
Research Report

Mobile Agents: Are they a good idea?

Colin G. Harrison
David M. Chess
Aaron Kershenbaum

IBM Research Division
T. J. Watson Research Center
Yorktown Heights, NY 10598

NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.

Research Division
Almaden • T.J. Watson • Tokyo • Zurich

Administrador
Nota
@TECHREPORT{Harrison1995, author = {C.G. Harrison and D.M. Chess and A. Kershenbaum}, title = {Mobile Agents: Are They a Good Idea?}, institution = {IBM Research Division, T.J. Watson Research Center}, year = {1995}, address = {Yorktown Heights, NY}, month = {March}, file = {Harrison1995.pdf:Harrison1995.pdf:PDF}, owner = {javier}, timestamp = {2009.01.28}, url = {http://www.research.ibm.com/massive/mobag.ps}}

ii

Mobile Agents: Are they a good idea?

Colin G. Harrison
David M. Chess
Aaron Kershenbaum

IBM T. J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

Abstract: Mobile agents are programs, typically written in a script language, which
may be dispatched from a client computer and transported to a remote server com-
puter for execution. Several authors have suggested that mobile agents offer an
important new method of performing transactions and information retrieval in networks.
Other writers have pointed out, however, that mobile agent introduce severe concerns
for security. We consider the advantages offered by mobile agents and assess them
against alternate methods of achieving the same function. We conclude that, while the
individual advantages of agents do not represent an overwhelming motivation for their
adoption, the creation of a pervasive agent framework facilitates a very large number
of network services and applications.1

March 28, 1995

1 This Research Report was de-classified from IBM Confidential on March 13, 1995.

iv Mobile Agents

 Introduction
The idea of performing client-server computing by the transmission of executable pro-

grams between clients and servers has been popularized in recent years by researchers and
developers interested in intelligent network services, most notably by White & Miller at
General Magic, Inc. [1], but also by the developers of TCL [2]. Mobile agent-based com-
puting may be viewed as an extension of well-known methods of remote dispatch of script
programs [3] or remote submission of batch jobs [4]. The most significant of the extensions
lie in the area of security, since an important goal of this work is to enable spontaneous elec-
tronic commerce; that is commerce which does not require the prior conclusion of a trading
contract between the two parties. Security is in fact a significant concern with mobile agent-
based computing, as a server receiving a mobile agent for execution may require strong assur-
ances about the agent's intentions.

These security concerns have led us to a critical examination of the use of mobile agents
in network services, to determine whether the benefits they offer compensate for the concerns
that they raise. In this paper we examine various arguments that have been adduced in favor
of mobile agents, comparing the individual benefits they claim with alternative methods of
achieving the same result, and also considering the overall benefit of a mobile agent frame-
work for network services. This assessment considers both technical and commercial factors.
We do not consider the question of the desirability or necessity of competing with General
Magic or other vendors of mobile agent technology.

We begin by a description of the attributes of mobile agents and then proceed to analyze
the pros and cons of the individual claims (trees) and the aggregate merit of an agent frame-
work (forest).

Description of mobile agent-based computing
The mobile agent concept is illustrated in figure Figure 1 on page 2. A client computer

consists of an application environment, for example, OS/2 or Microsoft Windows, which con-
tains one or more applications for interaction with a remote server. These applications may
include information searching and retrieval, transaction front-ends, or mail clients. These
applications are bound to an execution environment for mobile agents. Via the APIs, the
application can pass parameters to various classes (not necessarily object-oriented classes) of
agent programs, and likewise the agent programs can return parameters to the application pro-
grams. These classes may be part of the basic agent execution environment, agents distributed
with the OS/2 or Windows applications or agents received by the client from a server or other
peer on the network. In principle there may be no application program, the agent programs
can themselves perform presentation on the client device's user interface and collect informa-
tion directly from a keyboard or other input device; in this case the agent programs - or the
agent execution environment - must bind to the user interface libraries of the client device.
The agent execution environment will also need to bind to various operating system functions,
such as the memory manager, the timer, the file system and so forth. In particular the agent
execution environment needs to bind to the message transport service in order to send and
receive mobile agents agents via the communication infrastructure.

When an application needs to send mail or perform a transaction, it will assemble the
required information and then pass this via the API into the agent execution environment.
This will initiate the execution of an instance of a particular class of agent as a process within
the agent execution environment. This may correspond to an operating system process or an

 1

+-------------+ +-------------+
Client		Server
application		application
environment		environment
+-------------+ +-------------+		
Agent		Agent
execution		execution
environment		environment
+-------------+ +-------------+		
Messaging		Messaging
sub-system		sub-system
+-------------+----------------------------------+-------------+		
Communication Infrastructure		
+--+

Figure 1. Conceptual model for mobile agent computing

operating system thread or it may be managed by a threads package within the agent execution
environment. The agent execution environment will have access to many different agent pro-
grams, which provide different services to the client applications. For example, one may act
as a delivery agent for electronic mail, another may deliver a database retrieval request to a
server, submit the request and return the result to the client application, yet another may navi-
gate its way among multiple servers, asking each in turn for updates on a particular topic.

The agent program may be built from procedural components or from classes of objects.
In either case, the agent has bindings to functions within the agent execution environment,
including functions imported from the operating system, the application or other sub-systems,
as well as other agent programs.

The program may be executed in either machine language or an interpreted (virtual
machine) language. In order to support heterogeneity, it is often preferable to express the
agent in an interpreted language. There is a performance penalty for this, but since most of
the agent processing is done not in the agent itself, but rather in the functions to which it
binds, this may be acceptable. Interpreted languages also have the advantage of late binding;
this enables the agent to contain references to functions or classes not present on the system at
which it is launched, but which are available at its destination. Interpreted languages are also
easier to render secure than machine language, since the language developer explicitly controls
what system resources are accessible. (Provided that gaping loopholes such as PEEK and
POKE are rigorously excluded.)

The information assembled by the application is accepted by the agent as part of its
initialization and at at certain point in its execution, the agent will execute an instruction which
has the following effects:

1. Either the current agent process is suspended in the agent execution environment, or a
new agent daughter process is created.

2. The suspended process or the new process, including its process state, stack, heap and all
external references is collected and processed into a message expressed in a machine-
independent form, for example Abstract Syntax Notation 1 [5]. This step is facilitated if
the agent is built from object classes and in an interpreted language. In particular, if it is

2 Mobile Agents

known that the identical classes are resident at the destination, the agent may be reduced
to object references, instance data and process state data. If the agent is expressed in an
interpreted language, the state data is captured on the stack and there is no need to save
registers.

3. The message may be addressed explicitly to a final destination, or it may be directly ini-
tially to a post office function which can perform address resolution, or to intermediate
destinations, which route the agent on the basis of its content (Semantic Routing).

4. The message is handed to message sub-system and routed directly or indirectly to the des-
tination server, where it is delivered by the server's message sub-system to the agent exe-
cution environment.

5. In the agent execution environment the received message is reconstituted into the execut-
able and the process or thread is dispatched.

6. Execution continues at the next instruction in the agent program.

This is effectively a process migration, but one that is performed for the purpose of
moving the agent from a client which has a request - for information, for a transaction, for
mail delivery - to a server which is capable of satisfying the request.

During execution at the server, the agent passes the information it received from the
client application to server application functions and perhaps receives other information in
return. At the completion of this stage, it might perform one or more of several functions:

1. It might terminate its execution.
2. It might simply suspend at the server, waiting for some event to be delivered from a

server application. We would say that is has become a 'resident' agent at the server. Res-
ident agents may become permanently resident if there is some repeated service desired by
the user.

3. It might repeat the migration progress, either by forking a new daughter process or by sus-
pending and migrating itself. This second migration might return the agent to its origi-
nating client or it might continue to another server or another client.

In particular, the agent may be able to perform a recovery action and visit another server
if the required service is not available or is otherwise unsatisfactory or (equivalently) the agent
may be able to determine that it should also visit another server based on data it has received
from the current server.

 Security
There are several security issues to be considered in mobile agent-based computing:

1. Authentication of the user, that is, the sender of the mobile agent, by the server, and
authentication of the server or agent execution environment, to prevent the spoofing. (It is
not at all clear how this latter function can be implemented, given that the agent is passive
during the authentication process.) The server may wish to be able to authenticate the
sending user uniquely or it may be satisfied to know simply that the user belongs to a
group of authorized users. Some servers may not require any authentication all, if they
have no protected information or functions. The authentication information may be con-
veyed by the agent itself or it might be transmitted separately, for example between
authentication servers at the client and server. The outcome of the authentication proc-
esses is that the user/agent knows the identity of the server/agent execution environment
and the server/agent execution environment knows the identity of the the user/agent. This

 3

authentication is based only on header information transmitted with the agent; the server
still has no idea what the agent wants to do.

2. Determination of whether the user has authorization to execute agents at the server and
which functions may be used and determination of whether the agent will attempt to infect
the server, deny service to other agents or otherwise attempt do harm to the server or
other agents. The server's agent execution environment will re-constitute the agent into an
executable. However, before the server dispatches the executable, it may wish to examine
the agent code to see what resources it proposes to access This may be part of a general
access control function or it may be part of a virus immune system function. If the agent
language supports self-modification (as does Telescript), this may be an insufficient test,
since the as-received agent may during execution be able to transform itself from a benign
to a malignant entity. Following successful completion of this test, the agent execution
environment will then permit the agent access to server resources, depending on the privi-
leges of the user.

3. Determination of the agent's ability or willingness to pay for services provided by the
server (unless these are free). During execution the agent acts autonomously on behalf of
the user. Since the agent is consuming at least computational resources at the server, and
may in fact be performing transactions for goods, the user also requires considerable
assurance that his or her liability is limited. In the case of General Magic's agents, the
Telescript1 language provides a method of authentication transmitted with the agent and
also a method whereby the agent carries with it a quantity of an electronic currency (Tele-
clicks). During execution of the agent by the server, the server is entitled to transfer cur-
rency units from the agent to the agent execution environment as a form of payment. The
user's liability is limited to the quantity of currency which the agent was issued by the
client. In Telescript execution environments, an agent which exhausts its currency is
killed. However, the user also requires assurance that the agent execution environment
cannot fake the quantity of currency transferred and that the server is indeed providing the
contracted services.

 Virus detection

Analysis of the agent itself, to determine whether it is likely to exhibit virus-like
behavior is a difficult problem. It is difficult to define necessary and sufficient tests that the
agent must pass in order to determine whether its intentions are benign or whether it intends to
infect or otherwise corrupt the host system. It is not the case that virus detection is
undecidable in (and only in) Turing-complete programming languages. Nor is it the case that
it is possible to write a virus in any Turing-complete language. Turing completeness is really
rather a red herring when thinking about viruses, because:

• It is easy to design a non-Turing-complete language in which a virus can be written (just
include an "infect" verb somewhere in the set of primitives).

• It is easy to design a Turing-complete language in which no virus can be written (and in
which, therefore, the virus-detection problem is easy; the answer is always: "No, that is
not a virus"). Consider, for instance, a language with the full programming power of
REXX, but able to do input only from the keyboard, output only to the screen, and with
no access to any underlying operating system commands or functions. We could write

1 Telescript and Teleclicks are trademarks of General Magic, Inc.

4 Mobile Agents

arbitrarily-complex games or Eliza programs in it, but since programs written in it cannot
read or write other programs, they cannot be viral. (In theory, you could write an entire
virtual operating system, including a file system, in this language, and there could be
virtual viruses within that system, but that is not of practical relevance.)

Turing completeness only comes in very slightly: if you have a language that includes
the ability to implement the "spread" operation, and the language is Turing-complete, then
Cohen [6] has shown that perfect virus detection is impossible. But his result does not say
anything one way or the other about systems that are not Turing-complete, or that do not make
the "spread" operation possible.

This is important for the mobile-agent question in at least one very large way: it means
that one could design a mobile-agent system in which agents are written in a Turing-complete
language, and as long as the "spread" operation cannot be implemented (as long, that is, as
agents cannot alter other programs), we can still avoid having viruses.

A simple example of this would be an agent language with the basic syntax of REXX
(say), but with only a very limited set of powers:

1. To alter its own internal state variables,
2. To make database queries in the current server,
3. To move to another server,
4. To send textual messages back to its owner.

Despite being Turing-complete, there is no way to write a virus in this system. You can
even allow such agents to add and update database entries (under proper access controls, of
course), and as long as nothing ever interprets the contents of a database entry as an agent, we
still do not have virus problems.

Mobile agents are not the only method by which viruses might be propagated in network
services, although the use of mobile agents may greatly facilitate their propagation. Nor are
viruses the only epidemic threat to network services, other effects such as mail broadcast
storms are at least as likely and equally hard to deal with. J. Kephart [7] has been studying
the propagation of viruses in networks and will soon complete an initial architecture for the
detection and confinement of these and other abherent behaviors of network-based services.

 Issues
The use of mobile agents appears to offer certain advantages for client-server computing,

but as we have noted above, also raises some difficult issues:

• Efficiency: Does the agent execution environment require significant computational
resource? Does the transmission of a transaction or other request via a mobile agent result
in more or less network traffic than alternate methods?

• Flexibility: Can the use of mobile agents provide a more flexible and robust method of
communication than alternate methods? Is it likely that agent execution environments
would be rapidly deployed on network servers?

• Security: Is there a useful compromise between the desire to isolate the agent execution
environment from the system and application functions and the need to provide access in
order to accomplish the users' tasks? Is is possible to define a language such that it pro-
vides sufficient expression for client-server interaction, while being sufficiently restricted
that the server and other agents cannot be compromised?

 5

Alternatives to mobile agents
For completeness, we mention here briefly the alternatives to mobile agents for client-

server interactions. The dominant methods are messaging [8], simple datagrams [9], sockets
[10], remote procedure call [11], and conversations [12]. The primary distinction among these
is between asynchronous protocols, for example, messaging, and synchronous protocols, for
example, RPC. Mobile agents employ messaging frameworks for transport, and hence are
asynchronous. In the rest of this assessment, we will use the term messaging to characterize
asynchronous client-server interactions and RPC for everything else. In both cases, the client
and server exchange data which is to be processed by specific procedures at the remote CPU.
Neither party specifies how the data are to be processed; each has implicit knowledge of the
capabilities of the remote procedures. This contrasts with mobile agents, which communicate
both data and their own procedures and which exploit procedures resident at the client or
server.

The Remote Procedure Call (RPC) extends the traditional procedure call mechanism of
pushing parameters, registers and a return address onto the stack and then performing a jump
to the procedure's entry point. In the RPC case, the client and server open a communications
channel between the client application and the server process. The RPC parameters are passed
to an interface routine, which marshals them into a form suitable for transmission and they are
then sent explicitly to the server process. The RPC packets are received by a corresponding
interface routine, unpacked and passed to the server procedure. The procedure processes the
parameters and (generally) produces a return RPC, which is transmitted back to the client
process. Both parties must use a common interface definition (although heterogeneity of hard-
ware and operating system software is possible). While a local procedure call can be executed
in at most a few microseconds (not including the execution time of the procedure itself), the
RPC introduces overhead due to marshalling, transmission, and unpacking and has a typical
latency of a few milliseconds. Like the local procedure call, the RPC is synchronous; the
client process suspends, maintaining the entire process state, until it receives the return RPC
from the server. Secure RPCs add authentication and encryption facilities to the client-server
communication, but introduce significant overhead [13].

Messaging is emerging as a popular alternative to RPC for client-server communication.
It is an outgrowth of both electronic mail systems and earlier distributed computing schemes in
which applications communicated via files or pipes. The client application composes a
message, typically composed of tagged or structured text, which is to be delivered to an appro-
priate software processor for the type of message. Messaging systems may employ a message
transport service provided by by an electronic mail service, for example, Message Queuing
Series [14], Simple Mail Transport Protocol [15], Vendor Independent Messaging [16]. The
required processor type is indicated in the message header. The message is generally
addressed indirectly, that is, the client may not know the explicit network address or even the
identity of the destination server. The resolution of addresses is performed by intermediate
steps of processing, such as post offices.

Messaging is inherently asynchronous; once the client has handed off the message con-
tents to the messaging sub-system, it continues execution. If in the future, the client receives a
response message from the server, it must restore the application state in order to process the
response. For example, if the user is engaged in a dialogue with a reservation service, several
iterations may be required between the client travel planning application and the Computerized
Reservation Service (CRS), before the user has identified a suitable flight and seat; during

6 Mobile Agents

these iterations, the client and the CRS must both maintain transaction state until it is com-
mitted.

Because the communication is asynchronous, the latency in messaging is both higher and
less predictable than in the RPC case. As a result messaging may be less effective for
one-to-one communication than RPC, but for one-to-many communication, which is typical of
servers in network services, the throughput may be higher, since the client process does not
need to suspend while waiting for the response. As in the RPC case, secure messaging can
offer authentication and encryption; there is an equivalent overhead, but because the process is
asynchronous, the overhead is less burdensome.

The strength of RPC lies in its high efficiency and low latency. The strength of mes-
saging lies in its robustness, particularly over wide-area networks.

Assessment of individual advantages (Trees)
In this section we examine various individual claims related to mobile agents and con-

sider arguments for and against their use. As a general statement, we have not discovered any
client-server functions which are important for network services and which are uniquely
enabled by the use of mobile agents. For almost every agent-based function proposed, we can
propose an alternative based on existing protocols; this will become apparent in the discussions
below. We believe therefore that the individual advantages of mobile agents are relative rather
than absolute and the goal of our analysis is to determine whether these relative advantages are
individually or cumulatively sufficient to warrant employing mobile agents as the basis for
client-server applications and services.

Agents can provide better support for mobile clients
Mobile devices such as laptop and notebook computers, as well as emerging classes such

personal communicators, have three characteristics relevant to this discussion:

1. They are only intermittently connected to a network, hence have only intermittent
access to a server. This is certainly true today, when most mobile access to networks is
via circuit-switched lines, but may be less true in the future when wireless access to
packet-switched networks will be prevalent. The advantage here lies in the mobile client's
ability to develop an agent request - possibly while disconnected - launch the agent during
a brief connection session, and then immediately disconnnect. The response, if any, is
collected during a subsequent connection session.

2. Even when connected, they have only relatively low-bandwidth connections. This is
likely to remain true for some time to come. V.fast modems now provide 28.8 kbps links
on dial-up lines, but wireless links to public networks are unlikely to exceed 12 kbps per
client this century. The advantage here lies in the ability of an agent to perform both
information retrieval and filtering at a server, and to return to the client only the relevant
information. Thus the information transmitted over the network is minimized, which has
strong cost implications for devices connected by public wireless networks.

3. They have limited storage and processing capacity. While there are laptop computers
today with 500 MB disks and Pentium-class engines, there will always be a class of
devices that tries to make do with 'minimal' resources; for example, Hewlett Packard's suc-
cessful HP95/100/200 series, which natively offers only 2 MB of storage. The advantage
here lies in the ability of an agent to perform both information retrieval and filtering at a
server, and to return to the client only the relevant information. Thus the information

 7

transmitted to the device is minimized and the device does not itself need to perform fil-
tering.

There are thus two technical features of agents at play here:

1. Reduction of network traffic. In the case of RPC_based communication, there are typi-
cally several flows between the client and server in order to perform even a simple trans-
action. In the case of secure RPC, there may be several tens of flows for a complex
transaction. It is expected that these flows could be reduced to a single mobile agent with
a corresponding reduction in network traffic, most importantly on the low-bandwidth
access network.

2. Asynchronous interaction. However, we have seen that this is a property of any
message-based system, and does not require in itself programmable agents. Message buf-
fering on the client device (inbound) and on the communication server (outbound) are well
known features [17].

3. Remote searching and filtering. If all information were stored in structured databases, it
would suffice to send a message to the server containing SQL statements and perhaps
perform backend filtering on the search results. Given that most of the world's data is in
fact in flat, free text files, remote searching and filtering does require the ability to open
files, read, filter and possibly develop an index. Agent programs are certainly a plausible
method of performing this service. We wonder, however, if they are are the only way to
perform this service. It would seem that a search engine installed at the server could
achieve the same results, without requiring the dangerous generality of a programming
language and execution environment.

Assessment: There is a real problem to be solved for mobile clients and mobile agents
do have advantages for attaching mobile clients to networks. It is less clear that the entire net-
work's servers need to be adapted to meet this need. Architecturally one would prefer to solve
this problem at the edge of the network and make mobile clients as robust as non-mobile
clients by providing proxy clients at the edge of the network [18].

Agents facilitate semantic information retrieval
We should look at remote searching and filtering further, since it is one of the central

issues in agent programming. Consider a more sophisticated information retrieval system
based on Semantic Retrieval. The user enters a query at his or her client device. The system
interprets this query semantically, possibly asking the user questions and getting clarification.
This reformulated query is then transmitted via an agent to one or more servers, which retrieve
information and present it to the agent, possibly getting additional feedback on the query and
quality of the information retrieved.

In order to do this well, the system needs to be able to interact with both the user and
the sources of information. Interaction with the user is easy, because he or she does not enter
much information. Interaction with the multiple servers is not nearly so easy. First, the
sources are likely to be distributed over many locations. Second, the amount of information
involved (including most of the information which is in fact not relevant to the query, and
hence should be filtered out) is huge.

The ideal system will possess knowledge specific to the domain in which it operates and
specific to the user's interests, as well as the ability to filter data based on this knowledge.
This knowledge will be based on exposure to a lot of current data in its area of expertise. It is
far more efficient for the program extracting this knowledge to go to the source of the data

8 Mobile Agents

instead of sending the data to the program, especially since the program is primarily filtering
and summarizing the data. Thus an agent can do automatic indexing of documents, which will
include identifying a small number of interesting documents from among a large number of
uninteresting ones. It might also identify documents potentially interesting to other agents and
inform them of this fact. Distributed indexes could be built up hierarchically, geographically,
and by subject.

The difference between real semantic retrieval and simple keyword searches (which will
differentiate offerings which people will pay for, from those currently available for free) is the
amount of information which can be passed through the system to allow to it become a real
expert in its field and to have high quality, current information at its disposal. Distributed
intelligent agents, which are co-resident with the data sources and persist of their own accord
(performing incremental indexing) have a real advantage in this respect over centralized, more
static systems. To the extent that mobility allows the agents to get closer to the actual data
source (e.g., real-time vehicular traffic data, weather data), mobility becomes a real advantage
here too.

The counter argument to this is that it still appears possible to define standard retrieval
and filtering programs, which could be installed at information repositories, and to send with
the query a user context of previous searches that the user has found relevant. The informa-
tion must be in any case be propagated among the various servers addressed by a query. This
seems more efficient than propagating both the user context data and the search engine itself.
It is true that it will be difficult to get agreement on a standard search engine, but then it will
also be difficult to get agreement on a standard agent environment.

There is a second argument that in the future, bandwidth will be plentiful and cheap, and
network carriers will be trying earn money by selling computation services. In this case per-
forming the searching locally on the user's own client device may save money, provided the
client is strong enough to perform this task. It can also be argued that mobile agents would
allow the user to choose between free, local computation and for-fee vendor computation.

Assessment: This is an interesting new approach to information foraging in large net-
works. If mobile agent execution environments can be made prevalent throughout the
network, this would offer a good support for this need. Equally however, the provision of
intelligent search capabilities at all network servers using non-agent-based communication
would seem to accomplish the same result.

Agents facilitate real-time interaction with server
Another reason for visiting a server is that it has an interface to a unique piece of

external equipment, for example a machine tool. If the latency in network transmission is high
compared to real-time constraints imposed by the external equipment, then it is desirable to
send the controlling program to execute remotely on the server. An extreme case of this is the
control software for space probes exploring the distant solar system. A program executing
locally, even if interpreted, has a relatively low and certainly bounded latency and can provide
more opportunities for error recovery.

Assessment: This seems very valid, although not in the mainstream of network services
and hence not a major driver for this assessment.

 9

Script languages provide better support for heterogeneous environments
Current networks are heterogeneous and will continue to be so. While developing, oper-

ating and maintaining heterogeneous network services is more difficult than the homogeneous
case, it is less difficult than achieving or maintaining homogeneity in real-world environments.
Passing data and commands among heterogeneous computers is more complex, but working
solutions and exist and the actual number of useful permutations is not very high;
heterogeneity among hardware and software in the same family is roughly as big a problem.

The use of a script language for program and data exchange enables the program and
data representation to be independent of the platform, once the script environment has been
ported to all necessary platforms. While this is a useful characteristic of script-based program-
ming, it has little to do with mobile agents per se. The same advantages can be achieved by
text representations of data or queries.

Assessment: This seems a weak argument.

Agent-based queries/transactions can be more robust
In current implementations, RPC communication is relatively fragile. RPC client-server

computing was developed for LAN-based systems, where the application developers could
make strong assumptions about the integrity of the LAN communication and of the availability
of the server. Experience shows that when these client-server applications are extended over
wide-area networks, they become less reliable. It seems likely that this problem was respon-
sible in part for GMI's introduction of mobile agents [19]. Mobile agents offer two areas of
advantage here:

1. The messaging aspect, which provides reliable transport between client and server, without
requiring reliable communication. While in principle unreliable communication layers can
support RPC, the synchronous nature of this method means that re-transmission delays
eventually become unacceptable.

2. The recovery aspect, in which the dispatched agent is capable of dealing with the required
server being unavailable, or unable to provide the required service. This supposes that the
mobile agent program carries with it or knows how to access knowledge about alternate
sources. To avoid this information becoming stale with time, it should either be provided
to the agent by the dispatching client, which places a burden on the client to maintain this
knowledge or otherwise access such a knowledge base itself, or the agent should itself
know where to go and look for the knowledge.

While this appears plausible for simple cases, say duplicate servers, it seems to
encumber the mobile agent unless the recovery mechanisms can be made sufficiently
general that they are supported by the base classes of the agent framework. In less simple
cases, the alternate server may have more or less the same information or transaction
service, but require the request to be expressed in a different form. Techniques to permit
this kind of transformation are being developed using the Knowledge and Query Manipu-
lation Language (KQML) [20].

If this aspect of robustness is important, and it probably is, then RPC-based client
(or server) applications can be made more robust in exactly the same way. If a given
RPC request fails, the client can invoke exactly the same knowledge base to look for
alternates and has the advantage that it can verify the alteration with the user,

Assessment: While this is a strong claim, it can equally be viewed as a motivation to
make alternate communication protocols more robust for WAN-based network services.

10 Mobile Agents

Agent-based transactions & queries can be expressed more flexibly
One of the implicit hopes for intelligent agents is that they will enable (non-specialist)

users to enter queries or transactions in natural language without knowing how or where the
request can be satisfied. The agents will reformulate the concepts of the query into more
precise terms and will identify one or more servers likely to be able to satisfy the request. A
mobile agent will then be dispatched with the query and will presumably at some future time
return the result to the delighted user.

This again has relatively little to do with mobile agents. The natural language support
could be provided for any user interface. The matching of request to server could also be used
to set up an RPC-based query. The transport of the request by the mobile agent has nothing to
do with enabling the query to be expressed more flexibly.

Assessment: This has nothing to do with mobile agents per se.

Agent-based transactions avoid the need to preserve process state
The need to preserve the entire process state at a client and a server during each flow of

a complex operation adds considerably to the burden of client-server computing. Unless the
client and server applications provide methods for making the RPC state persistent, which adds
a significant performance overhead, failure of either client or server results in the loss of at
least one and possibly many operations and recovery mechanisms at either end may generate
useless network traffic. The ability of the mobile agent to carry its state around with it
appears to relieve the sending computer of the need to preserve state. The state data are also
simplified by performing the operation in an interpreted language rather than machine code.

However, the state must now be carried around the network with the mobile agent. This
may on the one hand enrich the agent's interactions with servers, since it can express much
more of the user's context, it can also result in the needless transmission of data that the agent
will never use. This requires considerable skill on the part of the agent program developer to
ensure that the mobile agent carries with it only the necessary and sufficient information.

Assuming that in the future this agent will return to the sending application (or one of
the servers that it has visited will send a reply), the sending client must be able to relate the
returning agent or other response to the original request. In other words, the sending applica-
tion must preserve at least the application protocol state. This would seem to be roughly the
same as the state information transmitted with the agent, modulo some fine details of the
(interpreter) process state, so the saving may not be very great in terms of quantity of storage.
However the mobile agent-based operation may be more recoverable than an RPC-based oper-
ation, because the operation is asynchronous, hence it can be re-started without strong time
constraints and the saved state is at the application protocol, rather than the process level. The
client application should, for example be able to re-create a 'lost' agent, which rises the ques-
tion of how to detect that an agent has been lost. The usual sorts of protocols for distributed
transaction processing seem relevant [21].

Assessment: There is an advantage here in the use of mobile agents in terms of the
robustness of client-server operations, but it raises also an overhead question and also chal-
lenges for the efficient design of mobile agents per se. It is likely that similar robustness
could also be achieved with alternative client-server methods.

 11

Agents enable electronic commerce
Mobile agents here offer a number of useful possibilities:

1. The agent can express the application-level protocol required to perform a transaction.
This includes dialogues on choices and options, configurations, availability, delivery
methods, and opportunities for selling up as well as the complete and accurate capture of
the information required by the vendor in a particular format. Mobile agents are a plau-
sible method for vendors to distribute the client end of a transaction protocol in a device
independent way.

2. Alternatively, the mobile agent may be able to present the consumer's desire as a query to
a number of potential vendors to determine degree of match, price, availability, and so
forth.

3. The agent may also be able to consult a 'consumer guide' or other advisor before making a
purchase.

4. The agent can provide a secure vehicle for the transaction, providing bilateral
authentication and privacy.

5. The agent can provide a transaction currency for settlement; the agent's account is presum-
ably reconciled periodically against 'real' money.

Of these, the last two are certainly readily replaceable by secure RPC or secure message-
based client-server interactions. The first offers a much better facility for software distribution
than exists today, although again its functions can be equally well performed by RPC or mes-
saging. Today's methods for distributing application protocols include:

1. Application clients preloaded by PC manufacturers.
2. Application clients distributed in conjunction with other products, for example modems.
3. Application clients downloaded from network sources such as CompuServe (™).

The ability of the vendor to distribute clients via an network, preferably to targeted consumers,
offers significant reductions in the cost of capturing new customers (of the order of $50 per
new customer for application preload). It also exposes the 'dark side' of mobile agents: junk
clients, virus clients, dishonest clients.

The second provides a new opportunity, not readily implementable by conventional
methods, which is to the advantage of the consumer, in that he or she is not locked into
dealing with a particular vendor. In today's model, vendors wishing to support electronic
transactions have been forced to integrate their servers with monolithic network services such
as Prodigy or America On Line. The user can access only those vendors supported by the
service. The vendor can reach only those users subscribed to the service. This 'closed' market
place is giving way quite rapidly to an 'open' market place in which users and vendors engage
in direct (spontaneous) commerce. Obstacles to the more rapid evolution of this open market
place are:

1. The difficulties of finding the vendors (lack of a good, global service directory).
2. Lack of a common application transaction protocol or the ability of the user to easily

acquire the vendor's proprietary application protocol (see obstacle #1).
3. Lack of privacy and security, although vendors appear willing to perform experiments

without solving these problems.

We may expect see numerous experiments in this area during 1994-95, particularly in the area
of extensions to World-Wide Web servers [22].

12 Mobile Agents

The third possibility further extends the world of electronic commerce and its analogy
with the 'real' world of commerce. We may anticipate a wide range of secondary commercial
or quasi-legal services in support of electronic consumerism. As with the second possibility,
the degree to which these can be established will depend on the degree to which the service
providers wish to establish 'free markets'.

Assessment: Although mobile agents do not offer any technical advantage here, they do
offer interesting convenience for vendors and service providers wishing to enable spontaneous
electronic commerce, and could offer advantages to consumers.

Agent-based transactions scale better than RPC-based transactions
This is basically the RPC versus messaging argument described above. The asynchro-

nous nature of mobile agents appears likely to enable higher transaction rates between servers,
but a similar result could be achieved by messaging alone. On the other hand, the need to
execute the agents and to support rigorous security around the agent execution environment
could become significant computational loads in themselves. How many resident agents
would, say, Dow Jones wish to support on its stock price servers? Is it really plausible that
hundreds of thousands of agents sit there monitoring the ticker feed? Dow Jones may wish to
sell the computational capacity to support this load, or alternatively, third-party servers, which
receive the ticket feed from Dow Jones, may offer this as a valued-added service. Of course if
Dow Jones can charge for the service of hosting a resident agent, this may be an interesting
service business in itself.

Assessments: As a method of supporting simple queries and transactions, mobile agents
benefit from the scalability inherent in messaging. Whether agent-based computing itself is
efficiently scalable will depend on the extent to which service providers permit generalized
computing by resident agents.

Secure agent-based transactions have lower overhead than secure RPC
The argument here is rooted in the fact that in general several RPCs are required to

execute a given transaction, whereas the same transaction could be accomplished by a single
mobile agent (presumably of roughly the same size as the total RPC traffic). The overhead of
securing a single RPC is presumably similar to the overhead of a single secure agent, so the
agent would appear to offer a technical advantage. In practice, secure RPCs are not used for
every step of a secure transaction (because of the overhead), unless privacy is the main
concern. If authentication is the main concern, practical RPC-based transactions will use a
secure RPC only for the final commitment.

Whether the secure agent is more efficient than the secure RPC will also depend on the
nature of the transaction; the use of agents may offer better scalability, but introduces much
higher latencies.

Assessment: This does not seem very plausible.

Agents enable users to personalize server behavior
The view here is that servers should offer basic APIs and export them via the bindings of

the agent execution environment for exploitation by mobile agent programs. The user (or
other agent author) then has the freedom to use the server as he or she sees fit. Thus in the
electronic commerce example, if the user wishes to browse the catalogues of several vendors
rather than simply using the client application provided by the vendor, he or she has the
freedom to dispatch a mobile agent to forage the vendors' servers for information relevant to a

 13

purchase. The dark side of this capability is the equal facility with which viruses and so forth
could be introduced to servers.

Alternatively, the client could itself periodically execute a (script) program that would
fetch information from servers using RPCs or messaging and perform the analysis locally.
The arguments against this approach have been reviewed above; they relate to the efficiency of
remote versus local filtering and the special problems of mobile computers.

Assessment: On technical grounds, setting the virus problem aside, this is a very valu-
able new capability. We wonder, however, whether service providers will really encourage
this form of interaction, which dramatically reduces the control they have over their customers
and reduces the server interface to that of information transactor. The virus problem remains
significant.

Agents enable semantic-routing
Today's client-server interactions require detailed knowledge at both client and server of

each other's application functions and communications protocols and addresses. One of the
expectations expressed for mobile agents is to relieve the client and the user of much of these
burdens. A user requiring specific information or any other service would express his or her
needs in (something like) natural language and the query would be transmitted to a consultant
agent. The consultant agent would reformulate the natural language query into the vocabulary
and syntax of the Agent Communication Language. It would then consult its own index and
possibly the indices of other consultants to identify one or more servers likely to be able to
satisfy the query. The consultant would forward the query to these servers and the results
would be returned directly to the requesting client. Alternatively, the results might be returned
to the consultant which might then engage in a dialogue with the user to refine the search
results. Thus the initial query submitted by the user is routed based on its semantic content.
This example relates to information retrieval, but the same methods can be used for handling
mail, transactions or indeed any of the documents handled by workflow systems.

Although mobile agents certainly facilitate several aspects of this process, there is again
nothing here that can be performed exclusively by agents or indeed significantly better than by
other means. The query routing process is in fact very similar to the AnyWhere proposal for
semantic routing of messages [23]. The query reformulation process is purely a natural lan-
guage activity that could equally well be applied to messages and could in principle be per-
formed directly at the client rather than by a separate consultant. The indexing of server
content is certainly facilitated by mobile agents, but can be accomplished in other ways. The
submission of a reformulated query to multiple servers is well known in the absence of agents.
The refinement of query results is certainly a good application for intelligent agents, but again
is not specific to mobile agents.

Assessment: Although mobile agents offer no exclusive advantage for this application,
nonetheless it is a very plausible application for mobile agents, because the same mechanism
can be used to integrate clients, consultants and servers. One begins to see here the flexibility
gained from this approach.

14 Mobile Agents

Mobile agents enable intelligent mail handling
Intelligent mail handling is the capability of the method and timing of mail delivery

being determined by the semantic content of the mail item under the control of rules estab-
lished by the recipient of the mail [18]. This is effectively a form of semantic routing. In the
AT&T Personalink service [24] is transported by courier agents, which are programmed in
Telescript. Since the courier agent object class will be present at every agent execution envi-
ronment, the courier agent actually needs only to identify itself as an instance of this class;
there is no need to actually transport any method code in this case. The Personalink (or
MagicMail) framework provides agent execution environments which can be visited by the
courier agent and where the courier agent can engage in a dialogue with the host which routes
the agent to the recipient's outpost (mailbox) in the current domain or directly to the recipient's
domain (client device), if this is connected. The recipient's outpost may contain an intelligent
agent which extracts key attributes from the courier agent and uses its rule set to determine
how the courier item should be handled. The value of using a courier agent for mail transport
rather than a simple mail transport protocol could lie in the general value of object
encapsulation, in security services (authentication, non-repudiation, privacy, anonymity,
payment), or in the ability to take part in translation services, although as usual, it is by no
means clear that courier agents offer unique advantages for these purposes.

As with the semantic routing discussion above, there is nothing in this function which is
intrinsic to mobile agents. The courier agent serves as the transport mechanism; the intelligent
handling comes from the actions resulting at the intelligent agent from the mail arrival event.
In ICS [18] the recipient is in control; the rules will be set up to reflect the recipient's handling
preferences for certain events. In principle though, the recipient could enter a rule which says
in effect: Respect the sender's preferences. The ICS Alter Ego could then examine attributes
such as the priority assigned to the message by the sender, whether the sender requested that
the recipient be notified (by paging) of the arrival of the mail, and so forth.

Assessment: Intelligent mail services depend on the processing of mail attributes by an
intelligent agent. Mobile agents are a convenient transport mechanism for mail, but have no
essential role in the attribute processing.

Agents can be prototypes for RPC applications
As was mentioned above, most applications which can be realized via mobile agents can

also, often better, be realized via RPC. In order for this to happen, however, the application
actually has to be implemented, standardized, and widely installed. This is, at best, a difficult
and lengthy process. At worst, the application may be implemented poorly as standards con-
strain it before real experience with the application is obtained. In some cases, the application
may never get off the ground at all, because it cannot gain wide enough acceptance without
people actually seeing it work.

An agent-based interim implementation, on the other hand, can be done without a lengthy
standards process. The agent is self contained and flexible. It is thus capable of functioning
with relatively little coordination with existing software. Even though it may function less
efficiently than an RPC implementation which is more tightly coupled to the resident software
and even though it may be functionally constrained to preserve the security of the host system,
it can still be used as the basis for a prototype implementation of the application which can be
used as a proof of concept and a vehicle to evaluate features and tradeoffs in the application.
On the basis of experience gained with this prototype, a more informed decision can be made

 15

as to whether it ultimately is best to embark on a standardized RPC-based implementation,
retain the agent-based implementation, or abandon the application entirely.

Assessment Agent-based implementations offer the opportunity to rapidly prototype and
refine an application more quickly and inexpensively than via RPC. The constraints which
need to be imposed on the agents for security reasons and the inefficiencies imposed by rela-
tively loose coupling with resident applications may lead to a pessimistic evaluation. Overall,
however, it may be better to evaluate an application this way rather than simply by architec-
tural discussions.

Assessment of Aggregate Advantages (Forest)
We have seen above that while there are many individual areas where mobile agents

offer advantages, there are few if any overwhelming advantages among these and that in
almost every case, an equivalent solution can be found that does not require mobile agents.
However, if we stand back and look at the sum of these advantages, that is all the functions
that a mobile agent framework enables, then a much stronger case emerges. Benjamin Grosof
has referred to this as the "software engineering" argument and is essentially the point that
whereas each individual case can be addressed in some (ad hoc) manner without mobile agents,
a mobile agent framework addresses all of them at once.

Many of the counter arguments advanced above are of the form: "instead of using agents to do
the work remotely at the server, you could just as well do it at the client". It may not matter
in theory how we split up function between the client and the server, but it may be critical in
practice, because clients and servers are controlled by different people, and work under dif-
ferent sets of constraints.

Consider PostScript (™), for instance (as GMI clearly did): it involves having a standard
interpreter that runs on print servers. A user who wants something printed sends a program to
the server, which executes it and produces the output. How valid would it be to argue that
this is not really necessary, and the print servers themselves could be in charge of accepting
and formatting passive input text, since if someone comes up with a new format for a docu-
ment, one could just update all the printers in the world to know about the new format? It is
true in theory, but absurd in practice.

The statement "It is true that it will be difficult to get agreement on a standard search
engine, but then it will also be difficult to get agreement on a standard agent environment"
misses this point in a similar way: we only have to get agreement on a standard agent environ-
ment once, and after that everyone can write whatever clever search and foraging agents they
want to. If the function is implemented in the server code, on the other hand, any new kind of
operation (a cleverer search, a personalized foraging style, etc) will have to wait for server
updates before it can be used.

We have seen in the last 2 years what can be achieved by providing and disseminating a
standard information server (WWW server) and clients. This has been so successful that
Mosaic, Inc. has recently announced that it will make Mosaic clients available free (instead of
at a proposed price of $99) and will charge only for the server software. The HTTP protocol
has been so successful that further progress in making information available via the Internet is
only discussed in terms of extensions to Web servers and Mosaic clients. Indeed it seems
more than likely that experiments to provide mobile agent extensions to Web servers will be
undertaken during 1994/95. Eventually one of these will be successful and will be deployed

16 Mobile Agents

very quickly on thousands of servers. It would be no bad thing for IBM to go after this
opportunity.

The argument is thus: "once we have reached agreement on how to provide a general-
ized, machine-independent execution environment which can bind to and enable the secure
exploitation of server-specific capabilities, we will have created a completely general frame-
work for network-based services, including:

1. Information foraging,
2. Semantic routing,
3. Electronic commerce,
4. Targeted dissemination of information, and
5. Dissemination of the client side of application protocols."

In short, the framework is almost arbitrarily extensible to support network-based services.

The trick would appear to lie in:

1. Doing the job well, and
2. Getting it widely adopted.

GMI appears (so far) to have succeeded at the former, but may fail at the latter, because of the
special role that AT&T plays in operating Telescript network services.

In summary, the lack of overwhelming strengths among the individual trees should not
blind us to the overwhelming value of the forest as a whole.

Conclusions & Recommendations

1. With one rather narrow exception, there is nothing that can be done with mobile
agents that cannot also be done with other means. The exception is remote real-time
control when the network latency prevents real-time constraints being met by remote
command sequences.

2. The individual advantages of mobile agents therefore rest on relative technical and
commercial factors compared to alternative methods. The technical advantages of
mobile agents identified in this assessment are:

a. High bandwidth remote interaction
b. Support for disconnected operation
c. Support for weak clients
d. Ease of distributing individual service clients
e. Semantic routing
f. Scalability
g. Lower overhead for secure transactions
h. Robust remote interaction

3. While none of the individual advantages of mobile agents given above is over-
whelmingly strong, we believe that the aggregate advantage of mobile agents is
overwhelmingly strong, because:

a. They can provide a pervasive, open, generalized framework for the development
and personalization of network services.

b. While alternatives to mobile agents can be advanced for each of the individual
advantages, there is no single alternative to all of the functionality supported by
a mobile agent framework.

 17

c. In addition to providing an efficient support for existing services, a mobile agent
framework also enables new, derivative network services and hence new busi-
nesses.

d. Mobile agents are expected to appeal strongly to the Internet community, since
they can provide an effective means for dealing with the problems of finding
services and information and since they empower the individual user.

4. The individual technical disadvantages of mobile agents identified in this assessment
are:

a. Need for highly secure agent execution environments.
b. Performance and functional limitations resulting from security.
c. Virus scanning and epidemic control mechanisms.
d. Transmission efficiency, for example a courier agent compared to a simple

SMTP mail object.

The security and virus problems in particular require very close study and consider-
able technical innovation.

5. Commercial issues raised by mobile agents include:

a. Difficulty of propagating agent execution environments onto large numbers of
third-party servers.

b. Balance to be struck between open and closed electronic commerce.
c. Trust on the part of third-party server providers in the face of security concerns.
d. Willingness of the third-party server providers to permit users the ability to cus-

tomize server behavior.
e. Willingness of the third-party server providers to support the computational load

of mobile agents.
f. Perceived value among users.
g. Enthusiasm for this approach among the Internet community.

6. We propose as the initial target for mobile agents a set of extensions to the World
Wide Web server. This mobile agent environment should be integrated with an IBM
WWW server and distributed free of charge to the Internet community. This free
version would have limited functionality:

a. No security functions and no method of secure collection of fees.
b. Limited base classes (hence a performance limitation).
c. Limited number of platforms supported.

This version would serve to demonstrate the capabilities, teach us the pitfalls, and
establish the IBM scripting (and knowledge representation languages) as network
standards. IBM could then exploit this beachhead to develop commercial versions
which could be exploited by the same client population.

There are many other possible targets for an initial development effort, but this
appears to have the strongest impact. This is also a target where we expect many
competing solutions.

7. This assessment suggests further studies:

a. What degree of expressiveness can be safely accepted in an agent scripting lan-
guage? Is it possible to devise languages that permit the expression of useful,
quasi-general procedures, but which permit the non-existence of viruses to be
proven?

18 Mobile Agents

b. How strong are the qualitative arguments for performance advantages? We
could compare existing services with hypothetical mobile agent-based services?

c. Alternatively, what could be done to enable RPC-based client-server interactions
to match the advantages of mobile agents.

The mobile agent approach continues to intrigue and shows signs of offering impor-
tant qualitative advantages for network services. Assuming that solutions to the security
problems can be found - and efforts are underway - the signs are sufficiently positive that
we cannot rule out the possibility that mobile agents will be a successful new method of
client-server interaction in network services. We are now engaged in developing plans to
prudently explore this opportunity.

 Acknowledgements
The need for this assessment emerged from many discussions of various topics

related to intelligent and mobile agents. Many ideas expressed herein originated among
members of the following group: Stephen Brady, Benjamin Grosof, Jeff Kephart, David
Levine, the OREXX team, Colin Parris, Abhay Parekh, Phil Rosenfeld, Ted Selker, Steve
White, Robin Williamson, and, of course, the Magicians.

 19

 Bibliography
1. James E. White. Telescript Technology: The Foundation for the Electronic Market-

place. General Magic, Inc., Mountain View, CA. 1994.
2. B. Morrison and K. Lehenbauer. TcL and Tk: Tools for the system administration.

Proceedings of the Sixth System Administration Conference, 225-234, USENIX Associ-
ation, 1992.

3. Michael Crowley-Milling et al. The Nodal System for the SPS. CERN, 78-07,
Geneva. 1978.

4. J. K. Boggs. IBM Remote Job Entry Facility: Generalize Subsystem Remote Job
Entry Facility. IBM Technical Disclosure Bulletin, 752, August 1973.

5. Gerald Neufeld and Son Vuong. Overview of ASN.1. Computer Networks and ISDN
Systems, 23(5):393-415, February 1992.

6. F. Cohen. Computer viruses: Theory and experiment. Computers and Security,
6:22-35, 1987.

7. J. Kephart. A Biologically Inspired Immune System for Computers. In Patty Maes
and R. Brooks, editors, Artificial Life IV, MIT Press, 1994.

8. R. J. Cypser. Communications for Cooperating Systems, pages 244-245. Addison
Wesley, 1991.

9. A. Tannenbaum. Computer Networks, 2nd ed.. Prentice-Hall Publishing, 1988.
10. D. L. Presotto and D. M. Ritchie. Interprocessor Communication in the Eight Edition

UNIX System. Proceedings of the 1992 USENIX conference, USENIX Association,
June 1985.

11. A. Birrell and B. J. Nelson. Implementing Remote Procedure Calls. ACM Trans-
actions on Computer Systems, 2:39-59, February 1984.

12. R. J. Cypser. Communications for Cooperating Systems, pages 232-241. Addison
Wesley, 1991.

13. Chii Ren Tsai and V. D. Gligor. Distributed Systems and Security Management with
Centralized Control. Proceedings of the Spring 1992 EurOpen/USENIX Workshop,
137-146, APril 1992.

14. Selected Examples of distributed Applications. IBM Corporation, GG24-4167-00,
Armonk, NY.

15. J. Postel. Simple Mail Transfer Protocol. Request for Comments 821, Internet, August
1982.

16. No author given. VIM Functional Specification Version 1.0. Lotus Development Cor-
poration, 1992.

17. No author given. Oracle in Motion. Oracle Corporation. October 1994.
18. Colin G. Harrison, David W. Levine and Sueann Nichols. The IBM Intelligent Com-

munication Services Platform. IBM Journal of Research and Development. In prepa-
ration.

19. James White. RPC over WANs. General Magic, Inc. August 1992. private commu-
nication

20. Hans Chalupsky, Tim Finin, Rich Fritzson, Don McKay, Stu Shapiro and Gio
Wiederhold. An Overview of KQML: A Knowledge Query and Manipulation Lan-
guage. KQML Advisory Group. April 1992. This document appears to be available
from finin @ cs.umbc.edu.

21. M. Sherman. Architecture of the Encina distributed transaction processing family.
ACM SIGMOD, International Conference on Management of Data, May 1993.

20 Mobile Agents

22. T. Berners Lee, R. Cailliau, A. Luotonen, H. Frystyk Nielsen and A. Secret. The
World Wide Web. Communications of the ACM, 37(8):76-82, August 1994.

23. Barron Housel. AnyWhere. IBM NSD/RTP.
24. Paula Bernier. Telescript's agents do the job. Telephony, 226(3):16, January 1994.

 21

Copies may be requested from:

IBM Thomas J. Watson Research Center
Distribution Services F-11 Stormytown
Post Office Box 218
Yorktown Heights, New York 10598

