
Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000
Mobile Agents and Java Mobile Agents Toolkits
Damir Horvat1, 3, Dragana Cvetkoviü1� 9HOMNR 0LOXWLQRYLü1� 3HWDU .RþRYLü2 DQG 9ODGD .RYDþHYLü2

1Department of Computer Engineering
School of Electrical Engineering

University of Belgrade
P.O. Box 35-54, 11120 Belgrade, Serbia, Yugoslavia

2TehnicomNET
%XO� 9RMYRGH 0LãLüD ��

11000 Belgrade, Serbia, Yugoslavia
http://www.tehnicom.net

3ComNet
Studentski trg 4

11000 Belgrade, Serbia, Yugoslavia
http://www.comnet.co.yu

E-mail: had@galeb.etf.bg.ac.yu, dana@galeb.etf.bg.ac.yu, vm@eft.bg.ac.yu, ekocovic@tehnicom.net
Proceedings of the HICSS – 2000, Maui, Hawai'i, USA, January 2000.

Abstract

This paper gives an overview of what the mobile agents
are, what they should do and how they can be implemented
in Java. Why Java? The choice to concentrate on Java is
evoked by many existing solutions in Java that handles
architectural heterogeneity between communicating
machines on the net. It seems to be the best available
language for making mobile agents roaming through the
Internet for the time being.

1. Introduction

To explain mobile agent technology, it is necessary to start
right from the beginning, that is to define what the mobile
agents really are, what are their advantages, and to
determine what skills and knowledge are needed in order
to make them effective.

1.1. What are Mobile Agents?

Briefly, a software agent is a piece of software that
performs activities on user's behalf, when given
instructions. The more sophisticated it is, the fewer
instructions it needs. Mobile agents are specific in their
ability to travel from host to host and to perform their tasks
at remote locations. They are able to communicate with
other agents and systems and move within heterogeneou
networks.

A
A
d
o
e
c
t
M
a
b
i
e

A
w
o
i
v
[
c

1

M
d

S
a
w
m

c
T
p
w
c
c
i

s
c
e
m
s
s
t
i
n

Fig 1: Static agent sends his mobile agents
to their new host severs (S1,2,3)
0-7695-0493-0/00 $
s

dditionally, it is crucial for them to be autonomous.
utonomous means that the agent can make its own
ecisions on how to reach the goals it was given. Instead
f the user-initiated interaction via commands, the user is
ngaged in a cooperative process in which human and
omputer agents both initiate the communication, monitor
he events and perform the tasks [2].
obile agent aggregate two things: data (data collected
nd process states) and code (instructions that direct the
ehavior). It moves from one host to another, carrying both

ts data and the code. After arrival, agent continues with
xecution where it stopped (not from the beginning).

 mobile agent should be able to execute on any machine
ithin a network, regardless of the processor type or
perating system. The agent code should not have to be

nstalled on every machine that the agent could potentially
isit; it should move with the agent's data automatically
3]. Java Virtual Machine promises it is possible, but under
ertain conditions. That topic will be discussed later.

.2. Why Mobile Agents?

obile agents are used to implement flexible, scaleable
istributed object-oriented systems.

ome people would say: why should one use a mobile
gent when the current application would do the same
ork? Here are some situations where mobile agents are
ore suitable:

Multi-processor calculations: In the cases of large
alculations, often these can be broken into discrete units.
hose units can be distributed among a pool of servers or
rocessors for calculations in parallel. Mobile agents
ould have to take those units to the new host, initiate the
alculations, and bring the results back home. Upon
ompletion, all results can be aggregated [4]. One example

s the introductory story [see Fig1].

Low-reliability or partially-disconnected networks: In
ystems with low-reliability networks (like notebook
omputers networked via dial-up connections, for
xample), it is often hard to fetch large quantities of data,
ost of which is usually unnecessary [see Fig2]. In that

ituation, mobile agent can be sent to the data source
erver to do the calculations or to filter the data, according
o the given goals, and to bring back only the needed
nformation [see Fig3]. Meanwhile the agent’s owner does
ot have to be connected to the net at all [4].
10.00 (c) 2000 IEEE 1

f

o

s
t

r

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000
User passivity: For applications that demand immediate
reaction to the incoming real-time data, regardless of
whether the users are at their desk or not. Example is
sophisticated mail deliverer; besides the e-mail delivery, it
can also do some work at the arrival. Difference between
this mobile agent and the static one which could do the
same work is that the mobile one gets the instructions from
the sender and the static one must be prepared for such
work by the receiver.

1.3. Additional Requirements

In the defining of mobile agents, autonomy and mobility
are emphasized as a cornerstone of the agents. Witho
mobility, they wouldn’t be mobile agents but static ones;
without autonomy, they wouldn’t be agents at all, but
directly manipulated applications. These two requirements
would be enough if agents spent their lives in some
laboratory conditions, but it isn’t so. Their purpose is to
roam through unknown parts of the Web in search for new
data. To complete their mission, additional skills and
knowledge are needed. Some of the additional
requirements for mobile agents are:

Programmability: Agent must be programmed or
instructed in some manner. Programming should be eas
and user-friendly as much as possible. Agents should b
easily manipulated and created even by persons who ar
not familiar with programming languages.

Safety: Remote host must ensure that the agent will not
commit illegal acts of any kind. Mobile agents are viruses-
like programs and without maximum precaution they can
do much harm to the hosting system.

Privacy: The agent’s internal state and program should
not be visible to others. Mobile agents roam through
Internet and bring important data (like credit card numbers
and so) which could be misused by malicious hosts or by
competing companies.

Navigationability: The agent must be able to find the
needed resource, on the present host or by traveling from
host to host, fulfilling its goals. That is a part of its
autonomy.

Fig 2: Current approach:
 all the data is sent through the network.
0-7695-0493-0/00
a

 a

ut

y
e
e

Communicationability: The agent must be able to
communicate not only with the master agent at the host but
with other agents, too. Through this communication, an
agent can collaborate with other agents in the intention to
reach its goals.

Learning: The agent learns about its environment and
actions to be more effective. It can take a number of
different forms: deliberative learning which needs large
amount of storage for knowledge and reflexive learning
that allows for completely "automatic" learning, where
initially there is minimal knowledge storage, and there is
an incremental increase in storage as the agent learns from
its environment. Through communication and
collaboration among other agents, some kind of semi-
intelligence can be achieved.

Robustness: The agent must be prepared for unexpected
situations, which may occur on the net. Not everything can
be foreseen but agent must be prepared for breakdowns o
connections, hosts or even that it can be destroyed. In such
cases, there should be some point where the agent could g
back [7]. A checkpoint-restore mechanism can be used to
restart agents. The agent's state information is
checkpointed before and after execution on a particular
server. When a server is restarted, a recovery process i
executed which restarts any agents left on the server at las
shutdown.

To accomplish their tasks and for security reasons, mobile
agents have to carry data about themselves and about thei
goals. Some of these data are:

Owner: Parent process name or master agent name.
Agents can have many owners.

Author: In the case it is needed to contact the author.
Lifetime: Time to live (TTL). Every mobile agent has to

have a limited lifetime after which it is terminated in the
cases when the agent is out of control or in deadlock.

Account: Agent could be using some resource that has to
be paid or buy things which are needed, so there is a
billing related information, or a link to owner accounts.

Goal: Measure of success. Every agent must be goal-
oriented and must perform its task until the goal is reached.

Subject: Description of the goal’s attributes.
Background: Supporting information [7].

Fig 3: New approach:
the agent is sent to the data source
and only important data is sent through the network
 $10.00 (c) 2000 IEEE 2

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000
2. Details of Implementations in Java

Maybe one of the most important issues about the mobile
agents is the selection of implementation language. In
earlier days there were attempts to improve distributed
programming and to enable the mobile agent programming
which resulted in languages like TCL, Scheme, Oblique,
and Rosette; even C and C++ languages were used for thi
purpose. The only widely accepted language was
Telescript by Object Magic but neither it did really ‘took
off’. Some efforts were done in using these languages in
mobile agent projects like Ara (agents using TCL and
C/C++) [14] and D’Agent (earlier called Agent TCL --
using TCL) but they have not gained wider popularity or
they are not completed yet.

The reasons for using Java are numerous. Java Developing
Kit 1.1 (JDK 1.1) and JDK 1.2 with their possibilities, like
Remote Method Invocation (RMI) that allows object
methods to be called over the network and the serialization
of objects that allows objects to be sent via byte streams
for network transmission, are almost a natural choice for
implementation of mobility. Source code for software can
be transparently downloaded from anywhere on the net.
Further more, JDK 1.2 gives some improvements in
security which enables fine graduation of the security
allowances.

Java is easy to implement on almost any system and thank
to its popularity, there are many platforms deployed
already with many services, which the agents can use. Java
resembles C++ in many ways, and that makes it an
easy-to-use tool for development and debugging for the
Internet applications.

2.1. An Agent Server

In theory, agent code should not be installed on every
machine that an agent could potentially visit but it is not
possible in practice. Mainly because of the security reasons
(computer viruses are similar to mobile agents), a mobile
agent server (environment) is needed.

The agent server is built on the top of a host system to
protect its resources. The server is a sandbox into which
the mobile agents move and it provides all services to the
agents but limits their actions. The limits are on the
amount of resources it can use, the agent's lifetime, the
number of possible access to the host or through
allowances. New JDK 1.2 provides tools for making these
sandboxes more flexible and easier to use [8][15][16].

On the other hand, host has almost complete control over
the visiting agents. The agent cannot checkout the host and
determines if the interpreter is correct, will the server start
the agent correctly or will it transport the agent where it
wants.

In some cases the Java classes on the host can be modifie
and it would modify agents.

S
m
w
(
o
a
p

O
a
n
t
r
l
e

T
a
e
e
i
t
c
a
a
m
i

2

T
a
a
b
i
n
p
t

2

T
g
o

i
t

0-7695-0493-0/00
s

s

d

olutions are to move only to the trusted hosts or there
ust be a third side, e.g., the agent’s home system that
ould detect if something happened to the agent

mechanism of digital signature and encryption) and react
n it. Also, the agent server can read all the data that the
gent carries (e.g., credit card number) and misuse it for its
urpose but this is still the unsolved problem [14].

ther very important role of the server is to enable the
gent transfer. To transfer an agent, the local server
egotiates with other servers, freezes agent execution,
ransfers the agent to a remote server and when the agent is
eceived, allows it to resume execution at the remote
ocation. Also, it allows monitoring of all transfers and
vents in the system by the administrator [8][23].

he agent server has to allow multiple agents to co-exist
nd to execute on the same server without interfering with
ach other [8]. The server provides agents with a view of
ach other and allows communication, but without direct

nterfering with other agents. If agent could directly invoke
he public method of other agents, it would be able to
hange other agent's data or even destroy it. In cases when
n agent needs service from the other agents it has to send
 message with the request. The agent that gets the
essage then can check the request and do the service if it

s possible [8][15].

.2. An Agent

he most important part of every mobile agent system is
n agent, itself. The mobile agent migrates between servers
nd completes its tasks. To do so, the agent must plan the
est course of action and if it is stuck, to become aware of

t and either to make additional actions or to move to a
ew environment where it might find the information for
rogress [13]. This chapter is an inside look at agents in

he Java environment.

.2.1. The Lifecycle Model

he life of a mobile agent is modeled with the stages it
oes through called lifecycle model [see Fig 4]. The stages
f the model are:

Creation of the agent is done only once when new agent
s created. Every agent gets its unique id, initial state and
hen it is prepared for further instructions.

Fig 4: Life cycle of an agent
 $10.00 (c) 2000 IEEE 3

g
t
t
e

xt
g

e

to
e

.
e

n
e

to

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000
Starting is done each time when the agent arrives to a
new host. The agent has its own thread of execution and
can execute asynchronously. The server initializes the
agent and gives it a thread of execution after which the
agent resumes its execution. All the agents are executed in
parallel on the host.

After deactivation, the agent stops all its calculations and
stores its state and intermediate results to a disk. Tha
means, the agent is put to sleep using object serialization
available in JDK1.1 and later. The states of the agent
objects are exported to a byte stream and later, they are
reconstructed from the byte stream [5].

The deactivation method can also be used for making
checkpoints before performing some unsecured operations
or moving to unknown host. The possible difficulty is
when the agent is recreated from its checkpoint while it is
still active on the remote host. To prevent confusion or
errors, before using the checkpoint for creation, it must be
absolutely certain the original agent is deactivated [14].

Disposal means the agent terminates all its activity and
frees all resources it’s using. After that, its state is lost
forever.

Cloning is process of making multiple clones of an agent
using object serialization. New (cloned) agent is
identically same with the original except the id number, if
any and it is sent to the new host. Cloning is used when
more than one agent is needed for completing the task.

2.2.2. Mobility

The most important issue of the mobile agents is their
mobility. There are two basic models of migration: the
weak and the strong migration. The weak migration is
transfer of only the agent's code and data. The agen
restarts on the new host from the beginning but
with its data. The agent must prepare for the transfer
so that all the necessary information is in the data.
The strong migration transfers agent's state, too and the
agent restarts from the point where it stopped.
The weak migration is commonly used in agent systems
today, since strong one can be difficult to implement into
the Java environment or costly in performance
(greater transfers are needed).

The agents use two mechanisms of migration between the
hosts: RMI (widely used) or through sockets.

R
J
R
d
c
t
F
d
B
s
s
R
l
a

I
c
p
m
p
W
n
(

2

T
m
m

c
b
f
d
p

c
t
t
p
[

t
a

Fig 5: Agent migration using RMI [9].
The Agent Servers initial transfers
by invoking public methods
0-7695-0493-0/00
t
,

t

MI is a feature of JDK 1.1 where a process can invoke
ava public method of remote process. An agent, usin
MI migration, first sends a message to his local hos
emanding transfer to the new host. The local hos
onnects with the requested new host and initializes th
ransfer invoking public method on the remote host [see
ig 5]. From this point, the remote host is responsible for
irecting the transfer. First, the remote host invokes
eginTransfer method on the local host. The local host
erializes the agent and prepares it for transfer. The ne
tep is transfer of resource and data of the agent, usin
MI for initializing. Finally, the remote host informs the

ocal host that the transfer is completed and it restarts th
gent on the new location [9].

n the migration mechanism that uses sockets, the idea is
onvert the agent data and code to byte array that would b
rotocol independent. To do this, the agent invokes public
ethod on the local server after which it is serialized and
repared for transfer by passing it through multiple layers
hen the agent is prepared, it can be transferred to th

ew location by using standard transport protocols
e.g., TCP/IP) [see Fig 6].

.2.3. Communication

he computer science has produced many communicatio
echanisms that are used in mobile agent's systems. Th
ost used ones are:

Procedure call (synchronous) mechanism: An entity A
alls entity B to do a service during which the entity A is
locked. It enables procedure nesting. It is fast and easy

ollow through program’s flow of execution. The
isadvantages are that it is synchronous and difficult to
arallelise. RMI is such mechanism.

The callback (asynchronous) mechanism: An entity A
alls an entity B to do it a service but continues on with its
ask. The entity B, when is finished, calls back and gives
he result to the entity A. It permits truly asynchronous
rocessing but it is complicated and difficult to follow

10].

The mailbox mechanism: Somewhere between previous
wo mechanisms. An entity A calls entity B for a service
nd tells it to put the results into mailbox.

Fig 6: Migration through sockets.
The agent code transferred through multiple layers
is transport protocol independent
$10.00 (c) 2000 IEEE 4

e

te

e

e

.

e

t

e

all
at
ty

e
g

e

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000
The entity A continues on its task, periodically checking
its mailbox if the results are there. This is more difficult to
implement but it’s asynchronous and easy to follow [10].

The most of the mobile agent systems use more than on
of these mechanisms as well as broadcast or multicas
mechanism for sending a same message to multipl
receivers.

3. The Existing Tools

The Java VM, JDK 1.1 as well JDK1.2 with its features
make the creating of the mobile agent a fairly simple task
In building of such a system the problem is not to make it
work, but to make it safe for its environment and
compatible with other agent systems.

There are several Java-based mobile agent system
commercially available for those who want to do some
serious work. These mobile agent toolkits provide all
needed classes in Java for building such systems. Th
builder supplies the agents with the “brain”, the algorithms
that will be used to accomplish the given goals.

Here is an overview of four agent systems that use Java
IBM’s Aglets, Object Space’s Voyager, General Magic’s
Odyssey, and MEITCA’s Concordia. These Java-based
mobile agent systems seem to be relatively mature an
ready for real use. They share certain characteristics: the
provide an agent server, the agents can migrate from
server to a server (carrying their state with them), the
agents can load their code from variety of sources
(filesystems, Web and ftp servers) and they are pure Jav
using JDK 1.1. and later [11].

3.1. Aglets

Aglets Software Development Kit (ASDK) is a product of
IBM’s Tokyo Research Laboratory, initiated in early 1995.
The goal has been to bring the flavour of mobility to the
applets (Aglet means agent plus applet) and to build a
network of Aglets hosts with the task-specific Aglets [18].

The Aglets SDK includes Aglets API, documentation,
sample Aglets, the Aglets Server called Tahiti and the
Agent Web Launcher named Fiji [11].

Tahiti is an application program that runs as an agen
server. Tahiti has an easy to use GUI and provides a us
interface for monitoring, creating, dispatching, and
disposing of agents as well as enables setting the agen
access privileges to the agent servers. On a singl
computer multiple servers can be run by assigning them
different port numbers [18].

Fiji is a Java applet capable of creating Aglets or retracting
an existing Aglet into the client's Web browser. The Fiji
applet takes an agent’s URL as its parameter and can eas
be embedded in a Web page by using HTML, like any
Java applet.
0-7695-0493-0/00
e
t

e

.

s

e

:

d
y
a

a,

t
er

t's
e

ily

The Aglets architecture consists of the Aglet API (set of
Java classes and interfaces that allows creation of mobil
agents), the Aglets Runtime Layer and two implementation
layers, the Agent Transport and Communication Interface
(ATCI) and the Agent Transfer Protocol (ATP) [18].

The Aglets Runtime Layer is an implementation of the
Aglets API that provides the fundamental functionality for
Aglets to be created, managed and dispatched to remo
hosts. Together with ATP and ATCI, it allows Aglets
mobility [18].

The Agent Transfer Protocol is an application-level
standard protocol for the distributed agent-based
information systems. The ATP offers a uniform and
platform-independent protocol for transferring the agents
between networked computers, using Universal Resourc
Locators (URL) for the agent resource location [18].

The ATCI is a higher communication level, an
independent agent protocol that enables agents to mov
and communicate within a network. It is a programming
interface that enables programmers to develop platform
independent agents without building into protocols for
wire communication [18].

Aglet system uses migration through sockets mechanism
During a migration, an Aglet is sending a request to the
Aglets Runtime Layer. The layer converts the Aglet by
serialization into the form of byte array consisting of its
data and code. The resulting byte stream is passed to th
ATP through the ATCI that makes it protocol-independent
(important for heterogeneous networks). The ATP
constructs a bit array containing general information abou
the Aglet system and Aglet’s id together with information
given from the Aglets Runtime, after which the aglet is
ready for transfer. On the remote server the process is th
same only inverted [12].

The Aglets use weak migration. Further more, Aglet
system does not transfer system classes, it assumes that
the system classes are available at the destination. Th
reduces necessary transfer but has an impact on securi
and compatibility: Aglets can approach only systems that
are running the Aglets Server [12].

The ASDK supports interesting mechanism for preventing
malicious agents to mess with other agents: if deactivation
(or such) method is called by other agent, agent will first
check should it obey, and can “just say no” if it is not
correct.

Aglets support synchronous and asynchronous
communication. The communication is supported only
locally and remote messages are sent by the Message
Aglets. The Message Aglets is sent like an ordinary Aglets
but no bytecode is transferred, only the message. Th
Aglets class also provides a subscribe model for messagin
where an Aglet can register its interest in particular
message types and ignoring others, optimizing messag
delivery and agent’s code [11] [12].
 $10.00 (c) 2000 IEEE 5

t
e

,

e

e

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000
The Aglet system is the most widely used mobile agent
system now, thanks to brand name of IBM and many press
coverage. From the users point of view the ASDK
provides easy-to-install package and easy-to-use GUI tha
is important as well. The disadvantages are that it does no
have a method for saving Aglets state for reason of
persistence and security and the problem of compatibility
with other systems because it can use only the Aglets
classes and servers. One more important problem is tha
there is no method to send messages to the Aglets while
they are moving [11] [12].

The latest versions of Aglet system are ASDK Version
1.0.3 and ASDK 1.1 Beta and they are ready for download
at the IBM site. ASDK 1.0 does not have expiring date and
it is free for use but ASDK 1.1 Beta will not start if the
expire date has been reached.

3.2. Voyager

Voyager is a concept of mobile objects by ObjectSpace,
started on mid-1996. It has a unique concept that all
serializable objects (Java source code or class file) can be
mobile by using Virtual Code Compiler (vcc). The vcc
utility reads a .class or .java file and generate a new
remote-enabled “virtual class”. The new virtual class
contains a superset of the original class functions and
allows function calls and message passing even when
objects are remote or moving. Voyager allows an object to
communicate with an instance of a remote-enabled class
via a special kind of object called a virtual reference.
When messages are sent to a virtual reference, the virtua
reference forwards the messages to the instance of the
remote-enabled class. If a message has a return value, th
target object sends the return value to the virtual reference
which returns it to the sender.

After generating a virtual class, you can use its
constructors to create a remote instance of the original
class. The virtual reference resides in your current program
and references the remote instance. The remote instanc
may reside in the current or a different program.

When a voyager-enabled program starts, it automatically
spawns threads that provide timing services, perform
distributed garbage collection and accept network traffic.
Every Voyager-enabled program has a network address
consisting of its host name and a communications port
number, which is an integer unique to the host.

This system provides a good tool for making distributed
systems as well as mobile agent systems.

Agents have all the same features as simple objects-they
can be assigned aliases, have virtual references
communicate with remote objects, and so on. The main
difference between an agent and a moving object is that the
agent can move itself autonomously. When an agent
moves to another host, it calls it moveTo() method which
uses RMI for transfer with a destination address and the
name of a callback function.

O
c
e
t

W
l
m
m
m
a
r

T
s
(
F
S
t
s
t
o

T
s
d
p
l
d

T
n
n
i
i
a
h

T
f
v
V
t
i
f

I
i
T
p
n
s
g
t

V
c
S
P
f
b

0-7695-0493-0/00
t
t

t

l

e
,

e

,

n the new host, the agent receives the name of the
allback function as a message it sent and resumes its
xecution. Voyager is using weak migration mechanism,

oo [12].

hen an agent is preparing for move, it automatically
eaves behind a forwarder with its new location, to forward

essages. The messages are delivered by the lightweigh
essenger agents: when an agent is addressed, th
essenger is following the forwarder to the agent. Once
gent is found on the new location, that location is
ecorded as a new starting address for messaging [12].

he Voyager system supports four types of messages:
ynchronous, one-way (asynchronous), future
mailboxing), one-way multicast and selective multicast.
or multicast the Voyager system uses structure called
pace™. Space is built of small subspaces connected

ogether and users connect to this virtual Space as it is a
ingle object. When the messages are sent into the Space
hey are cloned and then multicast in parallel to all the
bjects in the Space or selectively [12][19].

he agent persistence is provided by explicit method
aveNow() which saves a copy of the agent to the Voyager
atabase. When an agent moves to a remote host, th
ersistent copy moves with it to the remote database. The

ocal database then contains a forwarder to the new
atabase, similar to the agent’s forwarder [12].

he Voyager system has a server called “voyager” but it is
ot necessary to run such server on all the nodes in
etwork, where virtual objects can migrate. That solution

s appropriate to the encapsulated network but otherwise it
s potential security threat. For that reason, the Voyager
gents have restricted operations they can perform on the
ost [11][12].

he Voyager system has five different life span schemes
or the agents and other virtual objects and the default
alue is to live until there are no more references to it. The
oyager agents can be set to live for a specified amount of

ime or until an explicit point of time or until it becomes
nactive for specified amount of time as well as it can live
orever [12].

mportant thing for developers using the Voyager package
s a great amount of documentation available. It includes
he User Guide and the full API documentation for the
ackage and several dozen examples that should introduc
ew users to the Voyager. The other advantages of this
ystem are that all serializable objects are moveable which
ives a new dimension to the programming as well as that
he agents can receive messages while moving [11].

oyager Core Technology Version 2 is free for most
ommercial uses and can be downloaded from the Object
pace’s site. Object Space also offers Voyager Partner
rogram with business, educational and technical support

or system integrators and consulting and product
usinesses.
$10.00 (c) 2000 IEEE 6

t

t

t

l
s

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000
3.3. Odyssey

General Magic product Telescript, language for creating
mobile agents was the first such tool that actually worked
but it was not widely adopted. The Telescript language
supplements systems programming languages such as
and C++. Entire applications can be written in the
Telescript language, but the typical application is written
partly in C. The C parts include the stationary software in
user computers that lets agents interact with users, and th
stationary software in servers that lets places interact, fo
example, with databases. The agents and the "surfaces" o
places to which they are exposed are written in the
Telescript language.

Using their experience in the mobile agent technology,
General Magic began to develop Java mobile agent too
called Odyssey. The Odyssey system provides a set of Jav
class libraries for developing distributed mobile
applications [11].

The Odyssey system includes agents, agent system an
places. The agent system is a platform that can create
manage, interpret, execute, transfer, and terminate agent
It consists of a set of Java classes to support Odysse
agents and Odyssey places. The agent system has th
authority of the region or organization that it represents
[20].

Telescript technology models a network of computers as a
collection of places. The place is a context within an agent
system in which agents execute, similar to the definition of
server in chapter 2.2.1. On one host can be more than on
place and it is an interface between agent and host’s
system resource [20].

The Agents are created by subclassing the Odyssey Agent
class and each has its own thread of execution so that it
can perform tasks on its own initiative. In the Odyssey
system are two kinds of agents: ‘real’ agents and workers
A worker is structured as a set of tasks each to be
completed at the specific hosts. At each destination, the
worker completes the next task on his list and then it
moves to the new location. The Odyssey worker may
manipulate its task list at any point during its travels,
adding new destinations. The Odyssey agent (‘real agent’
has more independence in completing its tasks, it can
move during its execution and it is not bound to the system
where it was created [20].

The Odyssey class hierarchy includes classes that suppo
agents, workers, and places. These classes include Ticket
(specifies how and where an agent travels), Means
(specifies how an agent travels), Petition (identifies whom
an agent wants to communicate with), and ProcessName
(used to generate the unique names of all processes
including agents and places). It also includes three
interfaces: AgentSystem, Finder, and Transport that allow
a developer to customize the implementation of an
Odyssey agent system [20].
0-7695-0493-0/00 $
C

e
r
f

l
a

d
,
s.
y
e

e

.

)

rt

,

Odyssey supports weak migration mechanism using RMI,
similar to the other agent systems. It has no effect on the
workers because their tasks are completed on the local hos
before it moves. The ‘real’ agents restart on each new
location and it has to resume its execution from its data.

This system has a few disadvantages that should be
considered in new versions. As the biggest problem for
developing mobile agent system is that Odyssey does no
have any security mechanism, except which are provided
by Java. Also, there is lack of persistence mechanisms for
case of system failure or lost of data. The Odyssey system
is focused on workers, which is more centralized system
than other mobile agents and does not have any
communication mechanism.

Odyssey is provided free of charge for research and
development (non commercial) purposes and it has not ye
been determined will Odyssey be available for commercial
use in the future [20].

3.4. Concordia

Concordia by Mitsubishi Electric ITCA (MEITCA) is the
youngest mobile agent system but it offers some solutions
that makes it a good choice for enterprise applications on
the Web.

Concordia is a framework for development and managing
network-efficient mobile agent applications for accessing
information anytime, anywhere and on any device [21].

Concordia includes a collaboration framework that enables
multiple agents to work together and coordinate their
actions. Agents within an application may form one or
more collaboration units.

In Concordia there is a distributed events framework that
enables agents to communicate with each other either
synchronously or asynchronously. They are extremely
useful for notifying objects of changes to resources and
unexpected conditions.

Concordia has the Concordia server that includes several
modular components that work in concert to provide an
integrated development environment and management too
for its agents. These components and their services are a
follows:

The Agent Manager serves as a communication server for
transferring an agent. Also, it manages creation and
destruction of the agent. It provides an environment for
agent’s execution.

The Administration Manager provides a GUI for the
administration of the Concordia network including all of
its services. It permits remote administration of Concordia
services running on other nodes, so only one
administration manager is required for the entire
Concordia network.
10.00 (c) 2000 IEEE 7

t
t

s
t

e

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000
The Security Manager is responsible for identifying users,
authenticating agents, protecting server resources, an
authorizing the use of dynamically loaded classes. The
security level can be adjusted: from the weak identity
check to the strong authentication and security provided
from external authorities. The Security Manager’s user
interface is integrated into the Administration Manager
[21].

The Persistence Manager supports the persistence and
recovery of the agents after system or network failure.
Using the Java serialization methods, the persistent stor
manager writes the state information of the agent to disk
and it may return to this checkpoint if necessary. It’s
important that agent itself can request a checkpoint before
performing critical procedures.

The Event Manager accepts event registrations, listens for
and receives events. An agent registers with the Even
Manager indicating which events it is interested in to be
notified about. The event notification can be sent to the
agents on any node in the Concordia network. The Even
Manager handles Concordia agent collaboration [12][21].

The Queue Manager schedules and reschedules the
transport of the agent across the network. The Queu
Manager communicates with the local Concordia server
and handshakes with the remote Queue Managers fo
reliable transmissions. The Queue Managers communicat
using Java RMI. If the remote system is disconnected from
the network, the agent transmission is rescheduled
Coupled with the service of persistence manager, it enable
reliability to the Concordia agents.

The Directory Manager provides naming service. It may
consult a local name server or may be set to pass reques
to other existing name servers.

The Service Bridge provides the interface from Concordia
agents to the services available at the various nodes in th
Concordia network. It provides access to the native API as
well as interfacing these to the Directory Manager and
Service Manager [21].

The Agent Tools Library provides all the classes required
to build Concordia mobile agents including the Agent class
itself [21].

The travel plan of an agent is described by the Itinerary Set
when an agent is launched. The Itinerary is a separate da
structure from the agent, to simplify the agent model and
to enable more predictability in where the agent will
travel [12].

During the transfer between two hosts Concordia
transports agent's code, data, and state information usin
Java RMI through the Concordia servers and using its
Itinerary to determine the next destination. When the agen
again begins executing, it is restarted on the new node
according to the method specified in its Itinerary. Its
security credentials are transferred with it automatically
and its access to services is under local administrative
control at all times.
0-7695-0493-0/00
d

e

t

t

e

r
e

.
s

ts

e

ta

g

t

There are two types of inter-agent communication in the
Concordia system: the distributed asynchronous events and
the collaboration.

The distributed asynchronous events have two forms: the
selected events and the group-oriented events. An agen
receives selected events after it registers with the even
manager by sending a list of event types it wants to
receive. The group-oriented events offer non-filtered
communication between a group of agents after agent
register with in event group. The collaboration is used for
complex agent co-ordination. This communication method
seems specially suited to divide and conquer type
problems [see Multi-process calculations, chapter 2.2].

The Concordia system provides modularity, security, and
reliable agent transmission and enables agent
collaboration. Further more, it has easy-to-use GUI for
administration and enables remote administration. The
disadvantage is that there is no possibility of direct agent
to agent communication.

On the MEITCA’s Web site, a free 30-day evaluation kit
(without Security Manager) of the Concordia system v. 1.1
is available. Concordia is basically a commercial product
that needs a license agreement. Concordia Partner
Program is also offered for system integrators, independen
software vendors, value added resellers and information
technology departments that provide distributed software
solutions to their clients which provides access to
MEITCA’s Concordia technology and resources.

4. Conclusion

All the previous mobile agent systems share some
characteristics but also have their particularities:

• the Aglet system is nicely accommodated to the
Internet environment; it is robust and it is the most widely
used system.

• Voyager provides unique concept of serialization and
mobility of objects and allows quick and easy creating of
sophisticated network applications.

• Odyssey is more distributed systems oriented than
other mobile agent systems but brings a new dimension to
the programming.

• the Concordia system provides modularity, security
and enables remote administration that makes it suitable
for enterprise systems.

Each system also has some disadvantages that should b
solved in new versions of the systems. One is the security
issue; not all the security precautions are implemented in
today’s agent systems. Problem is a protection against an
attack of a malicious host towards an agent and its data.

The biggest strength of mobile agents is their potential to
communicate and collaborate. Through communication
they share their experience and information and
accomplish their goals easier and faster.
 $10.00 (c) 2000 IEEE 8

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000
Again, there is a problem of the language they will use.
Every agent system provides its own solutions for
communication as well as the interface between an agen
and its host. It makes problems with compatibility with
other systems. One of the solutions for communication is
the use of Knowledge Query and Manipulation Language
(KQML). The complexity of KQML makes it difficult to
implement into the agent system. Several companies
(including IBM and General Magic) work together on
Mobile Agent Facility in Object Management Group
which should help to ensure that different agent systems
will be able to work together [11].

All the systems today require a knowledge of
programming in general that is above the level of an
average user. The low-level details (e.g., the Java code
will have to be hidden to provide a very high level
abstraction in order for ordinary people to be able to create
agents. The beauty of agents is that they can help to solv
problems more naturally and simpler than it is traditionally
done by distributed computing [12].

Finally, there is an issue of intelligence. That is not
directly connected with the mobile agents, they do not
really have to be smart to do the job. Intelligence is a
question of how good are the algorithms they are supplied
Using their capabilities to work collectively, like in an ant
colony, and learning from each other, some kind of semi-
intelligence could be achieved.

The mobile agent technology is still a new one, existing
tools are still under development but this technology will
have its share in the WWWorld of tomorrow.

5. References
[1] Mirkovic, J., Kraus, L., Milutinovic, V.,

“A Survey of Genetic Algorithms for Intelligent Internet Search, ”
University of Belgrade, Belgrade, Serbia, Yugoslavia, 1998.
http://www.galeb.etf.bg.ac.yu/~sunshine/.

[2] Maes, P., “Agents that Reduce Work and Information Overload,
“Communication of the ACM, Vol. 37, No. 7, July 1994.

[3] Farley, S. R., Mobile Agent System Architecture, SIGS Publications,
New York, New York, USA, 1997.

[4] Sommers, B., “Agents: Not just for Bonds anymore, “ Javaworld,
April 1997. http://www.javaworld.com/
/jw-04-1997/jw-04-agents.html

[5] Venners, B., “Under the Hood:
 The architecture of aglets, “ Javaworld, April 1997.
http://www.javaworld.com/jw-04-1997/jw-04-hood.html
0-7695-0493-0/00
t

)

e

.

[6] Venners, B., “Solve real problems with aglets, a type of mobile
agent, “ Javaworld, May 1997. http://www.javaworld.com/jw-05-
1997/jw-05-hood.html

[7] Kalakota, R. Whinston, A., Frontier of Electronic Commerce,
Addison-Wesley Publishing Company, Reading, Massachusetts,
USA, 1996.

[8] Sundsted, T., “An Introduction to agents,“ Javaworld, June 1998.
http://www.javaworld.com/jw-06-1998/
/jw-06-howto.html

[9] Sundsted, T., “Agents on the move, “ Javaworld, July 1998.
http://www.javaworld.com/jw-07-1998/
/jw-07-howto.html

[10] Sundsted, T., “Agents Talking to Agents, “ Javaworld, September
1998. http://www.javaworld.com/jw-09-1998/
/jw-09-howto.html

[11] Kiniry, J., Zimmerman, D., “A Hands-On Look at Java Mobile
Agents, “ IEEE Internet Computing, Volume I, Number 4,
July/August 1997.

[12] Shah, K., Guota, R., Timm, S., “Study of Mobile Agent Systems, “
Department of Computer Science, Virginia Tech, Blachsburg,
Virginia, USA, 1998. http://csgrad.cs.vt.edu/~stimm/agents/

[13] Ohsuga, A., Nagai, Y., Irie, Y., Hattori, M., Honiden, S., “Plangent:
An Aproach to Making Mobile Agents Intelligent, “ IEEE Internet
Computing, Volume I, Number 4, July/August 1997.

[14] Peine, H., Stolpmann, T., “The Architecture of the Ara Platform for
Mobile Agents, “ Department of Computer Science, University of
Kaiserslautern, Germany, 1998. http://www.uni-
kl.de/AGNehmer/Projekte/Ara/Doc/
/architecture.ps.gz

[15] Karjoth, G., Lange, D. B., Oshima, M.,
 “A Security Model For Aglets, “ IEEE Internet Computing,
Volume I, Number 4, July/August 1997.

[16] Kotz, D., Gray, R., Nog, S., Rus, D., Chawla, S., Cybenko, G.,
“Agent TCL:Targeting the Needs of Mobile Computers, “ IEEE
Internet Computing, Volume I, Number 4, July/August 1997.

[17] Pertie, C. J., “What’s An Agent… And What’s So Intelligent About
It?, ” IEEE Internet Computing, Volume I, Number 4, July/August
1997.

[18] IBM Aglets Workbench, A White Paper, IBM Tokyo Research
Laboratory, Tokyo, Japan, 1996.
http://www.trl.ibm.co.jp/aglets/whitepaper.html

[19] ObjectSpace Voyager Core Package Technical Overview,
ObjectSpace, Dallas, Texas, USA, December 1997.
http://www.objectspace.com/voyager/whiteparer/
/RMIComparationW97.PDF

[20] Introduction to The Odyssey API, General Magic, Sunnyvale,
California, USA, 1997.
http://www.genmagic.com/agents/odysseyIntro.ps

[21] Concordia: An Infrastructure for Collaboration Mobile Agents,
Mitsubishi Electric ITA, Waltham, Massachusetts, USA, 1997.
http://www.meitca.com//HSL/Projects/Concordia/
/MobileAgentConf_for_web.htm

[22] Harrison, C. G., David M. Chess, D. M., Kershenbaum, A., “Mobile
agents: Are they a good idea?, “ Technical report, IBM T.J. Watson
Research Center, Yorktown Heights, New York, USA, 1995.
 http://www.research.ibm.com/massive/mobag.ps.

[23] Green, S., Hurst, L., Nangle, B., Cunningham, P., “Software
Agents: A review, “ Trinity College, Dublin, Ireland, 1997.
http://www.cs.tcd.ie/research_groups/aig/ /iag//pubreview.ps.gz
$10.00 (c) 2000 IEEE 9

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000
Appendix A: Comparison

Agent
System Aglets Concordia Odyssey Voyager

GUI Yes Yes No Yes

Modular
design No Yes No No

Mobility
mechanism Sockets RMI RMI RMI

Persistence None Implicit None Explicit

Security Security
Manager

Security
Manager

Java
based

Restricted
operations

Direct
agent-agent

comm.
Yes No No Yes

Comm.
types

provided

Sync
Async

Broadcast

Group events
Filtered events
Collaboration

None

Sync
Async

Mailbox
Broadcast
0-7695-0493-0/00 $10.00 (c) 2000 IEEE 10

