Mobile Agents-Based Smart Objects
for the Internet of Things

Teemu Leppinen, Jukka Riekki, Meirong Liu, Erkki Harjula
and Timo Ojala

Abstract We propose mobile agents for enabling interoperability and global
intelligence with smart objects in the Internet of Things, with heterogeneous low-
power resource-constrained devices where the systems span over disparate networks
and protocols. As the Internet of Things systems are in continuous transition, requir-
ing software adaptation and system evolution, an adaptable composition is presented
for the mobile agents. The composition complies with the Representational State
Transfer principles, which are then utilized in agent creation, migration and control.
Moreover, the smart objects’ resources, their capabilities, their information and pro-
vided services are exposed to the Web for human-machine interactions. We consider
the requirements for enabling mobile agents in the Internet of Things from multiple
perspectives: the smart object, the mobile agent and the system. We present interfaces
for smart object internal architecture to enable mobile agents and to enable their inter-
actions. An application programming interface is suggested with a system reference
architecture, which includes components in the information infrastructure. Lastly,
an evaluation metrics for the mobile agent composition and for the smart objects’
resource utilization are suggested, taking the different types of system resources and
their utilization into account, assisting in the system, application, smart object and
the mobile agent design.

Keywords Smart object - Mobile agent + Representational State Transfer - Inter-
operability - Internet of things - Human-machine interaction

T. Leppidnen (X)) - J. Riekki - M. Liu - E. Harjula - T. Ojala
Department of Computer Science and Engineering, University of Oulu, Oulu, Finland
e-mail: teemu.leppanen @ee.oulu.fi

G. Fortino and P. Trunfio (eds.), Internet of Things Based on Smart Objects, 29
Internet of Things, DOI: 10.1007/978-3-319-00491-4_2,
© Springer International Publishing Switzerland 2014

30 T. Leppénen et al.

1 Introduction

The Internet of Things (IoT) refers to a globally connected, highly dynamic and
interactive network of physical and virtual devices [2]. The IoT requires integration
and collaboration of disparate technologies in wireless and wired networks, hetero-
geneous device platforms and application-specific software. These IoT technologies
include, but are not limited to, Ethernet, RFID, BlueTooth, Wi-Fi, ZigBee and 6LoW-
PAN. IoT systems require scalability beyond millions of devices, where centralized
solutions could reach their bounds. To achieve global connectivity, standardized pro-
tocols and interfaces are necessary to address device heterogeneity and to enable
universal resource access. Moreover, [oT systems cannot have fixed deployments
or fixed system configurations, as the environment is in continuous transition. Run-
time deployment of new services and applications has to be supported in IoT. As
the systems evolve over time, it is necessary to consider software adaptation and
evolution in order to cope with environment, system configuration and application
requirement changes. Specifically, the issues here include interoperability between
different standards, protocols, data formats, resource types, heterogeneous hardware
and software components, database systems and human operators [2, 9]. The IoT
paradigm transforms everyday physical objects into wirelessly networked, intelli-
gent, autonomous and self-aware smart objects and enables smart objects to observe
their environment through integrated sensors, store the information and interpret it
proactively, cooperate by sharing information and react to changes in the environ-
ment [7, 11, 16]. The IoT then becomes a loosely-coupled and decentralized system
of smart objects, based on distributed applications and global intelligence.

The agent-based systems feature decentralization and flexibility in the system con-
figuration and allow abstracting heterogeneous subsystems and system resources for
cooperation [3, 4, 7, 9, 10, 12, 16]. Agents act autonomously, possess self-properties
and allow the direct manipulation of the hosting device and its physical components,
such as sensors and actuators. Additionally, in agent-based systems, communica-
tion and information processing costs can be reduced by distributing information
processing closer to actual data sources. Mobile agents are autonomous programs
that transmit their execution state from device to device in networked systems [17],
which provides means for software adaptation, system evolution, and tolerance to
system or environment failures. Furthermore, mobile agents enable the dynamic re-
uses of hardware components and asynchronous execution of computational tasks.

This heterogeneous shared environment is not only a technical system, but IoT
devices and smart objects also interact with human users. Therefore, smart user
interfaces [9] are required for humans to interact with smart objects and access
various services and use applications. Abstracting the system through RESTful Web
services leads to the vision of Web of Things (WoT) [8], where each smart thing is
equipped with a tiny Web server according to its capabilities, which then becomes
an integral part of the Web. For embedded networked devices, Web connectivity can
be enabled with embedded Web services [18], or by the smart gateways abstracting
the most low-power resource-constrained devices, such as 8-bit microcontrollers

Mobile Agents-Based Smart Objects for the Internet of Things 31

[12]. The Web is beneficial for human-machine interactions, as various services for
information searching, aggregation and visualization are available.

We propose a method for the integration of mobile agents and smart objects in
order to facilitate cooperation and global intelligence, extending our previous work on
the mobile agent based integration in IoT systems and wireless sensor networks [12].
This leads to a number of research questions [7, 11]: (1) How are the distributed [oT
system architecture designed and eventually deployed? (2) What are the middleware
and programming models? (3) How to represent the smart objects capabilities and the
distributed intelligence? (4) How to combine a coherent collective application with
the distributed application logic? (5) What is the level of human involvement? We
seek to answer these questions by enabling platform- and programming language-
independent mobile agents in an open standards based framework and information
infrastructure. Interactions with humans are facilitated by seamless integration into
the Web.

In this chapter, we first present system design considerations for mobile agent-
based smart objects in IoT and outline the requirements for the smart objects, agents
and systems to enable cooperation. A mobile agent composition is then presented
with a RESTful Web service API for smart object internal architecture and reference
system architecture. Finally, an evaluation method is presented to assist in system
and agent composition design, taking into consideration the different types of IoT
system resources and their dynamic utilization.

2 System Design Considerations

IoT system architecture or middleware should facilitate general and non-specific
design solutions for applications, because the systems are in continuous transition,
where the system configurations and network topologies are ad-hoc, thus cannot be
fixed in deployment. The IoT system should provide the augmentation of smart
objects with internal and external services, object management capabilities and
means for system adaptation and object evolution [6]. Then, the smart objects can
control the flow of information, supporting global intelligence autonomously and
cooperatively [6, 16]. For IoT, Internet-based information infrastructure is needed
to leverage the capabilities of smart objects for provision of services to end-users.
The object-centric systems provide one solution for the heterogeneous fluctuating
environments, enabling the abstraction of hardware, software, data and physicality
[6]. The distinct features of smart objects include the ability to make complex intelli-
gent decisions in information processing locally and to provide services for end users.
In [11], three types of smart objects were presented: activity-, policy- and process-
aware, with different levels of information processing and interaction capabilities.
The individual different capabilities of the smart objects need to be exposed to the
system, be discoverable and queried through well-defined interfaces. In [4], three
types of multi-agent platforms for devices with limited resources was described,
such as computing power, memory, limited user interface or real-time constrains.

32 T. Leppénen et al.

First, the portal platforms do not execute the agents on resource-constrained devices,
but only provide user interaction, sensing and actuation capabilities. Secondly, the
embedded platforms execute the agents entirely in the device itself and, thirdly, the
surrogate platforms execute the agent partially on a resource-constrained device and
partially on the other devices. These high-level design considerations lead to some
key challenges. The smart objects need to be globally identified and addressable.
The resource access interfaces and object capabilities need to be globally discov-
erable. The dynamic availability of the capabilities in the smart objects is crucial
in IoT system deployment. The application development should be decoupled from
the smart object development as the smart objects take different roles and interac-
tion models in the system, based on their capabilities and the agents they are hosting.
Intelligent decision-making is required for information processing, but also in ad-hoc
networking, data routing and providing inter-network relationships.

In Resource-Oriented architectures (ROA) [15], the main abstraction is a resource,
referenced through its unique URI. The ROA is based on the principles of the Repre-
sentational State Transfer (REST), which include separation of concerns with clients
and servers, stateless communication, addressability of resources, link-based con-
nectedness, uniform interface for resource access and various representations of the
state of the resource. The individual capabilities and resources of smart objects, the
state and composition of the agents, system and external services and application-
specific tasks should all be considered as REST resources with URI. These resources
are exposed to the system and be utilized through a uniform interface. The trans-
portable URI identifies system resources and the URLSs support resource hierarchies,
linked resources and even private network overlays within the application, a particu-
lar task or an agent composition. The transportable URI enables to discover the smart
objects, their relationships and contextual situations. This realizes the information
infrastructure and system-, application- or task-based network structure repository
[16]. Moreover, the IETF Constrained RESTful Environment Working Group [18]
has published Internet drafts to enable embedded Web services in the low-power
resource-constrained embedded networked devices. These drafts are crucial for [oT
solutions, as the existing solutions based on HTTP and Simple Object Access Proto-
col (SOAP) may be too heavy for the most resource-constrained embedded devices.
The CoRE framework enables direct access to the resources in embedded networked
devices from the Web and facilitates limited human-machine interactions. These
drafts additionally describe a number of infrastructure services such as resource direc-
tory facilitator and proxies for protocol translations, which are utilized to implement
parts of the information infrastructure in this work.

In our previous work [12], we proposed a REST-based adaptable mobile agent
composition, where the principles of REST are utilized in agent creation, composi-
tion, migration and control, realizing the requirement for single protocol in the agent
transfer, messaging and control. The agent composition itself can be considered as a
system resource, promoting re-use, and adaptable to react to unexpected system envi-
ronment changes. With the RESTful Web services, we are able to utilize standardized
uniform interfaces and communication primitives with heterogeneous IoT systems,
smart objects and device platforms, based on loosely-coupled and flat distributed

Mobile Agents-Based Smart Objects for the Internet of Things 33

system architecture in WoT. Seamless integration to external Web services follows
from the rule of extending the systems over the Web.

3 Requirements for Mobile Agents in IoT

We gather the requirements to enable the system-wide interoperability of smart
objects with mobile agents and heterogeneous resource-constrained object platforms
as well. General requirements for smart object middleware are previously presented
in [5], however we consider the REST principles in the agent creation, migration, con-
trol and its composition. Extended from our previous work in [12], the smart objects
are capable of sensing and actuation, storing information, local decision-making,
interacting with each other and with external entities and finally, of operating in
ad-hoc networks [16].

3.1 Requirements for Smart Objects-Enabled Platforms

Sensing and actuation Smart objects are equipped with physical components,
such as sensors and actuators. Both of these components
should be identifiable and accessed as resources of the
smart objects.

Information gathering Smart objects can locally process the gathered infor-
mation, providing them capability to understand their
contexts and to make intelligent decisions.

Information dissemination Smart objects in IoT support many interaction mod-
els, such as client-server, publish-subscribe, event-based
communication and broadcast messages.

Networking Smart objects are capable of participating in both intra-
network and inter-network communications over dis-
parate networks.

Mobile code Smart objects in IoT need to support a number of dis-
tributed programming models: macroprogramming lan-
guages, MapReduce, code migration, task offloading,
cyber foraging and virtual machines.

Shared resources Smart objects maintain their resources and capabilities,
whichinclude gathered and refined information, object’s
capabilities and furthermore hosted agents’ resources.
The resources are be then cooperatively utilized by other
objects and agents in their operations.

34

3.2 Requirements fo

Shared resources

Agent composition

Lightweight composition

Dynamic deployment

3.3 Requirements fo

Standardized interfaces

Abstracted objects

Abstracted resources

Dynamic deployment

T. Leppénen et al.

r Mobile Agents

The agents maintain their own state, exposed by the
smart object. As the task state is not tightly-coupled into
a physical device, the task state is cacheable and agents
provide limited robustness in case of failures.

Agent implementation should be platform- and pro-
gramming language-independent to address the software
and hardware heterogeneity. The agent composition
should be adaptive, modified by the hosting devices. The
composition can also be exposed as a system resource.
Agents must be lightweight in composition, serializable
and transferred as a whole or as sequential parts. Agents
should be executable in platforms with limited process-
ing power, memory, communication capabilities and
battery lifetime. Binary message formats are a necessity
for most of the resource-constrained embedded devices.
The agent life-cycle is application-dependent.

r IoT Systems

Standard, unified and simple interfaces are required to
address device heterogeneity, resource abstraction, and for
universal access. To simplify the implementation of mobile
agents, agent transfer, messaging and control protocols
should be integrated into a single protocol, based on basic
communication primitives.

Smart objects and their resources should be utilized through
basic and standardized communication primitives with uni-
fied interfaces, where the primitives should be interface and
protocol independent. The agents can also provide primi-
tive or atomic operations in the system.

In addition to the resources in smart objects, the system
resources include internal and external services, which may
register themselves into the system with various roles, such
as data producer, aggregator or interaction enablers. These
resources may also introduce their own restrictions and pri-
orities.

The systems are in continuous transition, therefore the run-
time injections of objects and agents into the system are
common, where the i.e life-cycle is application-dependent.

Mobile Agents-Based Smart Objects for the Internet of Things 35

Table 1 Mobile agent composition for the smart objects

Segment Elements
Metadata Name Agent i.e. resource name or URI
Migration Policy identifier
Authorization Access rights
Timestamp Time of last state update
Code Type identifier Task code
Reference URL
Resource Local URL list
Remote URL list
Static URL list
Reference URL list
State State variable list

Historical data

Local variable list

Variable list
URL list

Dynamic binding

Scalable configuration

The objects are simultaneously acting as servers for their
local resources and as clients for the resources in other
objects. The agents should allow dynamic binding to
resources and dynamic mapping of the task into any system
configuration. An agent composition should, in general, be
exposed to the system by the devices and be adaptable.
Runtime lookups and loose coupling to the resources are
facilitated by stateless communication.

Scalability beyond current networked systems is required.
Thus distributed architectures with loosely-coupled ser-
vices become necessity. Gateways and proxies are intro-
duced to abstract heterogeneous subsystems, spanning over
networks, protocols and communication interfaces.

4 Composition for the Mobile Agents

We extend the agent composition presented in [12], to fulfill the smart objects and
system requirements. The composition, illustrated in Table 1, consists of three seg-
ments: code, resource and state. In addition the composition includes metadata, such
as a unique name or URI, to register the agent into the system and to enable resource
lookups. The metadata also contains a description of globally known migration pol-
icy to control the agent migration. The metadata may also include the last time the
agent state was updated and authorization information for the agent and the required
resources. With proper authorization, we allow smart objects, smart gateways and

36 T. Leppénen et al.

proxies to modify the composition to adapt and evolve to system environment, appli-
cation or task configuration changes and to dynamic resource availability. Then, the
agent composition itself becomes a system resource. Historical data can be included
in the composition for agent tracking purposes.

4.1 Code Segment

The agent task code is stored into this segment. The code can be presented in any pro-
gramming language: high-level macroprogramming language, scripting language,
precompiled binaries, bytecode or even as machine language instructions. The seg-
ment allows multiple code segments for multiple heterogeneous platforms, which
requires an identifier of the code type. Additionally, to minimize the composition
size, the segment can contain a reference to the code in the system repository for
on-demand code retrieval.

4.2 Resource Segment

The resource segment lists the local, remote and static resources for the task execu-
tion. The local resources refer to the resources exposed by the hosting smart object,
whereas remote and static resources are external to the object. The remote resources
are accessed each time the agent migrates or the task execution iterates. The static
resources are remote and constant for the lifetime of the agent, hence the repre-
sentation is requested only once and moved into the state segment as a variable.
How the object binds to the remote resources are determined by the references and
the resource access interfaces. If the resource segment is a reference, resources are
requested from a application-specific or global system service. This allows sharing
the segment becomes a system resource and enabling runtime modifications as well.
The resource segment therefore presents dynamic and partial view of the system
resources utilized by the agent, as an overlay.

4.3 State Segment

The state segment contains the current state of the agent, i.e. the intermediate or final
results of the task. The state is then returned as the agent resource representation.
Other local data, such as a program counter, local variables and retrieved static
resources are stored in this segment as well [12].

Mobile Agents-Based Smart Objects for the Internet of Things 37

4.4 Historical Data

This segment is optional. It contains the previous states of the agent, its local variables
and previously visited locations, for tracking the agent and its behavior. Also, to
minimize the composition size, this segment may contain URLs to a repository
hosting this information.

4.5 Agent Mobility

The local resource segment dictates where the agent migrates in the system, with
the particular migration policy given in the metadata segment. We can utilize any
migration police, for example: (1) the agent visits the objects listed in the local
resource segment each only once, (2) the agent considers the local resource segment
as aring buffer circulating though the devices, (3) the agent message is broadcasted to
all the objects at once, (4) the local resource segment lists gateways or proxies, which
distribute the agent to any number of abstracted smart objects. Actually, the migration
policy can also be considered as a system resource. Whenever the local resource
segment is a reference, the smart objects rely on the information infrastructure, such
as the network structure repository [16] for migration instructions.

This agent migration procedure requires, at minimum, that the agent is cloned in
the host device and sent to the new host, where the state is first updated by executing
the computational task. Then the host registers the agent into the system name server
or directory facilitator. Here the updated agent state is exposed into the system and
other objects can access the new state in the new host. After successful registration,
an acknowledgement is sent to the previous host, which can then delete the agent
from its memory and free the utilized resources.

4.6 Implementation Considerations

Considering different utilization of the adaptable agent composition, we assume the
following. The state segment cannot be omitted, as it is the agents resource repre-
sentation. If the code segment is omitted, then the agent works as a data aggregator,
migrating through the listed smart objects. Moreover, this enables event-based com-
munication [1] as the agent composition can be considered an event with a state. If the
local resource segment is omitted, the agent does not migrate autonomously, which
implements task offloading. The remote and static segments are optional based on
the required resources. All the activity-, policy- and process-aware smart object func-
tionality [11] become now possible. This agent composition inherently supports the
multi-agent platform types in [4], as the requested resource representations dictate
which parts of the agent task code are executed and where.

38 T. Leppénen et al.

Fig. 1 Smart object inter-
nal architecture to facilitate <<Smart Object>>
mobile agents

Object Interface

With the flexible structure of the resource segment, objects and intermediates
can modify the composition [12]. The client-server paradigm is the default; agents
send state and resource requests to other agents. Publish-subscribe paradigm can
be achieved through mobile agents as events. MapReduce can be implemented by
cloning the agent, or by broadcasting the resource requests to the system devices,
where partitioning the task into smaller computational units can be considered before
sending the task to the devices. Macroprogramming languages can be supported
through agents as high-level code abstractions or as code primitives, which can be
introduced to the system as on-demand task code or as global system resources.
These primitives representations can be considered remote methods or in-line code
for the task.

Mapping the agent composition to different protocol messages needs to be con-
sidered. With the HTTP, we can assume the composition for example as HTML
or XML document, EXI XML representation or as JSON object. However, these
human-readable formats may introduce too much overhead in communication with
low-power resource-constrained embedded devices. Therefore, we presented the
agent composition mapping into a significantly smaller, in size, binary Constrained
Application Protocol (CoAP) message structure in [12].

5 Smart Object Reference Architecture

For the smart objects, we identify three software components, which are necessity
to enable mobile agents: the execution environment to run the actual agent task, a
repository to store the resources in these objects and the physical components, such
as sensors and actuators. The repository contains both data and the knowledge base,
typically in a relational database. We also define two interfaces: the agent interface
to enable the handling of mobile agents and the object interface for communication
with other smart objects and the system. See Fig.1 for the proposed smart object
internal architecture.

Mobile Agents-Based Smart Objects for the Internet of Things 39

The execution environment (EE), it is a hardware and operating system depen-
dent. The EE is capable of querying information from the repository and from the
physical components to compile a runnable code for execution, after retrieving the
required resource descriptions. Additionally, EE provides methods for actuating and
controlling the physical components. The EE must feature a method to immediately
stop the agent code execution, called by the EE or by the agent task code, which
enables the agent to control its own execution.

The implementation of EEs for the Android operating system in Java and for Atmel
microcontrollers in the C programming language was presented in our previous work
[12]. The Android EE allows scripting languages Python and JavaScript as agent
task code, where a language-specific engine is invoked to execute the script code. A
HTTP server component is used for communication and a SQLite database for the
repository. The EE in the microcontrollers uses IntelHEX precompiled code for agent
task code. The task code is flashed into the memory in the device, as code cannot
be run from the RAM in the ATmega architecture. However, the architecture allows
flashing program memory sections without a reset, a crucial feature here. The local
and remote resource representations are stored into a shared memory block in RAM,
from where the executable code accesses them as 16-bit variables through common
pointers. These pointers and the API methods are defined in a common C header file.
In the program memory, a number of slots are reserved to store the agent code and it
is accessible until overwritten. The communication API was implemented in C for
the CoAP protocol.

5.1 The Agent Interface

The interface is internal within the smart object, providing the methods for handling
the agent messages and agent composition, the execution of the agent tasks and local
resource queries from the repository. Methods are provided to control the integrated
physical components and to stop the agent execution immediately.

Marshal/Unmarshal Handles the serialization and deserialization of the agent com-
position into an internal data structure in the device memory
and back into the transferable agent composition, then utilized
by the object interface. The data structure stores the binding
of the remote and local resources.

Map/Unmap Maps the internal data structure and local resource representa-
tions into the executable code object. After the task execution,
the internal data structure is updated with the new resource

representations.
Execute Runs the executable task code object.
Getter Retrieves the intermediate state of the agents task from the

internal data structure, to respond to external state queries.

40 T. Leppénen et al.

Poster Used for disseminating events from the task code and for actu-
ating the physical components from the code.
Stop Called by the EE or from the agent task code to stop the task

execution and to immediately transfer the agent.

5.2 The Object Interface

This interface provides functionality for inter-object communication, including
resource access and registration into the system. The methods allow query parame-
ters for retrieving information with location information, different granularity and
historical data from the repositories in the objects. This allows discovering nearby
smart objects and resources dynamically.

Post Transmit the agent between smart objects, according to the
resource segment addresses.
Get Enables two-way communication by responding to the exter-

nal queries of local resources, including the agent state. Sec-
ondly, it is used to request remote and static resource represen-
tations from other objects. It may be needed to first perform
resource lookup into the name server or directory facilitator.

Delete Deletes the resource, including the agent, from the hosting
object or from the system.

Register/Unregister Registers the object, its resources and capabilities into the
system. Unregister is used to remove the resource description
from the system. Whenever an object is hosting an agent, its
identifier with the object network address is registered into the
system. The address of the name server or directory facilitator
should be globally known by all system components.

6 System Reference Architecture

The system reference architecture is generally based on the framework described
by IETF CoRE Working Group in [18]. The benefit of the CoRE framework is
that it allows embedded Web services, i.e. Web connectivity, for the most resource-
constrained embedded networked devices.

In the Fig.2, the resource directory (RD) acts as a name server and stores the
resource descriptions as a part of the information infrastructure. Smart objects can
lookup exposed resources in the system from the RD by the presented API. As
described in [13], the RD can be a part of an P2P overlay over the IoT system.
Queries can be based on URI or resource name, output type, semantic interpreta-
tion, and both virtual and physical location. Secondly, in the system architecture we

Mobile Agents-Based Smart Objects for the Internet of Things 41

HTTP CoAP
<<Smart Object>>
physical | [€€ | [Reposi Repo .
Comp ory % ep <<Smart Object>>
sitory __ _
<<Smart Object>> | |
Physical EE Reposi
e oy Resource <<Smart Object>>
—_—) Directory . __
Web Service Coue tory

Fig. 2 Smart object-based IoT system reference architecture

utilize generic Web service in several different roles. Web service can abstract het-
erogeneous hardware and software technologies, heterogeneous systems and smart
objects resources, coordinate application or task execution to provide application-
specific intelligence, expose external services into the system, work as a gateway or
proxy over disparate networks enabling interoperability and finally facilitate human-
machine interactions over the Internet. Lastly, we utilize a repository component to
store and expose global and application-specific resources into the system, such as
agent task codes and agent compositions, accessed through the RD lookups. There-
fore, the repository enables smart objects to adopt any agent-based role and facilitates
the re-use of system resources as a part of the information infrastructure. The reposi-
tory can also be part of, for example, a P2P overlay. These system components could
provide communication interfaces for different protocols, namely HTTP and CoAP,
to allow access over disparate networks.

7 Application Programming Interface

We extend the API presented in [12] with smart objects-based features for a reference
RESTful API for mobile agent-based application development, complying with the
ROA. With this method, the role of the objects depends solely on their local resources
and on the agents they host. The API features mobile agent creation and control, agent
migration, communication between devices and agents, and also local and remote
access to the resources in the smart objects. It facilitates interobject and interagent

42

T. Leppénen et al.

Table 2 Application programming interface

GET/object/resource
GET/web_service/resource

POST/object/agent_name
POST/web_service/resource/agent_name

DELETE/object/resource
DELETE/web_service/resource

GET/repository/agent_name
POST/repository/agent_name

GET/resource_directory/resource
POST/resource_directory/resource

This method is used for requesting resource repre-
sentations either from a smart object or from a Web
service

With the first method, the agent migrates between
objects. In the second case, an agent is injected into
the system for the given resource, exposed by the Web
service. If an agent composition is not provided in the
message body, a resource lookup is done to locate
the smart objects hosting the particular resources.
The resource segment is compiled automatically, if
resources based on the agent name are available in the
system

This method will delete the given resource from the
addressed smart object and request the deletion of the
object from the RD. In the second case, a lookup to
locate the hosting object for the resource is first per-
formed, if needed to locate the hosting agent or service

These methods will retrieve from or store the particu-
lar agent task code into the repository, with the given
platform identifier as a query parameter. When adding
new code, included in the message body, the reposi-
tory will register the task as a system resource

The lookups to the resource directory follow the same
methods: GET returns the description of a resource
and POST injects new resource description from the
message body to the directory. The resource descrip-
tion follows the format outlined in [13]

Table 3 Additional query parameters

object={list of smart object URIs} Allows directly manipulate the resources, including agents,
in these particular smart objects. The requests are only
sent to these particular devices. This can also override the
resource segment in the agent composition

location={ URI} This identifier can be both physical location or logical
address of the resource

time={start_time, end_time} Access historical information in the agent, smart object or
system resource. Additionally, when this parameter is sent to
the RD with lookup request, it allows tracing the particular
object or resource

rate={integer} Set the granularity in the information requests, if available.
This is an application-specific parameter

Mobile Agents-Based Smart Objects for the Internet of Things 43

communications with basic HTTP and CoAP methods, additionally with inherent
content negotiation and authorization methods. This realizes the requirement for
a single protocol with a uniform interface. See Table2 for the API description. We
introduce additional parameters, in Table 3, for querying historical data with different
information granularity and tracing the agent or objects location or status.

8 Evaluation of Agent-Based IoT Systems

To evaluate mobile agent-based smart objects in IoT, with the possibility of dynamic
resource utilization, a set of specific measures are needed. We propose here metrics
such as resource utilization costs in terms of access and communication latencies,
to describe system-, application-, device-, object- and agent-based characteristics.
In our earlier work [12], we proposed communication, remote resource access and
agent migration latencies and computational overhead in agent task execution as the
measures. Furthermore, we can compare different configurations of the above.

1. With the resource access latencies, we measure the latencies either directly
between heterogeneous devices or through the abstracting Web services. Addi-
tionally, we should measure the access latency from the Internet to system plat-
forms, considering resource access over disparate networks. This measure could
include the request processing time in the hosting device. In the agent composi-
tion, we assume that this latency is dominated by the number of remote resource
queries and should linearly increase as in [14]. Queries to the RD are considered
the same as standard resource accesses.

2. With the computational overhead, we measure the computational latency in the
particular EE in executing agent task code. Platform-specific latencies include
time for system atomic service invocation, marshaling and mapping the composi-
tion into the device memory, running the code and composing the agent message
again.

3. Agentmigration latency includes the overhead of agent registration into the RD by
the hosting device, sending the agent as a message to the next device and waiting
for acknowledgement, after which the agent can be deleted from the memory.
This does not include the computational overhead or additional resource access
latencies. This latency would increase with introducing security measures, such as
guaranteed reliable message transmission, and with large-size agent composition.

However, we found out that in the real-world environment [12, 14], conclusive
evaluation would be difficult to conduct with heterogeneous smart object platforms,
as the system configuration, device and object deployment, agent composition,
required resources and their locations are largely application-specific. Additionally,
the varying communication latencies, changing network conditions, device failures
and resource availability are difficult to consider. The evaluation additionally intro-
duces overhead, which would reduce query response times in the most resource-
constrained platforms, such as wireless sensor networks nodes. Therefore, we should

44 T. Leppénen et al.

utilize of indirect evaluation, for example in smart object or agent communication
through application-specific Web services or by tracing the resource accesses or
agent migration indirectly from the RD. Echo request message’s, such as the ping,
round-trip latencies could be useful for measuring communication latencies as a
baseline.

To assist in the evaluation of mobile agent-based IoT system, application and
agent composition design, we proposed simplified equations in our previous work
[12]. We extend the equations to include smart object-specific features, such as the
repository component in each device. The equations identify the relevant factors in
each case, and with modifications allow calculating application-specific costs with
different system and resource configurations. In Eq. 1, we estimate the maximum
latencies C in particular execution environment k, including the resource access,
executing the agent task and the following agent migration latency. Here r is the
number of remote resources, 7 is the response time for remote and static resource
requests, Tj is the computational overhead in the device and 7}, is the migration
latency from sending the agent message to receiving an acknowledgment message. T,
is added once for agent registration to the system. The local resource query latencies
T; can be considered negligible, however with large information chunk retrieval or
with large number of local resource accesses /, this can be considerable. Based on
the observations in [12, 14], the remote resource queries and migration latencies
dominate these costs.

Co =0+ DT +1T) + T + Ty, (1)

The Eq. 2 gives the total agent migration costs C 47, for a particular mobile agent-
based service as the agents migrate over disparate networks.The additional latency
for static resource queries is included, where s is the number of static resources. The
number of disparate networks is d, and here it is assumed that the agent migrates only
once to each network. The equation can be modified to cover different scenarios. The
agent migration time between networks is given as 7, 4. We include the latency of
possible message translations in the gateways as T),. The latencies in each execution
environment are given in C,, ;, from Eq. 1, where the number of devices running each
execution environment is 7.

Crotat = STy + D _(Tp + Tua) + D D (Cu))
d—1

d n—1

The cost, as latencies, is dominated by the number of platforms in each network
and the previously noted remote resource accesses [12, 14]. Therefore, the remote
resources in the system design and agent composition should be considered as static
or local resources as much as possible [12]. However, this is an application-specific
tradeoff between the agent migration costs and resource access latencies, as the
composition allow the different utilization of the resources. In IoT, we can envision
systems over a number of disparate networks, all with their own characteristics
and technologies, therefore, the migration cost and resource access latencies over

Mobile Agents-Based Smart Objects for the Internet of Things 45

disparate networks are significant factors in the system and application design and
in the deployment phase.

9 Related Work

To start with, an extensive evaluation of middleware for smart objects and smart
environments in IoT, can be found in [5]. Here we consider the previous work related
to agent-oriented smart object-based systems in IoT.

In [9], the authors envision agent-based IoT system architecture, where the
resources are represented by agents. Agents handle monitoring the state of the
resource, historical data storage and the interactions with other components and
humans. Monitoring and coordination of the resources is done through specific roles
played by the agents. Communication is based on the role of the agent and not to
its name or identifier. For resource discovery, the semantic queries are addressed to
the directory to locate the resource identifier. The tasks are written in a rule-based
language, where the agents provide the system configuration for the tasks and react
to configuration changes.

In [7], the authors present agent-based architecture for smart objects, where the
IoT system heterogeneity is abstracted with layers. The system architecture provides
communication middleware to abstract underlying details, a component for manag-
ing communication with external systems, a resource discovery module, adapters to
abstract sensors and actuators as system resources, and lastly components for man-
aging contexts, knowledge base and reasoning. The implementation is Java-based.
The master-slave model is used with smart objects, where a coordinator manages the
set of software entities, running on other smart objects. The coordinator controls the
hosting smart object though internal communication protocol and is the sole com-
ponent to communicate with other smart objects or system devices, through external
communication protocol. An internal software framework provides API for atomic
services and runs the EE as an additional internal software framework.

In [16], an event-driven smart object framework for IoT is presented. The smart
objects communicate by forming ad-hoc clusters, based on the common context of
objects, with electing representative to each cluster. The objects communicate within
the cluster, where only the representative communicates with the infrastructure. In
communication, XML documents are disseminated over SOAP and HTTP through
a Web service in a gateway node. Two types of events have been defined: network
structure changes to manage the clusters and events to disseminate sensor data. For
addressing and routing, the authors have developed their own mechanism, consid-
ering merge and split operations with unique and reusable addresses. The role of
cluster representative rotates according to available resources in objects, balancing
the communication load.

In[1], an agent-oriented and event-based framework for cooperative smart objects,
based on the architecture in [7], is presented. Smart objects’ behaviour, in the form of
tasks, is separated from the event-based communication management. The tasks are

46 T. Leppénen et al.

separated as system tasks, providing basic services for the smart objects and as user-
defined tasks, in application-level, to define the smart objects’ behaviour as plans.
Events are categorized as information, request, log and error. Event types include
system internal events, external events and another smart object as an event source.
The communication model is publish-subscribe, where each smart object publishes
its topics and services for others to utilize.

In [3], interoperable agents in IoT are presented, abstracting heterogeneous
devices and communicating over different access technologies simultaneously. The
agents register their identifier, type and transport protocols to the directory facilitator.
The facilitator enables the registration and discovery of agents, group memberships
of agents, system services and a messaging service for messages between agents.
The groups, as IoT applications, enable multicast messaging with the members.

Considering agent platforms for smart objects, the authors in [10] present a multi-
agent platform for embedded systems, based on the Java virtual machine. The device
platforms include static system agents providing interfaces to the system services
and, on the other hand, dynamic service agents running the smart home applications.
In [1], mobile agent framework for SunSPOT platforms is implemented in Java. The
agents are modeled as multi-plane event-based state machines, where the state tran-
sitions come in response to events. New events can then be emitted asynchronously.
A distinct feature is the timing of the agent operations by system components, which
additionally offer services for communication and agent control.

In comparison, we presented a novel, language- and platform independent compo-
sition for mobile agents-based smart objects. This method is based on open standards
for communication over disparate networks and for collaboration support without
specific interaction models or middleware. The information infrastructure is realized
with the IETF CoRE framework [18], additionally enabling resource-constrained
device platforms for smart objects becoming integral part of the Web. The system
architecture is flat and is not restricted to specific interaction, communication or
programming models. Centralized system configuration or agent coordination is not
facilitated and we do not apply any specific system configuration or task plan with the
smart objects. Instead, we expose the modifiable agent composition into the system
as a common resource. This method facilitates dynamic interlinked many-to-many
communications, including external systems, despite the roles of the agent or smart
objects. The REST design principles and unified interfaces are utilized for agent
creation, migration, messaging, control and exposing system resources to the Web.
Lastly, although Java software components are modular, portable and provide object-
oriented features for programming, Java virtual machine-based solutions may be too
heavy for the most resource-constrained embedded devices.

10 Discussion

In this work, we proposed a method for integration of autonomous smart objects
with mobile agents, with open standards for communication and cooperation sup-

Mobile Agents-Based Smart Objects for the Internet of Things 47

port without a specific middleware solution. We presented language- and platform-
independent mobile agent composition, which enables global intelligence and dif-
ferent interaction models for the smart objects and mobile agents. The roles of the
smart objects are decided by the agent composition, which promotes the dynamic
re-use of the system resources with different simultaneous applications. Mobile
code is inherently supported as the mobile agents can be considered as application-
level tasks, high-level programming abstractions and code primitives. The expected
benefits include: mobile agents enable global intelligence, mobile agents facilitate
adaptable system configurations and dynamic service composition, distribute com-
putational load in applications, exploit locality in communication, and finally provide
re-usability and robustness for the smart objects.

The REST principles are utilized in agent creation, migration, control and, in
larger-scale in smart object communication, system resource access and exposing
the resources to the internet, including the agent composition itself. This realizes
the single protocol for uniform interface in ROA-based architecture. Moreover, the
system resources, services and smart objects are exposed to the Web for human-
machine interactions, which provides integration into the WoT.

The presented evaluation method, albeit generic and simplified, can assist in
application-specific IoT system design, in smart object- or mobile agent-based
dynamic service composition and in system service response latency estimations.
Additional system and network-specific parameters should be introduced to real-
world evaluations. The inevitable security and privacy issues in agent-based
approaches were omitted in this work, but to some extent the security mechanisms
of communication protocols are available with RESTful Web services.

Acknowledgments This research was conducted with the MAMMotH Project, funded by the
Finnish Funding Agency for Technology and Innovation (Tekes), at the Department of Computer
Science and Engineering, University of Oulu, Finland.

References

1. Aiello, F, Fortino, G., Gravina, R., Guerrieri, A.: A java-based agent platform for programming
wireless sensor networks. Comput. J. 54(3), 439-454 (2011)

2. Atzori, L., lera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15),
2787-2805 (2010)

3. Ayala, I., Amor, M., Fuentes, L.: An agent platform for self-configuring agents in the internet
of things. In: Infrastructures and Tools for Multiagent Systems, p. 65 (2012)

4. Carabelea, C., Boissier, O.: Multi-agent platforms on smart devices: dream or reality. In: Pro-
ceedings of the Smart Objects Conference, pp. 126—129. Grenoble, France, (2003)

5. Fortino, G., Antonio, G., Russo, W., Savaglio, C.: Middlewares for smart objects and smart envi-
ronments: overview and comparison. In: Fortino, G., Trunfio, P. (eds.) Internet of Things based
on Smart Objects: Technology, Middleware and Applications, Internet of Things. Springer,
Berlin (2014)

6. Fortino, G., Guerrieri, A., Lacopo, M., Lucia, M., Russo, W.: An agent-based middleware for
cooperating smart objects. In: Corchado, J., Bajo, J., Kozlak, J., Pawlewski, P., Molina, J., Julian,
V., Silveira Ricardo, A., Unland, R., Giroux, S. (eds.) Highlights on Practical Applications of

48

10.

13.

14.

15.
16.

17.

18.

T. Leppénen et al.

Agents and Multi-Agent Systems, Communications in Computer and Information Science, vol.
365, pp. 387-398. Springer, Berlin (2013)

Fortino, G., Guerrieri, A., Russo, W.: Agent-oriented smart objects development. In: 16th IEEE
International Conference on Computer Supported Cooperative Work in Design, pp. 907-912
(2012)

Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for the web of things. In:
Internet of Things 2010 Conference, pp. 1-8 (2010)

Katasonov, A., Kaykova, O., Khriyenko, O., Nikitin, S., Terziyan, V.Y.: Smart semantic mid-
dleware for the internet of things. In: 5th International Conference on Informatics in Control,
Automation and Robotics, Intelligent Control, Systems and Optimization, pp. 169-178. Fun-
chal, Portugal (2008)

Kazanavicius, E., Kazanavicius, V., Ostaseviciute, L.: Agent-based framework for embedded
systems development in smart environments. In: Proceedings of International Conference on
Information Technologies. Kaunas, Lithuania (2009)

. Kortuem, G., Kawsar, F., Fitton, D., Sundramoorthy, V.: Smart objects as building blocks for

the internet of things. Internet Comput. 14(1), 44-51 (2010)

Leppinen, T., Liu, M., Harjula, E., Ramalingam, A., Ylioja, J., Narhi, P., Riekki, J., Ojala,
T.: Mobile agents for integration of internet of things and wireless sensor networks. In: IEEE
International Conference on Systems, Man, and Cybernetics, pp. 14-21 (2013)

Liu, M., Leppénen, T., Harjula, E., Zhonghong, O., Ramalingam, A., Ylianttila, M., Ojala, T.:
Distributed resource directory architecture in machine-to-machine communications. In: IEEE
9th International Conference on Wireless and Mobile Computing, Networking and Communi-
cations, pp. 319-324 (2013)

Malek, S., Medvidovic, N., Mikic-Rakic, M.: An extensible framework for improving a dis-
tributed software system’s deployment architecture. IEEE T Softw. Eng. 38(1), 73-100 (2012)
Richardson, L., Ruby, S.: RESTful web services. O’Reilly (2008)

Sanchez Lopez, T., Ranasinghe, D., Harrison, M., McFarlane, D.: Adding sense to the internet
of things. Pers Ubiquit Comput. 16(3), 291-308 (2012)

Satoh, I.: Mobile agents. In: Nakashima, H., Aghajan, H., Augusto, J.C. (eds.) Handbook of
Ambient Intelligence and Smart Environments, pp. 771-791. Springer, Berlin (2010)

Shelby, Z.: Embedded web services. IEEE Wirel. Commun. Mag. 17(6), 52-57 (2010)

2 Springer
http://www.springer.com/978-3-319-00490-7

Internet of Things Based on Smart Objects

Technology, Middleware and Applications

Fortino, G.; Trunfio, P. (Eds.)

2014, X, 198 p. &4 illus., 41 illus. in color., Hardcowver
ISBM: 978-32-219-00490-7

	2 Mobile Agents-Based Smart Objects for the Internet of Things
	1 Introduction
	2 System Design Considerations
	3 Requirements for Mobile Agents in IoT
	3.1 Requirements for Smart Objects-Enabled Platforms
	3.2 Requirements for Mobile Agents
	3.3 Requirements for IoT Systems

	4 Composition for the Mobile Agents
	4.1 Code Segment
	4.2 Resource Segment
	4.3 State Segment
	4.4 Historical Data
	4.5 Agent Mobility
	4.6 Implementation Considerations

	5 Smart Object Reference Architecture
	5.1 The Agent Interface
	5.2 The Object Interface

	6 System Reference Architecture
	7 Application Programming Interface
	8 Evaluation of Agent-Based IoT Systems
	9 Related Work
	10 Discussion
	References

