineering. His re-
search interests are in mobile systems and wireless networks. He is
a Fellow of IEEE and a Voting Member of ACM. He is an Editor of
the IEEE Transactions on Wireless Communications, an Associate
Editor of the IEEE Transactions on Vehicular Technology, and an
Editor of the International Journal of Sensor Networks.

:: Open Access ::

EURASIP Journal on Embedded Systems

h t t p : / / w w w . h i n d a w i . c o m / j o u r n a l s / e s /

Selected Papers from SLA++P 2007 Model-Driven High-Level
Programming of Embedded Systems
Call for Papers

Model-based high-level programming of embedded systems has be-
come a reality in the automotive and avionics industries. These in-
dustries place high demands on the efficiency and maintainabiliy of
the design process as well as on the performance and functional cor-
rectness of embedded components. These goals are hard to reconcile
in the face of the increasing complexity of embedded applications and
target architecures that we see today. Research efforts towards meet-
ing these goals have brought about a variety of high-level engineering
design languages, tools, and methodologies. Their strength resides in
clean behavioral models with strong semantical foundations provid-
ing a rigorous way to go from a high-level description to provable,
that is, mathematically certifiable, executable code.

Undebatably, the most successful representatives of this trend of
putting logic and mathematics behind design automation in embed-
ded systems (known as Mike Fourman’s “Lambda” programme) are
synchronous languages. Firmly grounded in clean mathematical se-
mantics, they have been receiving increasing attention in industry
ever since they emerged in the 1980s. Lustre, Esterel, Signal are now
widely and successfully used to program real-time and safety criti-
cal applications, from nuclear power plant management layer to Air-
bus air flight control systems. Their recent successes in the automatic
control industry highlight the benefits of formal verification and au-
tomatic code generation from high-level models.

Model-based programming is making its way in other fields of soft-
ware engineering, too, often involving cyclic synchronous paradigms.
Strong interest is emerging in component programming for large-
scale embedded systems, in the link between simulation tools and
compiler tools, in languages for describing the system and its en-
vironment, integrated tools for both compilation and simulation of
more general models of communication and coordination, and so on.
The impact of such unifying methodologies will depend, among other
things, on the extent to which it will be possible to maintain the high
degree of predictability and verifiability of system behavior that is the
strength of the classic synchronous world.

Topics of interest for this special issue cover, among others, the fol-
lowing:

• Synchronous programming formalisms
• Novel language paradigms blending synchrony with asyn-

chrony and nondeterminism, discrete with continuous control
• Techniques for component abstraction and refinement
• New models of communication and coordination for embed-

ded systems

• Model-based compilation and simulation techniques
• Specification, verification, and model-based testing
• Case-studies, industrial and teaching experiences

Submission to this special issue limited to the participants of the
SLA++P conference who have been invited to submit to this issue.

Authors should follow the EURASIP Journal on Embedded Sys-
tems manuscript format described at the journal site http://www
.hindawi.com/journals/es/. Prospective authors should submit an
electronic copy of their complete manuscript through the journal
Manuscript Tracking System at http://mts.hindawi.com/, according
to the following timetable:

Manuscript Due September 15, 2007

First Round of Reviews December 15, 2007

Publication Date April 1, 2008

Guest Editors

Florence Maraninchi, VERIMAG Laboratory, 38610 Gieres,
France; florence.maraninchi@imag.fr

Michael Mendler, University of Bamberg, 96045 Bamberg,
Germany; michael.mendler@wiai.uni-bamberg.de

Marc Pouzet, Laboratoire de Recherche en Informatique (LRI),
Université Paris-Sud 11, 91405 Orsay Cedex, France;

marc.pouzet@lri.fr

Hindawi Publishing Corporation

410 Park Avenue, 15th Floor, #287 pmb, New York, NY 10022, USA �INDAWI

http://www.hindawi.com/journals/es/
http://www.hindawi.com/journals/es/
http://mts.hindawi.com/
mailto:florence.maraninchi@imag.fr
mailto:michael.mendler@wiai.uni-bamberg.de
mailto:marc.pouzet@lri.fr

Call for Papers

This first workshop on Cognitive Information Systems (CIS) aims at bringing together researchers
from the machine learning, pattern recognition, signal processing, and communications communities
in an effort to promote and encourage cross-fertilization of ideas and tools. The focus of the first CIS
workshop will be on Cognitive Radios.

The first workshop will take place in one of the world’s most beautiful and impressive places, the
Greek island of Santorini.

The workshop is sponsored by the International Association for Pattern Recognition (IAPR) and in
particular the Signal Analysis and Machine Intelligence Technical Committee. The workshop will
feature keynote addresses and technical presentations all of which will be included in the
registration. Papers are solicited for, but not limited to, the following areas:

• Learning theory and modelling

• Bayesian learning and models

• Graphical and kernel methods

• Adaptive learning algorithms

• Ensembles: committees, mixtures, boosting, etc.

• Data representation and analysis: PCA, ICA, CCA, etc.

• Other related topics

• Cognitive radios

• Cognitive component analysis -- Blind source separation, ICA, etc.

• Cognitive dynamic systems

• Distributed, cooperative, and adaptive processing

• Other related topics

Plenary Speakers:

 Prof. Simon Haykin (MacMaster Univ., Canada)
 Prof. Jose Principe (Univ. of Florida, USA)

 Prof. Ali Sayed (Univ. Of California, USA)

 Prof. Bernhard Scholkopf (Max Plank Inst., Germany)

CIS’2008 webpage: http://cis2008.di.uoa.gr./

Paper Submission Procedure

Prospective authors are invited to submit a double column paper of up to six pages using the
electronic submission procedure described at the workshop homepage. Accepted papers will be
published in a bound volume by the IEEE after the workshop and a CDROM volume will be
distributed at the workshop.

 Co-Chairmen:

Simon Haykin (Canada)
Sergios Theodoridis (Greece)

Program Co-Chairs

Tülay Adali (USA)
Eleftherios Kofidis (Greece)

Programme Committee Members

Fernando Perez Cruz (U.S.A)

Merouane Debbah (France)
Konstantinos Diamantaras (Greece)
Deniz Erdogmus (USA)
Jeronimo Arenas Garcia (Spain)

Georgios Giannakis (USA)
Konstantine Halatsis (Greece)
Anil Jain (USA)
Michael Jordan (USA)

Jan Larsen (Denmark)
Danilo Mandic (UK)
David Miller (USA)
Sanjit Mitra (USA)

Anant Sahai (USA)
Mihaela van der Schaar (USA)
Johan Seulkens (Belgium)
Konstantinos Slavakis (Greece)

Joos Vandewalle (Belgium)

Schedule

Submission of full paper:
January 5, 2007

Notification of acceptance:
March 5, 2007

Camera-ready paper
and author registration:
March 15, 2007

2008 IAPR Workshop on
Cognitive Information Systems

June 9-10, 2008, Santorini, Greece
Sponsored by the Intl. Association for Pattern Recognition

in Cooperation with EURASIP and IEEE

	Introduction
	Related Work
	Overview of the MADD Design
	Application redundancy eliminating by MA-assisted local processing
	Aggregation
	Efficient routing

	The MADD Algorithm
	Algorithm overview
	Mobile agent packet format
	Detailed illustration of MADD protocol andgradient-based MA routing
	Performance analysis

	The Simulation Model
	Simulation settings
	Performance metrics

	Performance Evaluation
	Comparison of MADD and DD with variable duration of task
	Comparison of MADD and DD with variable MA accessing delay
	Comparison of MADD and DD with variable size of sensed data

	Conclusions
	Acknowledgments
	REFERENCES

