
Computer Science and Information Technology 7(5): 129-161, 2019 http://www.hrpub.org
DOI: 10.13189/csit.2019.070501

Mobile Agent Based Distributed Network Architecture

with Map Reduce Programming Model

Benard O. Osero
1,*

, Elisha Abade
2
, Stephen Mburu

2

1Department of Computer Science, Chuka University, Kenya
2School of Computing and Informatics, University of Nairobi, Kenya

Received September 9, 2019; Revised October 9, 2019; Accepted October 23, 2019

Copyright©2019 by authors, all rights reserved. Authors agree that this article remains permanently open access under
the terms of the Creative Commons Attribution License 4.0 International License

Abstract In the recent years, the demand for data
processing has been on the rise prompting researchers to
investigate new ways of managing data. Our research
delves into the emerging trends of data management
methods, one of which is the agent based techniques and
the active disk technology and also the use of Map-reduce
functions in unstructured data management. Motivated by
this new trend, our architecture employs mobile agents
technology to develop an open source framework called
SPADE to implement a simulation platform called SABSA.
The architecture in this research compares the performance
of four network storage architectures: Store and forward
processes(SAF), Object Storage Devices(OSD), Mobile
agent with a Domain Controller (DMC) enhanced with
map-reduce function and Mobile agent with a Domain
Controller and child DMC enhanced with Map-reduce
(ABMR): both handling sorted and unsorted metadata. In
order to accurately establish the performance
improvements in the new hybrid agent based models and
map-reduce functions, an analytic simulation model on
which experiments based on the identified storage
architectures were performed was developed and then
analytical data and graphs were generated. The results
indicated that all the agents based storage architectures
minimize latencies by up to 45 % and reduce access time
by up to 21% compared to SAF and OSD.

Keywords Domain Controller, Object Storage, Agent
Based Storage, Metadata, Network Attached Storage

1. Introduction

Virtualization is a critical determinant which defines the
path distributed storage array systems should follow in
order to succeed. By its nature, virtualization manages data
right from its source. The storage value has been changing

from drives to the array cluster controllers while enhanced
and data protection policies are included in such systems
with time. [64].

2. Overview of the Existing Systems

2.1. Direct Attached Storage

In their classification model [4] refer this model as
Direct attached storage while [54] referred this type of
storage as store and forward (SAF); in this type of storage
the network disks involved have to keep a copy of another
redundant disk in the server. Every time a client requests
for a file a copy of the file has to be kept before it is
forwarded to the client for downloading. [54] further
compared SAD and NASD and demonstrated that by
keeping a copy of the disk there was a penalty on
performance and scalability he further demonstrated an
improved security mechanisms using tokenization on these
platforms. He concluded that such systems can be
improved by use of Object storage management schemes
and he proposed further work on mobile agent and mobile
code migration on a distributed network.

2.2. Network-Attached Storage Devices

Network-attached storage (NAS) happens at the
file-level where one or more dedicated servers and disks
store data and share it l other clients on a network.

Network-Attached Secure Disks (NASD), is a
Networked object based shared storage system shown [4]
in their classification taxonomy, that modifies the interface
for the common direct attached storage devices and thus
eliminating the server resources required for the movement
of data. Figure 1 outlines the major components of NASD
ARCHTECTURE [23,54].

The model allows for the transfer data directly from the

130 Mobile Agent Based Distributed Network Architecture with Map Reduce Programming Model

client to the server via the file manager. The NASD
execution sequence shows the requests needed until the file
is downloaded to the client as explained [54-55].

The architecture below demonstrates a framework of the
NASD Architecture by [54-55].

2.3. Object-Based Storage (OSD)

For Object storage the data is broken into small
connected units called objects kept in a single repository
(pool), instead of being kept as blocks on servers.

Figure 1. The major components of NASD Architecture

Figure 2. Direct client access

Computer Science and Information Technology 7(5): 129-161, 2019 131

Figure 2 above depicts how client interaction between
the server in order to get metadata access information [29].
The Object storage concept builds on previous work on
NASD researched [23,54,55].

A storage object may be described as a sequence of
addressed bytes, including other associated features
accessed via a file interface with read, write and delete
commands. This model is limited by the available
bandwidth from a file server, clients and connected storage.

Object-based storage Research has been an ongoing
subject that continues to elicit a lot of interest from
researchers [17,45,18] early products such as Lustre [53],
SWIFT[51] Panasas in [59] and [62] have equally appeared
in the market. Additionally, object-based storage is being
leveraged as a means to put together application-defined
and other data features for compliance purposes [12,62].
For object-based storage to be of better use outside its
current applications, it has to handle little chunks of files
efficiently.

2.4. Deficiencies with the Current Systems

i) There has been an increase in the data processing
demands and this requires faster systems that can
scale well over short periods of time, most of the
systems so far covered in the literature are either
traditional in nature like SAF (DAS) systems which
are array based or they are object based like NASD
and OSD but they experience high latencies and

decreased throughput as witnessed in
[55,54,26,17,45,18].

ii) Low bandwidth and unmanaged Latencies have a
major effect on the performance a distributed cluster
or network, data prefetching methods have been
implemented through predictive prefetching
algorithms, but little progress has so far been made on
metadata management schemes [86]; Although, [7]
provide a solution to bandwidth issues which occur
when the client and server interact, this solution only
improves on bandwidth and not latencies.

Based on related works discussed above, there are major
gaps or potential improvement areas in the approaches in
the design and implementation of a distributed network and
ways of testing performance of these systems. This
research therefore dedicates its effort towards development
and testing of concepts, components and implementation of
suitable algorithms and models required for
implementation of a suitable architectural model for
distributed storage on a network.

3. Proposed Solution

The system to solve the above identified gaps introduces
an intelligent way of managing a distributed network
through the use of mobile agents, the agents are controlled
by a central controller called the Domain Controller that
keeps track of all the mobile agents in its registry. This
intelligent network has the capability of minimizing
latencies by localizing data in its local cache for subsequent
client access.

Figure 3. A Conceptual Architecture for intelligent objects using agents and Map-reduce.

132 Mobile Agent Based Distributed Network Architecture with Map Reduce Programming Model

Figure 3 above shows an architectural model of the agent
based design using map-reduce, it is a three tiered model
with the client as the front end the virtual server as the
middle tier and storage SAN as the backend, it also
includes the following functionalities:

Map-reduce Functions represented as shown below: [() ()] ∀i=1….n: (ki, ∈K,vi,∈V) (1)

k = ith input and v = ith input value. K represents the
key domain and V represents the value domains. Map
reduce function performs the responsibility of splitting the
key, value input values to subsets and eventually
distributing them to respective nodes. The mapping can be
obtained as follows ()* (2) () [() ()] (3)

L and W represents the key and value domains
indicating the key-value input pairs: (k,v) mapped onto

many key and value pairs: (l , x),...,(l , x)]. The reduce

phase is as follows: * * (4)

(l,[yl,…,ysl]) [] (5)

Keys with similar results are grouped together in this
phase, input may have dissimilar values, the output
generated has same keys. This requires sorting of results
and consolidating them for final processing. This is
performed by input function (L×W) * which when
processed produces (L×W) * as sorted input values for the
reduce function. (L×W) * can also be mapped to generate a
new list W*. Map reduce can generally be summarized as
follows: ()* ()* (6)

This function is responsible for sorting and reducing
metadata functions which can then be transported to client
side for further processing.

3.1. Solution Outline

The Storage virtualisation architecture in this research
involves a logical access to storage resources through
defined metadata rather than having access to the physical
resource itself; because physical file occupies more space.
In the storage unstructured files are not necessarily
arranged and accessed in a certain predefined sequence;
this is made much more difficult when the data is randomly
assorted into the storage from random sources; since their
metadata is randomly placed in the storage searching for a
file requested by the client becomes very difficult.
Therefore, several methods or parameters can be employed
to shuffle or sort the metadata depending on the intended
mapping outcome i.e. one can sort as per the number of
occurrences of the file, the IP address similarities, the file
Index name or Number similarities etc.

To address the gaps in this research which have a direct
impact on both latencies and response times the conceptual
Architecture defined in Figure 3 employed metadata
sorting and shuffling by use of map reduce algorithm by
creating corresponding IP addresses of the respective client
domains which were then mapped to a mobile agent for
migration to a Domain Controller (DMC), where they were
executed henceforth, a client can terminate normally or
abnormally in case of an unrecoverable event.

The main objective of this research was to test whether a
mobile agent can improve the performance of a distributed
network if used together with the map reduce algorithm to
sort the metadata within the virtual server in order to create
sorted IP domain localities. A conceptual architecture was
introduced and discussed in detail in figure 3. However, the
conceptual architecture being a high level design model;
only identified key architectural artifacts/components that
of a three tiered distributed storage architecture.

In order to actualize the concepts in this research into a
concrete design and develop a model capable of giving
indicative performance, some important issues needed to
be tackled as follows:
i) To develop and implement a simulator that will assist

in testing the scalability and performance.
ii) To implement a search, sort and mapping mechanism

using map-reduce functions that can improve in
searching, sorting and mapping of metadata in the
virtual server.

iii) To Implement Agents on a Distributed network using
the SPADE architecture.

iv) Evaluate the performance of Agent based Distributed
system using Map-reduce with non-agent based
distributed network environment specifically SAF
and OSD in the implemented simulator.

3.2. The Need for the SABSA Simulator

Our simulation model utilized the experimental
methodology in order to answer various research questions
raised by the researcher. The simulation model used in this
research was developed from scratch using open source
software tools; this was arrived at after critical analysis of
various simulation platforms. the Network simulation
models so far existing are only meant for the first three
Physical layers of the OSI model (Physical, Datalink and
the Network) and therefore, they were suited for the
physical characteristics of the network, but our research
could not be supported by this popular network platforms
as described by [71] and [31] because we were performing
file simulation at the sockets level; which occurs at the
upper layers of the OSI model (Transport and Session
layers)and therefore there was need to design a simulator to
cater for the desired and unique file simulation features.

Our simulation model was meant to test performance
improvement after introducing agents into the existing
SAF and OSD models and also sorting metadata using map

i i

1 1 1 r

Computer Science and Information Technology 7(5): 129-161, 2019 133

reduce approach. The performance measures have been
described by [25,90,50] and [85] which were adopted as a
performance measure for our SABSA engine to provide the
metrics that were used for this research.

3.2.1. Simulator Requirements and Design

Our simulator was developed using standard Python
APIs for the design of the client and server machines using
Sockets and standard Docker Containers running on the
Linux OS cluster for file storage virtualization (SAN) and
also SHA1 encryption scheme for security.

3.2.2. System Requirements and Configuration

The system was configured to run on an AWS EC2 t2.
micro virtual machine instance with:

The host machine was a HP Folio 9470, equipped with
an Intel Core(TM)i7 CPU 2.60 GHz CPU, 8 GB RAM, a
500 GB hard disk drive, 64-bit OS, x64 based processor
and a GSM wireless network connection and a Windows
2015 Pro Operating System. The system was also hosted
on the Amazon EC2.

The system also required installation of Docker on the
virtual machine to run it. Configuration was done using
Docker files which specified the VM image used as well as
run instructions for system setup. Instructions included
setting environment variables that were used by the
application and installing of the packages that were used as
well as exposing ports which were to be accessed from
outside of the virtual machine.

4. Simulations and Results

The simulator in this research was developed using
standard Python APIs for the design of the client and server
machines using Sockets and standard Docker Containers
running on the Linux OS cluster for file storage
virtualization (SAN) and also SHA1 encryption scheme for
security. Our Model used a Simulation model with various
experiments being carried out at various levels.

4.1. Simulation Model

The Simulation and experimental methodologies were
employed for our research as described by [89] and [8].
Our model development and testing followed the three
basic steps defined in the literature by [8] as follows:
i) Created an Architectural model for approximating the

events.
ii) The model was then simulated in a computer software,

which allowed for the repeated observation of the
model. After one or many simulations of our model

iii) A third step was analysis. Analysis aided in the
drawing of conclusions, verification and validating
the research, and hence enabling us to make
recommendations based on various iterations or
simulations of the model.

The simulation model utilized the experimental
methodology in order to answer various research questions
raised by the researcher and also described by [52] in
developing his research methodology. The simulation
model used in this research was developed from scratch
using open source software tools; this was arrived at after
critical analysis of various simulation platforms of the
Network simulation models so far existing are only meant
for the first three Physical layers of the OSI model
(Physical, Datalink and the Network) and therefore, were
suited for the physical characteristics of the network, but
our research could not be supported by this popular
network platforms as described by [71] and [31] because
we were performing file level simulation at the sockets
level; which takes place at the upper layers of the OSI
model (Transport and Session layers)and therefore there
was need to design a simulator to cater for the desired and
unique file simulation features.

Our simulation model was meant to test performance
improvement after introducing agents into the existing
SAF and OSD models and also sorting metadata using map
reduce approach. The performance measures have been
described by [25,90,50] and [85] which were adopted as a
performance measure for our SABSA engine to provide the
metrics that were used for this research.

4.2. The Simulation Procedure

To easily address the gaps in this research a simulation
testbed referred to as SABSA (Secure Agent Based
Architecture) was developed in phases as follows:
1. Phase 1: Design and implementation a direct file

access.
2. Phase 2: Design and Implementation of Object

storage device (OSD).
3. Phase 3: Mobile agent Domain Controller (DMC)

enhanced with map-reduce function.
4. Phase 4: Mobile agent based Domain Controller with

child DMC controllers enhanced with Map-reduce.
5. Repeat Phase 2, 3 and 4 with sorted metadata.

The results were then presented in regard to the
following identified parameters: Latencies, throughput and
Scalability; either with sorted or unsorted metadata.

The existing files (Bytes) were first classified in the
following table before they were run in the simulator:

Table 1. Files Sizes in the SAN container in Bytes.

134 Mobile Agent Based Distributed Network Architecture with Map Reduce Programming Model

The above files were extracted from the SAN container (SAN 1, SAN2 and SAN 3) and then entered into excel sheet
and sorted in ascending order and the files were then sorted according to the combinations of three sizes as demonstrated
in table 2 below.The file sizes were capped at 30000 bytes; because files beyond this size slowed down the machine
drastistially.

4.2.1. File Classifications in Bytes (1 File Per San).

Table 2. Workload distribution matrix

SAN 1 SAN 2 SAN 3 RANDOMLY SELECTED FILE OPTIONS CASE DISCUSSION

SMALL SMALL SMALL CASE 1

SMALL SMALL MEDIUM x

SMALL SMALL LARGE x

SMALL MEDIUM SMALL CASE 2

SMALL MEDIUM MEDIUM x

SMALL MEDIUM LARGE x

SMALL LARGE SMALL CASE 3

SMALL LARGE MEDIUM x

SMALL LARGE LARGE x

MEDIUM SMALL SMALL x

MEDIUM SMALL MEDIUM x

MEDIUM MEDIUM MEDIUM CASE 4

MEDIUM MEDIUM LARGE x

MEDIUM LARGE SMALL x

MEDIUM LARGE MEDIUM CASE 5

MEDIUM LARGE LARGE x

LARGE SMALL SMALL x

LARGE SMALL MEDIUM x

LARGE SMALL LARGE x

LARGE MEDIUM SMALL x

LARGE MEDIUM MEDIUM x

LARGE MEDIUM LARGE x

LARGE LARGE SMALL x

LARGE LARGE MEDIUM x

LARGE LARGE LARGE CASE 6

 Computer Science and Information Technology 7(5): 129-161, 2019 135

5. Workload Analysis for Time,
Latencies and Throughput

Various workloads were classified as per the defined set
parameters in: Table 1, then various workloads were run
per each SAN as indicated in table 1: under the defined
parameters a summary of various outputs were generated
under various Cases were used to the analyze performance
of SABSA engine under varied workloads in all the SAN
containers as indicated in Tables 3 -6 below.

Table 3, 4 and 6 show Comparison graphs as per the

file classification matrix

The graphs have been inserted into a table with three
columns; column 1 indicated by part a) represents 100
client requests, column 2 indicated by b) represents 1000
client requests and column three represents the case
numbers identified by the file classifications in table 2. The
classifications were done as either sorted or unsorted
metadata functions as follows:
i) Design and implementation a direct file access-In this

case there is no metadata involved, but the file is
transmitted directly to the client.

ii) Design and Implementation of Object storage device
(OSD)-In this case the metadata is centralized and
presented as an unsorted array in the virtual server.

The metadata can further be sorted before being
handled by the mobile agents which creates sorted
metadata domains.

iii) Mobile agent Domain Controller (DMC) enhanced
with map-reduce function-For mobile agents to
function they are centrally managed by the domain
controller, the agents collects the sorted metadata and
moves it to the domain controller for further
distribution. The unsorted metadata remains as case ii
above.

iv) Mobile agent based Domain Controller with child
DMC controllers enhanced with Map-reduce- Case 2
above can further be decentralized to create more
child processes distributed and controlled by a
centralized agent controller still referred to as the
domain controller. The agents in this case can also
handle both sorted and unsorted metadata objects.

5.1. Latencies Comparison over Time

The graph in this table section represents the changes of
latencies over time and it is subdivided into two column
sections a) and b): column a) represents 100 client requests
and column per millisecond b) represents 1000 client
requests per millisecond.

136 Mobile Agent Based Distributed Network Architecture with Map Reduce Programming Model

Table 3. Latencies Comparison over time

1000 CLIENT FILE REQ.
CASE

NO

(a)

CASE 1

(b)

CASE 1

 Computer Science and Information Technology 7(5): 129-161, 2019 137

(a)

CASE 2

(b)

CASE 2

138 Mobile Agent Based Distributed Network Architecture with Map Reduce Programming Model

(a)

CASE 3

(b)

CASE 3

 Computer Science and Information Technology 7(5): 129-161, 2019 139

(a)

CASE 4

(b)

CASE 4

Table 3 shows comparison of various graph outputs under 100 and 1000 client classified under various CASES 1,2,4
and 6 part a) represents 100 client requests and part b) represents 1000 client requests

5.2. Throughput over Time

The graph in this table section represents the changes of Throughput over time and it is subdivided into two columns a)
and b): column a) represents 100 client requests and column b) represents 1000 client requests.

140 Mobile Agent Based Distributed Network Architecture with Map Reduce Programming Model

Table 4. Throughput over time

1000 CLIENT FILE REQ. CASE NO

(a)

CASE 1

(b)

CASE 1

 Computer Science and Information Technology 7(5): 129-161, 2019 141

(a)

CASE 2

(b)

CASE 2

142 Mobile Agent Based Distributed Network Architecture with Map Reduce Programming Model

(a)

CASE 3

(b)

CASE 3

 Computer Science and Information Technology 7(5): 129-161, 2019 143

(a)

CASE 4

(b)

CASE 4

In table 4 case for instance indicates that in both case a and b store and forward has the minimum throughput at Zero
and map reduce and sorting by mobile agents also has a significant improvement in throughput in all the cases observed,
store and forward has a worst throughput in all cases and object based storage has an average throughput in all the cases.
The maximum observed through for case 4a is 25 Mbpms, which drastically increases tenfold to 250 Mbpms. In all
cases agents and map reduce combined show a very good improvement in throughput.

5.3. Latency against Throughput

The graph in this table section represents the effects of latencies on throughput and it is subdivided into two column
Sections a) and b): column a represents 100 client requests and column b) represents 1000 client requests.

144 Mobile Agent Based Distributed Network Architecture with Map Reduce Programming Model

Table 5. Latency against throughput

1000 CLIENT FILE REQ. CASE NO

(a)

CASE 1

(b)

CASE 1

 Computer Science and Information Technology 7(5): 129-161, 2019 145

(a)

CASE 2

(b)

CASE 2

146 Mobile Agent Based Distributed Network Architecture with Map Reduce Programming Model

(a)

CASE 3

(b)

CASE 3

 Computer Science and Information Technology 7(5): 129-161, 2019 147

(a)

CASE 4

(b)

CASE 4

Table 5 above shows that latency decreases with increase in load for the agent based cases but remains at zero
remains at the minimum for both OSD and SAF. Case 4a for instance indicates that at Zero Latency sorted mobile
agents with domain controllers have the highest throughput and at 3000 ms latency throughput for sorted mobile agents
with domain controller and sorted mobile agents with a centralized controller their throughput drastically reduced to 4
Mb/ms from the initial 8 Mb/ms. In 4b at Zero Latency All mobile agents based metadata sorting with map reduce
exhibit highest throughput at averagely 14 Mb/ms unlike for 4a where the cases averaged around 7 Mb/ms and also the
average latency moves drastically from the high of 3000 to an average high of 300 ms a tenfold decrease in Latency. All
the other cases exhibit similar characteristics. This shows that agents are better in terms of improving latencies and
consequently increasing throughput even at high load capacities.

148 Mobile Agent Based Distributed Network Architecture with Map Reduce Programming Model

5.4. Scalability over Time

The graphs in this table section represents how the system scales over time and it is subdivided into two columns
sections a) and b): column a represents 100 client requests and column b) represents 1000 client requests.

Table 6. Scalability over time

1000 CLIENT FILE REQ. CASE NO

(a)

CASE 1

(b)

CASE 1

 Computer Science and Information Technology 7(5): 129-161, 2019 149

(a)

CASE 2

(b)

CASE 2

150 Mobile Agent Based Distributed Network Architecture with Map Reduce Programming Model

(a)

CASE 3

(b)

CASE 3

 Computer Science and Information Technology 7(5): 129-161, 2019 151

(a)

CASE 4

(b)

CASE 4

152 Mobile Agent Based Distributed Network Architecture with Map Reduce Programming Model

Table 6 above shows scalability of the SABSA engine
with both 100 and 1000 client requests with files from three
different SANs.

Table 6 above shows scalability over time, for instance
CASE 4 shows that sorted agents with map reduce are the
fastest in hundred client requests and sorted mobile agents
with domain controllers don‟t perform well at this point
on the other hand when the requests are increased to 1000
the sorted mobile agents with domain controllers have the
best scalability, this shows that sorting of metadata by use
of map reduce and further catching them improves not
only performance but such systems are also highly
scalable. Case 4a for instance shows that at an average of
1300000 bytes sorted mobile with child DMCs agents do
not scale well at an average of 2.8 ms while unsorted
mobile agents with map reduce without child DMCs
perform well with the same load at 0 ms. For case 4b the
at 15000000 bytes the unsorted mobile agents with map
reduce still have the best scalability at 0 ms and store and

forward has the worst scalability at averagely 10.5 ms.
But overall the salability sorted mobile with child DMCs
agents improves significantly to average at 2.5 ms.

5.5. Case Summaries for Csv File Data

The data in this section that was captured Table 7 to 12
below indicates a summary of the CSV outputs that were
analyzed under various workload then Average time in
Millisecond (ms), Throughput and latencies were captured
and the compared under this predefined conditions.

It important to note that the files were run as batch files
including multiple client requests for the required file in
this experiment we have considered small and medium
range workload requests.

A summarized table for the output of the time variance
for downloading 1000 client requests from 100 client
requests.

 Computer Science and Information Technology 7(5): 129-161, 2019 153

Table 7. CASE 1 CSV Summary: AV. Throughput, Latency and Performance (Single file per SAN Request)-SAN1(9Bytes) +SAN2(6Bytes) +SAN3(6 Bytes): SMALL-SMALL-SMALL 100/1000 FILE REQUESTS

Parameters SAF OSD
Un-sorted

MA-MR

Sorted

MA-MR

Sorted

Centralized

MA-MR+DMC

Unsorted

Centralized

MA-MR+DMC

Sorted De-Centralized

MA-MR+DMC+Child

DMCs

Unsorted

De-Centralized

MA-MR+DMC+

Child DMCs

Total File

Size(SAN1+SAN2+S

AN3)(Bytes)

AV.TT(ms) 1000 10.17 5.00 0.23 0.15 0.16 0.16 2.47 2.43 2.1x101

Av.TT(ms) 100 1.02 0.49 0.15 0.14 0.15 0.15 2.38 2.37 2.1x101

Throughput MB/s 1000 1.07x10-5 2.21X10-5 0.02 0.02 0.02 0.02 0.02 0.02 2.1x101

Throughput MB/s 100 1.06x10-5 2.21X10-5 0.02 0.02 0.02 0.12 0.02 0.02 2.1x101

AV.Latency(ms) 1000 15.17 7.48 0.23 0.15 0.81 4.21 7.81 4.84 2.1x101

AV.Latency(ms)100 15.21 7.37 8.12 7.88 7.76 7.77 46.71 46.39 2.1x101

Table 8. CASE 2 CSV Summary: AV. Throughput, Latency and Performance (Single file per SAN Request)-SAN1(15 Bytes) +SAN2(684) +SAN3(15 Bytes): SMALL-MEDIUM-SMALL 100/1000 FILE REQUESTS

Parameters SAF OSD
Un-sorted

MA-MR

Sorted

MA-MR

Sorted

Centralized

MA-MR+DMC

Unsorted

Centralized

MA-MR+DMC

Sorted De-Centralized

MA-MR+DMC+Child

DMCs

Unsorted

De-Centralized

MA-MR+DMC+

Child DMCs

Total File Size

(Bytes)

AV.TT(ms) 1000 10.02 4.92 0.17 0.17 0.17 0.18 2.15 2.18 7.14X 102

Av.TT(ms) 100 1.04 0.49 0.16 0.15 0.15 2.49 2.57 2.49 7.14X 102

Throughput MB/s 1000 0.00 0.00 0.65 0.66 0.66 0.67 0.66 0.67 7.14X 102

Throughput MB/s 100 0.00 0.00 0.64 0.63 0.63 0.64 0.60 0.62 7.14X 102

AV.Latency(ms) 1000 15.12 7.37 0.89 0.88 0.92 0.88 4.08 4.12 7.14X 102

AV.Latency(ms)100 15.67 7.24 8.52 8.13 8.29 8.42 50.96 50.79 7.14X 102

Table 9. CASE 3 CSV Summary: AV. Throughput, Latency and Performance (Single file per SAN Request)-SAN1(15Bytes) +SAN2(15360 Bytes) +SAN3(12 Bytes): SMALL-LARGE-SMALL 100/1000 FILE REQUESTS

Parameters SAF OSD
Un-sorted

MA-MR

Sorted

MA-MR

Sorted

Centralized

MA-MR+DMC

Unsorted

Centralized

MA-MR+DMC

Sorted De-Centralized

MA-MR+DMC+Child

DMCs

Unsorted

De-Centralized

MA-MR+DMC+Child

DMCs

Total File

Size

(Bytes)

AV.TT(ms) 1000 10.45 4.96 0.10 0.10 0.07 0.10 2.63 2.61 1.54X 104

Av.TT(ms) 100 1.02 0.51 0.11 0.11 0.12 0.13 2.62 2.57 1.54X 104

Throughput MB/s 1000 0.01 0.02 14.28 14.13 14.31 14.13 14.32 14.42 1.54X 104

Throughput MB/s 100 0.01 0.02 13.73 13.73 13.81 13.92 13.70 14.24 1.54X 104

AV.Latency(ms) 1000 15.64 7.43 1.27 1.16 1.33 1.16 6.08 6.12 1.54X 104

AV.Latency(ms)100 15.22 7.48 11.12 11.20 10.88 10.74 54.83 54.93 1.54X 104

154 Mobile Agent Based Distributed Network Architecture with Map Reduce Programming Model

Table 10. CASE 4 CSV Summary: AV. Throughput, Latency and Performance (Single file per SAN Request)-SAN1(331 Bytes) +SAN2(993) +SAN3(12288 Bytes): MEDIUM-MEDIUM-LARGE 100/1000 FILE REQUESTS

Parameters SAF OSD
Un-sorted

MA-MR

Sorted

MA-MR

Sorted

Centralized

MA-MR+DMC

Unsorted

Centralized

MA-MR+DMC

Sorted De-Centralized

MA-MR+DMC+Child

DMCs

Unsorted

De-Centralized

MA-MR+DMC+

Child DMCs

Total File Size

(Bytes)

AV.TT(ms) 1000 10.37 5.16 0.02 0.02 0.03 0.02 2.74 2.76 1.36X 104

Av.TT(ms) 100 1.07 0.51 0.06 0.05 0.07 0.10 2.84 2.53 1.36X 104

Throughput MB/s 1000 0.01 0.02 14.50 14.51 14.64 14.34 14.65 14.41 1.36X 104

Throughput MB/s 100 0.01 0.01 12.26 12.21 12.41 12.28 12.13 12.20 1.36X 104

AV.Latency(ms) 1000 15.46 7.67 1.44 1.48 1.45 4.73 6.25 6.11 1.36X 104

AV.Latency(ms)100 15.98 7.58 13.11 13.12 12.62 12.04 60.88 60.08 1.36X 104

Table 11. CASE 5 CSV Summary: AV. Throughput, Latency and Performance (Single file per SAN Request)-SAN1(234 Bytes) +SAN2(33312) +SAN3(662 Bytes): MEDIUM-LARGE-MEDIUM 100/1000 FILE REQUESTS

Parameters SAF OSD
Un-sorted

MA-MR

Sorted

MA-MR

Sorted

Centralized

MA-MR+DMC

Unsorted

Centralized

MA-MR+DMC

Sorted De-Centralized

MA-MR+DMC+Child

DMCs

Unsorted

De-Centralized

MA-MR+DMC+

Child DMCs

Total File Size

(Bytes)

AV.TT(ms) 1000 10.57 5.20 0.01 0.01 0.01 0.01 2.86 2.86 3.42X 104

Av.TT(ms) 100 1.06 0.50 0.04 0.01 0.01 0.02 2.57 2.60 3.42X 104

Throughput MB/s 1000 0.01 0.01 13.41 13.63 13.37 13.53 13.39 13.69 3.42X 104

Throughput MB/s 100 0.01 0.01 12.77 12.93 12.96 12.95 12.48 12.84 3.42X 104

AV.Latency(ms) 1000 15.72 7.72 1.61 1.62 1.67 1.62 6.92 6.99 3.42X 104

AV.Latency(ms)100 15.68 7.39 14.81 15.14 15.48 15.04 64.26 64.63 3.42X 104

Table 12. CASE 6 CSV Summary: AV. Throughput, Latency and Performance (Single file per SAN Request)-SAN1(20480 Bytes) +SAN2(25600) +SAN3(18432 Bytes): MEDIUM-MEDIUM-LARGE 100/1000 FILE
REQUESTS

Parameters SAF OSD
Un-sorted

MA-MR

Sorted

MA-MR

Sorted

Centralized

MA-MR+DMC

Unsorted

Centralized

MA-MR+DMC

Sorted

De-Centralized

MA-MR+DMC+

Child DMCs

Unsorted

De-Centralized

MA-MR+DMC+Child

DMCs

Total File Size

(Bytes)

AV.TT(ms) 1000 10.53 5.19 0.01 0.01 0.01 0.01 2.91 2.93 6.45X 104

Av.TT(ms) 100 1.07 0.52 0.01 0.01 0.01 0.01 2.92 2.93 6.45X 104

Throughput MB/s 1000 0.03 0.07 60.85 60.98 61.19 6.72 61.60 61.34 6.45X 104

Throughput MB/s 100 0.03 0.07 58.32 58.20 56.91 57.38 57.29 57.47 6.45X 104

AV.Latency(ms) 1000 15.92 7.73 1.85 1.88 1.83 5.10 7.14 7.32 6.45X 104

AV.Latency(ms)100 16.01 7.72 17.67 26.85 16.88 17.56 68.37 67.69 6.45X 104

 Computer Science and Information Technology 7(5): 129-161, 2019 155

5.5.1. Effect on Time Taken the Csv File Analysis

Table 13. Comparison of all the cases for the average time taken

Figure 4. Bar charts showing average increase in time for 100 and 1000 client requests

Figure 4 above shows a summary of the overall individual percentage averages,for Case 1 to Case 6, of how the time is
affected when the client requests increased from 100 the initial number of requests to 1000 requests for each identified
method in the SABSA engine. SAF has the largest time difference at at 20.9% more time followed by OSD at 4.64 % ,but
the agent based and map reduce based objects have insgnificant change in time in servicing this request.

156 Mobile Agent Based Distributed Network Architecture with Map Reduce Programming Model

5.5.2. Effect on Latencies for the Csv File Analysis

5.5.2.1. Summary Latencies Analysis

Table 14. Comparison of all the cases for the latencies

Figure 5. Bar charts showing average increase/decrease in overall latencies for 100/1000 client requests

Figure 5 above shows a bar chart for the latencies. The outputs show both positive and negative outputs. The negative
ouputs indicate better utilization of the system by minimizing latencies which are a penalty to system performance. The
positive values signify increase in latencies which impedes system perfomance. The margins above are also represented
as percentage reduction of the overall considered methods in Figure 5 above.

This section has demonstrated various scenarios of viewing the data generated by the SABSA engine using the bar
graphs and pie charts and line graphs; various cases generated by the decision tree were generated and captured into the
decision matrix where a few random cases were chosen, indicated as Case 1-Case 6 to demonstrate the performance of the
SABSA Engine under various load capacities.

 Computer Science and Information Technology 7(5): 129-161, 2019 157

5.5.3. Effect on Throughput

5.5.3.1. Summary of Throughput Analysis

Table 15. Comparison of all the cases for the throughput

Figure 6. A Line graph showing average overall throuput 100-1000 client requests

158 Mobile Agent Based Distributed Network Architecture with Map Reduce Programming Model

Figure 6 is a summary Line graph of the Comparison of
all the cases for the throughput in table 15 above ; it shows
that store and forward (SAF) has the lowest throughput at 0%
and sorting of metadata sorting of metadata and
introducing an agent also has a positive impact in
increasing throughput of a system performing at maximum
throughput of 100% for OSD and all agent based methods
except the sorted decentralized whose throughput
drastically drops and then resume back to maximum
throughput after some time.

6. Conclusions and Further Work

As observed from the previous analysis, all cases
indicate that sorting of metadata and caching it will make
this system faster than their counter-parts with centralized
metadata. In conclusion our experiments tend to concur
with Amidal‟s law that splitting a system into sub systems
improves the performance of such a system up to a certain
limit.

Mobile agents play a key role in contributing to the
performance improvement of the distributed system
environment as has been indicated in the previous
observations. Mobile agents can autonomously move from
one place to another with metadata and security being
guaranteed. This research question led to discovery of new
tools like SPADE framework for agent design within the
python programming environment this greatly contributed
to implementation of mobile agents in with the Docker
containers.

Since mobile agents is a new concept, and virtualization
and big data are emerging trends, this technology will be
important in defining and re-defining such research
directions. Mobile agents can also be applied in the study
of Internet of things that greatly relies on virtualization
technologies and therefore offload the virtual server from
the mundane work of security, load balancing and job
tracking.

Map reduce help improve locality of reference of the
metadata functions with Key, value pairs for target storage
domains being shuffled together and then the agent caches
this sorted metadata domains which consequently leads to
shorter access paths and thus minimization of latencies and
consequently increasing performance of such systems.

Further work will be carried as follows:
1) Extend the concept of Mobile Agent (MA) based

virtualization to the field of Artificial Intelligence (AI)
and Artificial Neural networks (ANNs); in order to
solve the exponential data requirements in the IOT
systems. ANNs will provide multiple distributed
nodes that will communicate with other peers within a
given domain and eventually transfer the processed
data the distributed virtual child nodes or domains to
the parent Nodes/Domains and eventually to the
parent nodes/domain for final storage or processing.

2) To improve on our SABSA Test-Bed simulator to a
more advanced simulator with an adaptable API-to
allow for testing of applications-; including
organizations for testing their storage requirements in
regards to: scalability, Latencies and throughput.

3) To study and implement advanced security fencing
systems within our agent-based storage architecture.

REFERENCES

 Al-shishtawy, A. (2012) Self-Management for Large-Scale [1]
Distributed Systems.

 Alberola, J. M. et al. (2010) „A performance evaluation of [2]
three Multiagent Platforms‟, Artificial Intelligence Review,
34(2), pp. 145–176. doi: 10.1007/s10462-010-9167-9.

 Amazon (2019) 10-Minute Tutorials. Available at: [3]
https://aws.amazon.com/getting-started/tutorials/.

 Andrei, P. S. et al. (2014) „Evolution towards Distributed [4]
Storage in a Nutshell‟, pp. 1267–1274.

 Anon (2016) Concordia White paper. Available at: [5]
https://www.cis.upenn.edu/bcpierce/629/papers/Concordia
-Whitepaper/ (Accessed: 17 March 2016).

 Arias (2018) Introduction to Redis:Installation,CLI [6]
commands and Data-Types.

 Avilés-González, A., Piernas, J. and González-Férez, P. [7]
(2014) „Scalable metadata management through OSD+
devices‟, International Journal of Parallel Programming,
42(1), pp. 4–29. doi: 10.1007/s10766-012-0207-8.

 Banks, C. M. (no date) „Principles of Modeling and [8]
Simulation: A Multidisciplinary Approach‟.

 Caidi, M. et al. (2008) „The Google File System Sanjay‟, [9]
Journal de Chirurgie, 145(3), pp. 298–299. doi:
10.1016/S0021-7697(08)73776-1.

 Ceph (2016) Welcome to Ceph. Available at: [10]
http://docs.ceph.com/docs/master/# (Accessed: 30 April
2019).

 Chaturvedi, V. (no date) Deep Dive into Docker. Available [11]
at: https://www.edureka.co/blog/what-is-docker-container
(Accessed: 26 March 2019).

 CORP (2016) Content addressed storage systems, EMC. [12]
Available at: http:www.emc.com/products/systems/centera
.jsp?openfolder=platform (Accessed: 26 June 2016).

 Docker (2019) Docker Docs. Available at: [13]
https://docs.docker.com/v17.09/compose/install/ (Accessed:
27 March 2019).

 EMC2 (2008) Where information lives:current benefit and [14]
future potential technology concepts and business
considerations.

 Escriv, M., C, J. P. and Bada, G. A. (2014) „A Jabber-based [15]
Multi-Agent System Platform ∗‟, (January 2006). doi:
10.1145/1160633.1160866.

 Computer Science and Information Technology 7(5): 129-161, 2019 159

 Escriva, R. and Wong, B. (no date) [16]
„Http://Hyperdex.Org/Papers/Hyperdex.Pdf‟, Hyperdex.
Org. Available at: http://hyperdex.org/papers/hyperdex.pdf
%5Cnpapers2://publication/uuid/7E524955-B159-492D-B
9E4-F52C5E1BAE79.

 Factor, M. et al. (2006) „Object Storage: The Future Building [17]
Block for Storage Systems A Position Paper‟, pp. 119–123.
doi: 10.1109/lgdi.2005.1612479.

 Feng, D. et al. (2004) „Enlarge Bandwidth of Multimedia [18]
Server with Network Attached Storage System 3 The
Redirection of Data Transfer‟, pp. 489–492.

 Finin, T. (1992) An Overview of KQML : A Knowledge [19]
Query and Manipulation Language.

 FIPA (2000) „Foundation for Intelligent Physical Agents‟, [20]
Inform.

 FIPA (2002) „FIPA Abstract Architecture Specification [21]
(SC00001L)‟, p. 75.

 FullStack (no date) Full Stack Python,Redis. Available at: [22]
https://www.fullstackpython.com/redis.html (Accessed: 28
March 2019).

 Gibson, G. A. et al. (2001) „A cost-effective, [23]
high-bandwidth storage architecture‟, High Performance
Mass Storage and Parallel I/O: Technologies and
Applications, (May 2014), pp. 431–444. doi:
10.1109/9780470544839.ch28.

 Griffit (2018) how-build-hello-redis-with-python, [24]
Opensource.com.

 Hanemann, A. et al. (2006) „A study on network [25]
performance metrics and their composition‟, Campus-Wide
Information Systems, 23(4), pp. 268–282. doi:
10.1108/10650740610704135.

 Hendricks, J. et al. (2006) „Improving small file performance [26]
in object-based storage‟, (May).

 Hitachi (2016) Storage virtualisation:How to capitalize on [27]
its economic benefits.

 Iii, W. B. L. and Ross, R. B. (2000) „4th Annual Linux [28]
Showcase & Conference, Atlanta PVFS : A Parallel File
System for Linux Clusters £‟.

 James (2006) „Improving small file performance in object [29]
based storage.‟, CMU-PDL-06-104.

 James, J. (no date) „“Cassandra”‟, Notes and Queries, [30]
s2-X(241), p. 111. doi: 10.1093/nq/s2-X.241.111-a.

 Kabir, M. H. et al. (2014) „Detail Comparison of Network [31]
Simulators‟, (November). doi: 10.13140/RG.2.1.3040.912
8.

 Kang, S. J., Lee, S. Y. and Lee, K. M. (2015) „Performance [32]
Comparison of OpenMP, MPI, and MapReduce in Practical
Problems‟, Advances in Multimedia, 2015, pp. 1–9. doi:
10.1155/2015/575687.

 Karakoyunlu, C. et al. (2013) „Toward a Unified Object [33]
Storage Foundation for Scalable Storage Systems‟.

 Kasireddy, P. (2016) A Beginner-Friendly Introduction to [34]
Containers, VMs and Docker. Available at: https://medium
.freecodecamp.org/a-beginner-friendly-introduction-to-con

tainers-vms-and-docker-79a9e3e119b?gi=a26c3acc92c1
(Accessed: 26 March 2018).

 Kaur, K. and Rai, A. K. (2014) „A Comparative Analysis : [35]
Grid, Cluster and Cloud Computing‟, 3(3), pp. 5730–5734.

 Lange, D. B. (1998) „Mobile objects and mobile agents: The [36]
future of distributed computing?‟, Lecture Notes in
Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics),
1445, pp. 1–12. doi: 10.1007/BFb0054084.

 Lehner, W. (2013) Web-Scale Data Management for the [37]
Cloud.

 Li, G. et al. (2006) „Researches on Performance [38]
Optimization of Distributed Integrated System Based on
Mobile Agent *‟, pp. 4038–4041.

 Liancheng, X. U. (2014) „Research on Distributed Data [39]
Stream Mining in Internet of Things‟, (Lemcs).

 Liu, X. et al. (2015) „Meta-MapReduce for scalable data [40]
mining‟, Journal of Big Data. Journal of Big Data. doi:
10.1186/s40537-015-0021-4.

 Luck, M., McBurney, P. and Preist, C. (2003) „Agent [41]
Technology: Enabling Next Generation Computing (A
Roadmap for Agent Based Computing)‟. Available at:
http://eprints.soton.ac.uk/257309/.

 Maitrey, S. (2015) „Handling Big Data Efficiently by using [42]
Map Reduce Technique‟. doi: 10.1109/CICT.2015.140.

 Mark et al. (2000) Storage Virtualisation, What is it all [43]
about?

 McCanne, S., Vetterli, M. and Jacobson, V. (1997) [44]
„Low-complexity video coding for receiver-driven layered
multicast‟, IEEE Journal on Selected Areas in
Communications, 15(6), pp. 983–1001. doi: 10.1109/49.61
1154.

 Mesnier, M. et al. (2003) „01222722‟, (August), pp. 84–90. [45]

 Microsystems, S. (2007) „LUSTRE TM FILE SYSTEM‟, [46]
(December).

 Miller, E. L., Freeman, W. E. and Reed, B. C. (2002) [47]
„Proceedings of the FAST 2002 Conference on File and
Storage Technologies Strong Security for
Network-Attached Storage‟, Access. Available at:
http://www.usenix.org.

 Mishra, A. (2012) „Application of Mobile Agent in [48]
Distributed Network Management‟. doi: 10.1109/CSNT.20
12.198.

 Mohammed, E. A., Far, B. H. and Naugler, C. (2014) [49]
„Applications of the MapReduce programming framework
to clinical big data analysis : current landscape and future
trends‟, 7(1), pp. 1–23. doi: 10.1186/1756-0381-7-22.

 Moniem, H. A. and Ammar, H. H. (2015) „A framework for [50]
Performance Prediction of Service-Oriented Architecture‟,
International Journal of Computer Applications
Technology and Research, 4(11), pp. 865–870. doi:
10.7753/ijcatr0411.1013.

 „MSST-Cabrera‟ (1991) „A storage Architecture for large [51]
objects‟.

160 Mobile Agent Based Distributed Network Architecture with Map Reduce Programming Model

 Mwathi, D. G. (2018) „A model based approach for [52]
implimenting Authentication and access control in public
WLANS: A CASE OF UNIVERSITIES IN KENYA‟,
Director CSI, 15(2), pp. 2017–2019. doi:10.22201/fq.1870
8404e.2004.3.66178.

 Oracle, S. (2011) „Lustre Software Release 2. x Operation [53]
Manual‟.

 Osero, B. O. (2010) Storage virtualisation and management. [54]
University of Nairobi.

 Osero, B. O. (2013) „NETWORK STORAGE [55]
VIRTUALISATION AND MANAGEMENT BENARD
ONG ‟ ERA OSERO LECTURER Network Attached
Devices , Storage virtualization , Security .‟, International
Journal of Education and Research, 1(12), pp. 1–10.

 Oussous, A. et al. (2009) „Comparison and Classification of [56]
NoSQL Databases for Big Data‟.

 Outcomes, L. (no date) „Understanding research [57]
philosophies and approaches‟, pp. 2–30.

 Palanca, J. (2018) „SPADE Documentation‟. [58]

 Panasas, I. (2016) „Panasas‟, Wikipedia. Available at: [59]
https://en.wikipedia.org/wiki/Panasas.

 Patel, A. B., Birla, M. and Nair, U. (2012) „Addressing Big [60]
Data Problem Using Hadoop and Map Reduce‟, pp. 6–8.

 Pedro Jos´e Marr ´on, Stamatis Karnouskos, D. M. A. O. and [61]
the C. consortium (2011) No Title.

 Permabit „Permabit‟, (2015), Wikipedia. Available at: [62]
https://en.wikipedia.org/wiki/.

 Rajguru, P. (2011) „Available Online at www.jgrcs.info [63]
ANALYSIS OF MOBILE AGENT‟, Journal of Global
Research in Computer Science, 2(11), pp. 6–10. Available
at: www.jgrcs.info.

 Randy, Fellows, A. R. and Kerns, R. (2012) „SAN [64]
Virtualization Evaluation Guide‟, p. 2.

 Rfc, T., Rfc, T., et al. (no date) „Ethernet RFC-2544 [65]
expained‟, pp. 1–9.

 Rfc, T., Engineering, I., et al. (no date) „The RFC 2544 [66]
Application – Performance Benchmarking for the HaulPass
V60s Link‟, pp. 1–11.

 Riedel, E. and Nagle, D. (1999) „Active Disks - Remote [67]
Execution for Network-Attached Storage Thesis
Committee‟:, Science, (December). Available at: https://p
dfs.semanticscholar.org/74ac/0dd0a14ea27f016b170a1254
c14fe8c73b37.pdf.

 Rodríguez-enríquez, L. R. C. et al. (2015) „A general [68]
perspective of Big Data : applications, tools ‟, The Journal
of Supercomputing. Springer US. doi:10.1007/s11227-015
-1501-1.

 Rugg, G. and Petre, M. (2004) „The Unwritten Rules of PhD [69]
research‟, Open University Press, p. 241.

 Sargent, R. G. (2011) „Advanced Tutorials: Verification and [70]
Validation of Simulation Models‟, Proceedings of the 2011
Winter Simulation Conference, pp. 183–198.

 Sarkar, N. I., Member, S. and Halim, S. A. (2011) „A Review [71]

of Simulation of Telecommunication Networks : Simulators,
Classification, Comparison, Methodologies, and
Recommendations‟.

 Satoh, I. (2003) „Building reusable mobile agents for [72]
network management‟, IEEE Transactions on Systems,
Man and Cybernetics Part C: Applications and Reviews,
33(3), pp. 350–357. doi: 10.1109/TSMCC.2003.818944.

 Satoh, I. (2004) „Dynamic Federation of Partitioned [73]
Applications‟, pp. 2–6.

 Satoh, I. (2011) „Mobile Agent Middleware for Dependable [74]
Distributed Systems‟.

 Satoh, I. (2014) „MapReduce-based Data Processing on IoT‟, [75]
(iThings). doi: 10.1109/iThings.2014.32.

 Satoh, I. (2016) „Agent-based MapReduce Processing in [76]
IoT‟, 1(Icaart), pp. 250–257. doi: 10.5220/0005802102500
257.

 Satoh, I. and Society, I. C. (2003) „A Testing Framework for [77]
Mobile Computing Software‟, 29(12), pp. 1112–1121.

 Silva, L. M. (1999) „Optimizing the Migration of Mobile [78]
Agents‟.

 Singavarapu, S. and Hariri, S. (2001) „S ELF-MANAGING [79]
STORAGE SYSTEM – D ESIGN AND EVALUATION 2.
Self Managing Storage System (SMSS) Architecture –
Overview‟.

 Smith, R. (1999) „3ULQFLSOHV RI 0RGHOLQJ [80]
Fundamental Principles of Model Abstraction‟, pp. 1–28.

 Sowmya, N., Aparna, M. and Tijare, P. (2015) „An Adaptive [81]
Load Balancing Strategy in Cloud Computing based on
Map Reduce‟, (September), pp. 4–5.

 Tate, J. et al. (2017) „Introduction to Storage Area‟. [82]

 Tekniska, K., Ögskolan, H. and Simsarian, K. T. (2000) [83]
„VETENSKAP OCH KONST Dissertation, March 2000
Computational Vision and Active Perception Laboratory
(CVAP)‟, (March).

 Tutorialpoint (no date) REDIS - QUICK GUIDE REDIS - [84]
ENVIRONMENT REDIS - DATA TYPES.

 Wakefield, R. (2007) „An Analysis of Quality of Service [85]
Metrics and Frameworks in a Grid Computing
Environment‟.

 Wang, J. et al. (2010) „A Novel Weighted-Graph-Based [86]
Grouping Algorithm for Metadata Prefetching A Novel
Weighted-Graph-Based Grouping Algorithm for Metadata
Prefetching‟.

 Weil, S. A., Brandt, S. A. and Miller, E. L. (2006) „CRUSH : [87]
Controlled, Scalable, Decentralized Placement of
Replicated Data‟, (November).

 Welch, B. et al. (2008) „White Paper Scalable Performance [88]
of the Panasas Parallel File System‟, Fast 2008, (May), pp.
1–22.

 Wetoyi, A. O. (2014) „UNIVERSITY OF NAIROBI [89]
Dynamic Subset Difference Revocation using One Binary
Tree AUTHOR Austin Owino Wetoyi Prof William
Okelo-Odongo‟, (December).

 Computer Science and Information Technology 7(5): 129-161, 2019 161

 Wikipedia (2019) „Network Performance‟, Wikipedia. [90]
Available at: https://en.wikipedia.org/wiki/Network_perfor
mance.

 Wu, S. A. I. (2014) „Distributed Data Management Using [91]
MapReduce‟, 46(3).

 Xu, H. and Shatz, S. M. (2001) „A Design Model for [92]
Intelligent Mobile Agent Software Systems‟, pp. 1–23.
Available at: file:///C:/Users/ltturche/Downloads/32bfe512
24d170bc42.pdf.

 Yazdi, H. T., Fard, A. M. and Akbarzadeh-T, M. R. (2008) [93]
„Cooperative criminal face recognition in distributed web
environment‟, AICCSA 08 - 6th IEEE/ACS International
Conference on Computer Systems and Applications,
(March), pp. 524–529. doi: 10.1109/AICCSA.2008.44935
82.

 Yu, P. et al. (2006) „Mobile Agent Enabled Application [94]
Mobility for‟, pp. 648–657.

