
Mobile Agents for World Wide Web
Distributed Database Access

Stavros Papastavrou, Student Member, IEEE,

George Samaras, Senior Member, IEEE, and Evaggelia Pitoura, Member, IEEE

AbstractÐThe popularity of the Web as a universal access mechanism for network information has created the need for developing

web-based DBMS client/server applications. However, the current commercial applet-based approaches for accessing database

systems offer limited flexibility, scalability, and robustness. In this paper, we propose a new framework for Web-based distributed

access to database systems based on Java-based mobile agents. The framework supports lightweight, portable, and autonomous

clients as well as operation on slow or expensive networks. The implementation of the framework using the aglet workbench shows

that its performance is comparable to, and in some case outperforms, the current approach. In fact, in wireless and dial-up

environments and for average size transactions, a client/agent/server adaptation of the framework provides a performance

improvement of approximately a factor of ten. For the fixed network, the gains are about 40 percent and 30 percent, respectively. We

expect our framework to perform even better when deployed using different implementation platforms as indicated by our preliminary

results from an implementation based on Voyager.

Index TermsÐMobile agents, aglet, distributed computing, JDBC, web data access, DBMS-aglet, mobile computing.

æ

1 INTRODUCTION

THE widespread use of Java [1] in network-centric
computing, attributed mainly to its portability and

security control system, gives Java the lead in client/server
programming and mobile computing [2]. Moreover, the
already established Java database connectivity application
interface (JDBC API) [3], [4] and the constantly growing and
refining of JDBC [5] drivers have drawn the attention of
major database vendors. On the other hand, the World
Wide Web (simply Web) [10], [11], [12] is rapidly being
accepted as a universal access mechanism for network
information. The popularity of the Web suggests that Web
browsers may offer a compelling end-user interface for a
large class of applications, including database management
systems (DBMSs).

Thus, an important issue is to combine these two
technologies, namely Java and Web, for the retrieval of
information residing in database systems. The real chal-
lenge is the formation of smart, lightweight, flexible,
independent, and portable Java DBMS client programs that
will support database connectivity over the Internet.
However, the currently proposed approaches [5] (i.e., the
applet/JDBC based ones) overload the client, in terms of the
size of downloaded code, and offer limited flexibility and
scalability. In this paper, we introduce a new approach for
the development of Java-based distributed client/server
applications over the Web. Our approach is based on using

mobile agents [6], between the client program and the
server machine, to provide database connectivity, proces-
sing and communication, and consequently eliminate the
overheads of the existing approaches.

The proposed framework, called the ªDBMS-Aglet
Framework,º utilizes the technology of mobile agents and
demonstrates its effectiveness over a specific application
context (i.e., DBMS access). The framework is comprised of
a set of Java based agents that cooperate to efficiently
support Web database connectivity. The main agent, called
DBMS-aglet, acquires its database capabilities dynamically,
not at the client but at the server. The other agents of the
framework assist this dynamic acquisition. This idea
promotes a much more efficient way of utilizing the JDBC
API and the JDBC driver API and eliminates the overheads
of the various conventional approaches. Consequently, it
frees the remote client to perform other tasks.

The new form of Web-based database access supported
by ªDBMS-Aglet Frameworkº is shown to be more flexible,
scalable, and robust than the current JDBC-based database
connectivity. Furthermore, the framework supports light-
weight, portable, and autonomous clients as well as
operation on slow or expensive networks. The framework
is generic and portable and can be used not only within the
Web but stand-alone as well for direct Java database
connectivity. Although, in this paper, we present perfor-
mance results for accessing relational databases, it is worth
pointing out that our approach is not restricted to relational
databases but it can be used to access any type of database
or file system. This is an additional strong point of the
ªDBMS-Aglet Framework,º since it allows accessing differ-
ent types of resources in a seamless manner.

The implementation of the framework shows that its
performance is comparable to, and in some cases outper-
forms, the performance of current approaches. In fact, in

802 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2000

. S. Papastavrou and G. Samaras are with the Department of Computer
Science, University of Cyprus, CY-1678 Nicosia, Cyprus.
E-mail: cssamara@cs.ucy.ac.cy.

. E. Pitoura is with the Department of Computer Science, University of
Ioannina, Greece. E-mail: pitoura@cs.uoi.gr.

Manuscript received 10 Sept. 1999; revised 10 July 2000; accepted 10 July
2000.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 112702.

1041-4347/00/$10.00 ß 2000 IEEE

wireless and dial-up environments and for average size
transactions, a certain adaptation of the framework pro-
vides a performance improvement of approximately a
factor of ten. For the fixed network, the gains are about
40 percent and 30 percent, respectively. These performance
results were gained while using the Aglets Workbench [7]
for the implementation of mobile agents. Since the Aglets
Workbench is more tuned towards functionality than
performance, we expect our framework to perform even
better. This assumption is substantiated by early experi-
ments conducted using Voyager [22] as our implementation
platform. We report these experimental results as well.

The remaining sections of this paper are organized as
follows: Section 2 presents the needed background material.
This includes a short introduction to Java, mobile agents,
and mobile aglets along with an evaluation of the current
applet-based approaches for web access to distributed
databases. In Section 3, we present the proposed DBMS-
aglet framework, discuss its adaptations and effectiveness
within the various client/server computational models, and
present and compare its advantages to the current
approaches. A variation of the framework and its advan-
tages for accessing distributed multidatabase systems is
discussed in Section 4. In Section 5, we present a Java-based
hierarchy and generalization of the various frameworks and
discuss future work. A specialized-agents library for
database services is also presented. Performance evaluation
is presented in Section 6. Implementation issues and the
role of the implementation platform are discussed in
Section 7. Section 8 concludes the paper.

2 BACKGROUND MATERIAL

2.1 Supporting Technologies

2.1.1 Java and JDBC

Java is an object-oriented, interpreted, robust, secure,
architecture neutral, portable, and multithreaded language.
The uniqueness of Java lies on the fact that it combines both
compiled and interpreted code. The Java executable code
(called bytecode) runs on any hardware platform with a
Java interpreter or any Java-enabled Web browser. In
particular, the Java bytecode represents the instructions
for a virtual microprocessor called the Java Virtual Machine
(JVM). The Java Virtual Machine, also known as the ªJava
Interpreterº [2], is an abstract computer that runs Java
compiled programs. The JVM is ªabstractº in the sense that
it is software based and runs over various hardware
platforms. Another key characteristic of Java is the small
size of its compiled code. This feature enables Java
compiled classes to travel efficiently through the Web,
making it very attractive for network-centric programming.
A Java applet is a Java object-program that can run within
the context of a Java enabled web browser. A downloaded
Java applet can perform tasks only within the context of the
client's hosting web browser and it is not allowed to access
any local resources of the client for security considerations.
Another restriction is that Java applets are not allowed to
communicate with URLs other than the one they were
downloaded from.

The Java Database Connectivity (JDBC) is the Java
standard specification for accessing and manipulating
relational databases [4]. The JDBC consists of two layers:
The JDBC API that provides a Java interface to the relational
database, and the JDBC driver API that executes/imple-
ments this interface. A client that employs the JDBC API
must first download to its environment a JDBC driver
before accessing a particular database. In this work, the
version of the JDBC drivers used was 1.1.

2.1.2 Mobile Agents

Mobile agents are processes dispatched from a source
computer to accomplish a specified task [14], [15]. After its
submission, the mobile agent proceeds autonomously and
independently of the sending client. When the agent
reaches a server, it is delivered to an agent execution
environment. Then, if the agent possesses necessary
authentication credentials, its executable parts are started.
To accomplish its task, the mobile agent can transport itself
to another server, spawn new agents, or interact with other
agents. Upon completion, the mobile agent delivers the
results to the sending client or to another server.

Aglet Technology [7] (also known as the Aglets Work-
bench) is a framework for programming mobile network
agents in Java developed by the IBM Japan research group.
The IBM's mobile agent, called ªAgletº (agile applet), is a
lightweight Java object that can move autonomously from
one computer host to another for execution, carrying along
its program code and state as well as the data so far
obtained. One of the main differences between an aglet and
the simple mobile code of Java applets is the itinerary or
travel plan that is carried along with the aglet. By having a
travel plan, aglets are capable of roaming the Internet
collecting information from many places. The itinerary can
change dynamically.

An aglet can be dispatched to any remote host that
supports the Java Virtual Machine. This requires from the
remote host to preinstall Tahiti, a tiny aglet server program
implemented in Java and provided by the Aglet Frame-
work. A running Tahiti server listens to the host's ports for
incoming aglets, captures them, and provides them with an
aglet context (i.e., an agent execution environment) in which
they can run their code from the state that it was halted
before they were dispatched. Within its context, an aglet can
communicate with other aglets, collect local information
and, when convenient, halt its execution and be dispatched
to another host. An aglet can also be cloned or disposed.

To allow aglets to be fired from within applets, an
abstract applet class, called ªFijiApplet,º is provided as part
of a Java package, called ªFiji Kit.º The FijiApplet maintains
some kind of an aglet context (like the Tahiti aglet server).
From within this context, aglets can be created, dispatched,
and retracted back to the FijiApplet. For a Java-enabled web
browser to host and fire aglets to various destinations, two
additional components are provided by the Aglet Frame-
work. These are an aglet plug-in that allows the browser to
host aglets and an aglet router that must be installed at the
Web server to capture incoming aglets and forward them to
their destination.

PAPASTAVROU ET AL.: MOBILE AGENTS FOR WORLD WIDE WEB DISTRIBUTED DATABASE ACCESS 803

2.2 The Current Approach: Applets for Distributed
Database Access

The challenge is to provide the Internet user with a Web-
based database connectivity with the lowest possible
overhead. To this end, various non-Java-based approaches
(e.g., CGI) have been proposed [16], [17]. The concept,
however, of running applets within Java enabled browsers
that utilize the JDBC application interface is increasingly
gaining popularity with major database vendors. There are
four ways a Java applet can gain access to a remote
relational database (Fig. 1), making use of one of the four
existing types of JDBC driver implementations.

The first approach makes use of the JDBC-ODBC bridge
driver (JDBC driver type 1). The JDBC-ODBC bridge
translates the JDBC API calls into ODBC1 calls and sends
them to an ODBC driver already installed on the server.
This approach requires the client applet to download, along
with its code, some ODBC binary code. Moreover, in many
cases, client database code must be preinstalled on the client
machine. Thus, this approach poses many extra layers of
overhead. Nevertheless, it is useful in accessing databases
that do not directly support JDBC [5].

The second approach makes use of a JDBC driver written
half in Java and half in native2 code. The client applet,
through this JDBC driver (type 2 driver), speaks directly to
the protocol of the remote SQL database. While this
approach is very efficient in terms of performance, it
requires the preinstallation of native code at the client.

The third approach is considered to be the most flexible:
It uses a JDBC driver written entirely in Java meaning that
the entire driver can be downloaded to the client applet.
The client applet, through this JDBC driver (type 3 driver),
speaks an intermediate language that is translated by a
middle-tier gateway at the server into a DBMS-specific
protocol and eventually passed to the SQL server. The more
vendor protocols the gateway speaks, the more databases
the applet can be attached to simultaneously. Despite the
extra layer of the gateway, this approach has drawn the

attention of many database vendors, including Borland
with DataGateway [18], IBM with DB2 client support for
Java [19], and Symantec with dbANYWHERE [20].

Finally, the fourth approach makes use of a JDBC driver
(type 4 driver), also written entirely in Java. The driver can
be fully downloaded to the client applet and speaks a
DBMS-vendor protocol directly to the remote SQL server.
The approach can efficiently serve the Internet user over the
Web, but for attaching to various SQL servers, several JDBC
drivers need to be loaded. Borland and Sybase have already
released type 4 JDBC drivers.

All four existing approaches require, to some extent,
downloading and initiating the JDBC driver on the client
machine, which is generally a very resource-consuming
procedure. Our primary concern is to simplify and relieve
the remote client so that it does not need to handle a
complex set of JDBC interface classes, but just the input of
requests and the expected formatting of the output.

3 DBMS-AGLETS: MOBILE AGENTS FOR

DISTRIBUTED DATABASE ACCESS

In a nutshell, our idea is to use mobile agents between the
client and the server machine. Instead of having a DBMS-
applet at the client machine that downloads from the
remote SQL server, initiates a JDBC driver, and handles a
complex set of JDBC interfaces, our proposed DBMS-applet
creates and fires a mobile agent (or agents if necessary) that
travels directly to the remote SQL server. At the SQL server,
the mobile agent initiates a local JDBC driver, connects to
the database and performs any queries specified by the
sending client. When the mobile agent completes its task at
the SQL server, it dispatches itself back to the client
machine directly into the DBMS-applet from where it was
initially created and fired. Since our mobile agents posses
database capabilities, they are called DBMS-aglets.

3.1 The DBMS-Aglet Framework

To realize our approach, a number of processes are defined
to complement the existing agent execution environment
(i.e., the aglets). In particular, applets need to be enhanced
to provide database specific interfaces and be capable to

804 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2000

1. Open Database Connectivity: An API that defines the routines for
accessing MS-windows databases.

2. Native code: Database-vendor specific code.

Fig. 1. Standard JDBC approaches.

host agents with database capabilities. In addition, the
existing aglets need to be extended to be database capable.
Finally, supporting aglets need to be provided to assist such
database-capable aglets in their negotiations with the SQL
server.

Specifically, to support the DBMS aglet framework, the
following components are needed:

. A DBMS-applet: The DBMS-applet is responsible for
forming a graphical client database interface that the
user can utilize to input database requests. Our
suggested DBMS client applet is an extension of the
abstract FijiApplet class.

. A DBMS-aglet: The DBMS-aglet is created within the
context of the DBMS-applet and is responsible for
carrying the user's request directly to the remote
database, executing it, and returning the results back
to the DBMS-applet context. Our suggested DBMS-
aglet is a Java-based extension of the Aglet class.

. A DBMS-assistant stationary aglet: The DBMS-assis-
tant stationary aglet resides at the site of the SQL
server. Its responsibility is to inform any incoming
DBMS-aglets carrying database requests about the
available JDBC drivers and data sources and to assist
them in carrying out their requests. Our suggested
DBMS-assistant stationary aglet is an extension of
the Aglet class.

The DBMS-applet, the DBMS-aglet, and the DBMS-
assistant aglet compose the suggested ªDBMS-Aglet Frame-
workº that provides DBMS-capable mobile agents for
distributed database access. The DBMS-Aglet Framework
builds on and extends a mobile agent framework, in our
case, the Aglets Workbench [7], that provides the facilities
for hosting and routing mobile agents. In turn, the mobile
agent framework can exploit a standard networking
infrastructure, such as tools and services for Web-based
access. Table 1 summarizes the complete Web-based DBMS-
aglet infrastructure that consists of 1) the DBMS-aglets
framework, 2) the aglets framework, and 3) the standard
networking infrastructure.

3.2 Demonstrating the Web-based DBMS-Aglet
Framework

To demonstrate our approach, we have set-up a Web-based
DBMS-aglet infrastructure. To this end, we have pro-
grammed a DBMS-applet and a DBMS-aglet and included
them in an html page at the web server machine.
Additionally, we have installed an aglet router at the web

server machine and a Tahiti aglet server at the SQL server
machine. We have also developed a DBMS-assistant
stationary aglet and initialized it within the Tahiti aglet
context at the SQL server machine. Then, we downloaded,
at the client host, the html page containing the DBMS-applet
and the DBMS-aglet. Through the DBMS-applet's GUI, we
entered a database request and order the DBMS-applet to
carry it out. The DBMS-applet fired a DBMS-aglet that
returned with the results.

Fig. 2 demonstrates the life-cycle of the DBMS-Aglet of
the previous typical scenario. Execution begins with a web
user downloading into his Java-enabled browser an html
page that contains a DBMS-applet and the DBMS mobile
agent (a DBMS-aglet) (Step 1).

After it has been initiated, the DBMS-applet forms a
front-end DBMS client application interface. This can be
achieved by making use of Java's standard GUI components
(also known as AWT components [8]) to design an
appropriate database interface (see, for example, [9]).

Once the database query is passed to the DBMS-applet
interface, the DBMS-applet creates a lightweight DBMS
mobile agent (the DBMS-aglet) within its context. The aglet
then receives information from its creator DBMS-applet
regarding the nature of the user's query. These directions
must include among others:

. The address of the URL where the SQL server is
located.

. The SQL query to be executed at the SQL server.

. The appropriate certificates for the aglet to be
trusted at the SQL server.

. The route itinerary in case the agent is to visit more
than one server.

Then, the DBMS-applet dispatches the aglet from its
context to the URL of the SQL server (Step 2). Due to Java
applet security restrictions mentioned earlier, the aglet must
first go through the web server URL from where the html
page containing the DBMS-aglet was downloaded. At the
Web server machine, an aglet router captures the incoming
DBMS-aglet and immediately forwards it to its destination
(Step 3).

Arriving at the SQL server machine, the DBMS-aglet is
received by a Tahiti aglet server. The DBMS-aglet commu-
nicates with the DBMS-assistant stationary aglet to be
informed of the available JDBC drivers to load, and the
available data sources to get connected to. Once this is done,
and always within the Tahiti's context, the DBMS-aglet
connects to the appropriate SQL server (the specific data

PAPASTAVROU ET AL.: MOBILE AGENTS FOR WORLD WIDE WEB DISTRIBUTED DATABASE ACCESS 805

TABLE 1
The Web-Based DBMS-Aglet Infrastructure

source) to execute the query. When the aglet completes its
task at the SQL server, it can either dispatch itself to another
SQL server to perform another user's query or it can
dispatch itself back to the DBMS-applet at the client
machine, going through the aglet router at the web server
machine (Step 4 and 5).

Arriving back to its original context, the aglet delivers
the results to the DBMS-applet, which then presents them to
the user through the graphical interface.

3.3 Refining the DBMS-Aglet Framework

The role of the aglet in the DBMS-aglet framework is to
convey the various database requests to the SQL server and
bring back the result. By simply replacing any direct
requests with aglets that encapsulate and carry these
requests, the remote client is relieved from the
responsibility of downloading JDBC drivers. Downloading
JDBC drivers and connecting to the database is now the
responsibility of the various aglets. Unfortunately, though,
this is done each and every time a request is issued and an
aglet is fired to the database server, thus introducing an
unnecessary and undesirable overhead. Figs. 7, 8, and 9 in
Section 6 clearly confirm this overhead.

3.3.1 DBMS-Aglet and the Messenger Aglet

To eliminate this overhead, an extension of the client/server
model, called the client/agent/server model (c/a/s) [21] is
employed. In this three-tier architecture, an agent is placed
on the path from the client to the server. Any communica-
tion between the client and the server goes through this
agent. In our case, this agent is a service-specific (namely
database connectivity) surrogate of the client which is
placed (parked) at the SQL server and maintained there for
the duration of the application. Between the parked aglet
and the remote client, another aglet carries requests and
results back and forth.

Based on this variation, upon the first client request, two
DBMS-aglets are fired from the DBMS-applet. The first one
is called parked DBMS-aglet. Its role is to ªcampº at the
SQL server's agent context, load the appropriate JDBC

driver, connect to the database, submit the request, and
collect and filter the answer. The second DBMS-aglet is
called the messenger aglet. The messenger aglet is respon-
sible for carrying the result back to the DBMS-applet (see
Fig. 3). Any subsequent requests are transmitted via the
messenger aglet to the parked DBMS-aglet.

This scheme is proved to be very efficient in cases where
the user issues, through the DBMS-applet, a number of
consecutive database requests to the same remote SQL
servers. Furthermore, since these two aglets are (almost!)
identical,3 they own the same itinerary and, thus, if the
parked DBMS-aglet moves to another server the messenger
can deterministically follow it. An additional benefit of this
approach is the ability of the messenger aglet to roam, if
needed, around the net before returning to the client.

3.3.2 DBMS-Aglet Using Messages

The deployment of a parked DBMS-aglet attached locally to
the database server eliminates one overhead, namely the
time to reload the JDBC, and reconnect to the database for
each and every query. The other overhead left is the time
required for the messenger aglet to travel between the
DBMS applet and the parked DBMS-aglet carrying results
and new queries.

Replacing the messenger aglet with two messages can
eliminate this overhead. The first message is delivered from
the parked DBMS-aglet to the DBMS applet and contains
the results of the last query. The other message from the
DBMS applet to the DBMS-aglet contains the new client
query and any additional directions to the parked DBMS-
aglet that might be needed. This approach demonstrates a
true service-specific client/agent/server application. The
aglet is literally inserted into the path between the client
and the server communicating with each other via
messages. The message protocol is provided by the Aglet
platform and is an RPC-like mechanism using Java sockets.

Thus, by using a parked DBMS-aglet, we avoid the
reconnection cost (just like with the messenger approach)

806 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2000

3. The only difference is that the DBMS-aglet is database capable, in any
other aspect they are identical.

Fig. 2. The DBMD-Aglets life cycle.

and by using messages instead of the messenger aglet, we
eliminate the time of negotiation and the amount of data
transmitted between the client and the server. Performance
results show that this approach by far outperforms the
traditional applet approach as well as the other variations of
the framework for direct data access.

3.4 Advantages of the DBMS-Aglet Framework

By using a DBMS mobile agent (namely the DBMS-aglet) to
encapsulate all interactions between the client applet and
the SQL server machine, the client applet becomes light and
portable. This is achieved by:

. Avoiding the unnecessary downloading and initiali-
zation of JDBC drivers at the client's DBMS-applet.

. Passing the responsibility of loading the JDBC driver
at the SQL server to the DBMS-aglet.

. Not using any JDBC API classes at the client's
DBMS-applet.

The only responsibility of the client is to specify the URL
address of the database server, the query to be performed,
security certificates, and an itinerary. The rest is the
responsibility of the DBMS-aglet. The effect on performance
is quite significant, this delegation of responsibility results
in performance gains of approximately a factor of ten (see
performance evaluation in Section 5).

The DBMS-aglet is also independent of the various JDBC
driver implementations. The DBMS mobile agent cannot
(and is not supposed to) be aware of which JDBC driver to
load when it arrives at an SQL server. Upon arrival at the
SQL server's context, the DBMS-aglet is informed of all
available JDBC drivers and corresponding data sources. The
DBMS-aglet is then capable of attaching itself to one or
more of these vendor data sources.

This is where the need for the local DBMS-assistant
stationary aglet arises. The stationary aglet can be initialized
and trained by the DBMS administrator to verify the
certificates of incoming DBMS-aglets (thus, imposing the
needed security) and to provide them with essential
information about connecting to the local databases and

carrying out their queries. The DBMS-assistant aglet can be
made even more flexible. There might be cases, for example,
where the DBMS-aglet encounters obstacles, such as an
unreachable SQL server or an SQL server that fails to
completely satisfy a user's query. If the DBMS-aglet is
intelligent enough, it can negotiate with the local DBMS-
assistant aglet to get alternative paths in order to accom-
plish its query.

The DBMS-aglet framework further benefits from the
inherent advantages of the mobile technology itself:

. A DBMS-aglet can be fired (and forgotten) by a
DBMS-applet initialized from a laptop or a palmtop
computer during a short (and high-priced) Web
session. The agent can roam around the unstruc-
tured network to perform the client's request and
then wait until the communication link is again
available to return home with the results.

. In cases of weak connectivity (i.e., a period of low
bandwidth) between the client and the server, or
when the client has limited storage capacity, a
DBMS-aglet can minimize the transmitted informa-
tion by performing both retrieval and filtering at the
remote SQL server.

. A DBMS-aglet, having a certain load of work
assigned to it, can split up the workload by cloning
itself.

. A DBMS-aglet can dispatch to another host when its
current host is powerless or has a very heavy
workload.

In general, the DBMS-aglet framework allows aglets to
be portable, light, independent, autonomous, flexible, and
robust.

4 USING DBMS-AGLETS TO QUERY MULTIPLE

DATABASE SYSTEMS

DBMS-Aglets can be launched to query multiple databases
in parallel. The agents are launched to different hosts on the
Web and they cooperate and communicate with each other

PAPASTAVROU ET AL.: MOBILE AGENTS FOR WORLD WIDE WEB DISTRIBUTED DATABASE ACCESS 807

Fig. 3. DBMS-aglet framework using a messenger aglet.

to perform complicated tasks efficiently. There are various
ways to use the DBMS-framework for querying multiple
and possibly heterogeneous database systems. The straight-
forward way is for the DBMS-applet to create multiple
DBMS-aglets, load each one of them with an SQL query and
dispatch them to the various destinations. The DBMS-
applet is responsible for combining the results provided by
the various DBMS-aglets.

A more efficient approach is for the DBMS-applet to
create an enhanced DBMS-aglet that is assigned the
responsibility of creating the multiple DBMS-aglets, loading
them with the queries, and dispatching them to their
destination. The enhanced DBMS-aglet is also responsible
for receiving and manipulating the intermediate results
provided by the various DBMS-aglets. Only the final result
is reported to the DBMS-applet. This approach is in line
with our general objective of keeping the client light since
the enhanced DBMS-aglet does not necessarily reside on the
client. Processing can be done remotely with only the final
result transmitted to the applet.

4.1 Demonstrating the DBMS-Aglet Multidatabase
Framework

To realize the proposed framework, an enhanced DBMS-

aglet, called Coordinator DBMS-aglet, is defined (see Figs. 5

and 6). The Coordinator DBMS-aglet creates and dispatches

the DBMS-aglets, coordinates their execution, and com-

poses their results. It is a direct descendant of the DBMS-

aglet since it must have the capability of executing queries.
The basic functionality/responsibilities of a Coordinator

DBMS-aglet are to:

. Maintain a list of aglet proxies, aglet Ids, and
locations of the DBMS-aglets.

. Maintain a list of all the possible workstation's URLs
that can host DBMS-aglets.

. Maintain a list of all the workstation's URLs that
currently host DBMS-aglets.

. Create DBMS-aglets.

. Dispatch DBMS-aglets to workstations.

. Communicate with a specific DBMS-aglet, or broad-
cast a message to all DBMS-aglets that it has created.

The DBMS-applet creates a Coordinator DBMS-aglet that
is dispatched to the fixed network most likely to the Web
server. This aglet then dynamically creates and dispatches
to several target workstations-hosts a variable number of
DBMS-aglets to work in parallel (Fig. 4). The target
workstations can be either computers in the fixed local
network or computers connected through the Internet.

4.2 Refining the DBMS-Aglet Multidatabase
Framework

In the cases where we anticipate the processing of multiple
sets of queries, as for instance, in the case of virtual
enterprises [29], the Coordinator DBMS-aglet can be
ªextendedº (see Fig. 5) to create and submit ªparkedº
DBMS-aglets instead of DBMS-aglets (and, as it is shown in
Fig. 5, create the ªCoordinator-Aglet (Blue)º). Thus, the first
set of queries creates a network of parked mobile agents.
The Coordinator DBMS-aglet can use the infrastructure of
agents already set-up to process any subsequent set of
queries. If a new site is to be accessed for one of these
queries, the coordinator aglet might choose, based on some
heuristics, not to create a new aglet but to instruct a nearby
one to move to the new site and execute the query. The SQL
query is sent to this aglet along with the ªmoveº instruction.
For reference purposes, we call this coordinator aglet the
ªintelligentº coordinator aglet.

Parallel execution of queries at multiple sites often
requires combining or comparing the various results in
specific ways. Certain applications might require the
coordinator to integrate or simply compare (e.g., for the
maximum or minimum value) the results returned by the
various agents before transmitting them to the client. This
essentially introduces another computational task for the
Coordinator DBMS-aglet: combining or comparing the
various results. Aglets can employ multithreading to
receive and manipulate the various results in parallel.
Multithreading capabilities and the extra tasks can be easily
added by extending the basic Coordinator DBMS-aglet (see
Fig. 5).

808 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2000

Fig. 4. The DBMS-agelt multidatabase framework.

4.3 Advantages of the DBMS-Aglet Multidatabase
Framework

When compared with the traditional applet approach to

accessing multiple databases, the DBMS-aglet multidata-

base framework offers significant advantages. For the

traditional applet approach to work, the applet must

a priori know the JDBC driver for each one of the remote

databases to be accessed. Thus, the applet cannot dynami-

cally increase or modify the set of databases to be queried.

On the contrary, such information is not required when the

DBMS-aglet framework is employed. The number of

DBMS-aglets in the DBMS-aglet framework can change

dynamically. After initiating the application and the

coordinator DBMS-aglet, the coordinator can create, at run

time, as many DBMS-aglets as the application requires.

After that, additional DBMS-aglets can be created as

needed. The databases that will host the DBMS-aglets can

also be decided upon at run time, after considering the

network traffic or the workload of the available work-

stations.
Another shortcoming of the applet model that the

DBMS-aglet framework bypasses is that in the applet

PAPASTAVROU ET AL.: MOBILE AGENTS FOR WORLD WIDE WEB DISTRIBUTED DATABASE ACCESS 809

Fig. 6. This is an example of the Visionary library.

Fig. 7. Mean times for 28,800 b/s client connectivity.

Fig. 5. The DBMS-aglet framework's java object hierarchy.

approach, the client must download a large number of
JDBC drivers; one for each remote database to be accessed.
This is very costly, severely degrading the applet's
performance. In the aglet approach, the client is relieved
from this overhead since downloading any JDBC drivers is
the responsibility of the various DBMS-aglets.

5 A SPECIALIZED-AGENTS LIBRARY

Fig. 5 shows the Java hierarchy of the aglets composing the
various DBMS-Aglet frameworks. The aglets of our frame-
work have been created by expanding the capabilities of the
basic DBMS-aglet. For example, to utilize the ªmessageº
DBMS-Aglet Multidatabase Framework, one has to include
in the DBMS-applet only the ªCoordinator-Aglet (Blue).º
This aglet will use the AgletToAglet-Messaging aglet which
is (as shown in the hierarchy) a DBMS-Parked-Aglet (i.e.,
ªparkedº DBMS-aglet) that can communicate via messages
with aglets. The AppletToAglet aglet can communicate with
DBMS-Applets. The example presented in Section 4.1
utilizes the ªCoordinator-Agletº (see Fig. 5) which creates,
dispatches, and receives DBMS-aglets. The ªCoordinator-
Aglet (Red)º utilizes the DBMS-Parked-Aglet and the
messenger aglet. Similarly, the ªintelligentº Coordinator
DBMS-aglet can be easily created by extending, for
example, the ªCoordinator-Aglet (Blue).º

A Java mobile execution environment extends the scope
boundaries of object-oriented programming over the net-
work. An aglet can be viewed as the basic abstract object
that provides basic capabilities such as mobility, commu-
nication with other aglets, and self-cloning. The DBMS-
Aglet Framework enhances these capabilities with the
addition of efficient database connectivity. Then, the
DBMS-Applet and the DBMS-Aglet can be seen as abstract
classes. To further enhance these new aglets with other
capabilities is now very simple; one can extend them (via
inheritance) to include the desired functionality. For
example, we can extend the DBMS-Aglet to create a
DBMS-ViewAglet capable of materializing a requested or
personalized [30] view, a DBMS-CacheAglet, a DBMS-
PreprocessAglet, or a DBMS-ParallelAglet with parallel
processing capabilities. Fig. 6 shows a possible aglets'
hierarchy. Our goal is to extend the DBMS-Aglet Frame-
work to create a complete library of database aglets from

which a user can pick and instantiate the aglet required by a
specific application.

6 PERFORMANCE EVALUATION

The performance evaluation compares the total time
required by a Web client to access and query a remote
database between the traditional applet-based and the three
proposed DBMS-aglet approaches. In more detail, we are
interested in the time required, for each approach, to query
the remote database for the first time and for any
subsequent requests. We consider both short (composed
of three queries) and long (composed of six queries)
transactions between the client and the remote database.
Short or long transactions are the type of transactions
generally anticipated by Web users.

For each approach, we performed the evaluation having
the client accessing the Web server via:

. A 28,000 b/s dial-up connection to an Internet
Service Provider (ISP).

. A 9,600 b/s wireless dial-up connection to an ISP.

. A 10 Mb/s Ethernet connection (fixed network).

For each approach and client connectivity case, we
performed the tests numerous times and from different
remote clients. Specifically, each set of experiments con-
sisted of more than 100 queries randomly distributed
between the seven hourly intervals composing the time
span between 9 a.m. and 5 p.m.. Each tested approach
provides two data sets of results (observations); one for the
first query and one for the subsequent queries.

6.1 The DBMS-Aglets

We used a Borland provided JDBC type 3 driver4 and
performed the tests over Borland's Paradox database. For
the DBMS-aglet approach since the connection is performed
locally, we used the local version of the JDBC driver.5 The
configuration used includes a Web server, a remote

810 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2000

Fig. 9. Mean times for 9,600 b/s client connectivty.

4. The driver is called borland.jbdc.Broker.RemoteDriver. This driver
speaks to a Gateway program installed at the Web server, called Data
Gateway (also provided by Borland), which translates its request into
paradox SQL commands.

5. This local driver is called, jdbc.Bridge.LocalDriver, it translate the
JDBC API into paradox SQL commands.

Fig. 8. Mean times for 10 Mb/s client connectivity.

relational database (namely Borland's Paradox), and a

Windows 95 client. The degree of distribution employed

is a bit limited, confined only within the boundaries of a

small geographic area. We expect the results to be more

favorable for mobile agents in a wide area networking

setting. For the fixed network case, however, we performed

the test within the larger University network.
For the applet-based approach, we 1) installed at the

Web server a type 3 JDBC driver, 2) created an applet

responsible for accessing and querying the remote database,

called db-applet, and 3) installed at the Web server an html

page containing the db-applet. The time measured for the

first query includes the time required:

. by the JDBC driver to be downloaded and initiated
at the db-applet,

. by the db-applet to connect to the database,

. by the db-applet to query the database.

We then measured the time required by the db-applet to

issue a subsequent request.
For the DBMS-aglet approach, we performed three sets

of tests, one for the single aglet method, one for the two

aglets (i.e., the parked and the messenger aglet), and one for

the message based method. The time measured for the first

query includes the time required:

. by the DBMS-aglet (+ messenger for the second
method) to be dispatched from the DBMS-applet to
the database server,

. by the DBMS-aglet to locally connect and query the
database,

. by the DBMS-aglet (or messenger for the second
method or message for the third approach) to fetch
the result back to the DBMS-applet.

The total time measured for any subsequent query

includes the time required:

. by the DBMS-aglet (or messenger for the second
method or message for the third approach) to be
dispatched from the DBMS-applet to the database
server carrying the client's next request,

. by the DBMS-aglet to locally (re)connect and query
the database (only for the single aglet approach),

. by the parked DBMS-aglet to receive from the
messenger (or message) the query and execute it
(only for the second and third methods),

. by the DBMS-aglet (or messenger or message) to
fetch the result back to the DBMS-applet.

6.1.1 Performance Statistical Analysis

The first step of the data analysis was to perform a
descriptive statistical analysis. This analysis gave informa-
tion about the behavior of the data sets involved in the
statistical analysis, including a description of the mean, the
median, the standard deviation, the kurtosis, and the
skewness coefficients. In particular, a comparison of the
means and the standard deviations has been performed
indicating the most efficient approach, which seems to be
the ªParked DBMS-aglet with Messagesº for the first
queries and the ªTraditional Appletº method for subse-
quent queries. However, the marginal difference between
the performance of the two methods for subsequent queries
is compensated by the significant difference in the
performance for first queries, suggesting that the ªParked
DBMS-aglet with Messagesº could be considered as the
most efficient approach for all cases of client connectivity.
Figs. 7, 8 and 9 show the mean time required for all
approaches.

What was observed by the descriptive statistical analysis
was also verified by the construction of histograms, which
lead us to important conclusions regarding the spread of
each approach. For example, as shown in Figs. 10 and 11
(histograms) with a client connectivity of 9,600 b/s for the
first query, the spread of time required for the traditional
DBMS applet is quite wide having a variance value of
612.34, whereas for the ªDBMS-aglet with Messagesº
approach, the spread is quite limited with a variance of
1.0359. This wide spread in the Applet approach proves that
the usual time required for a transaction to be committed is
far away from being stable and lies between a wide range of
time intervals, where as the ªDBMS-aglet with Messagesº
approach guarantees that the time required for a transaction
to be executed lies between much shorter time barriers, and
is considered to be much more stable. This behavior is
possibly attributed to the fact that the applet approach
downloads the various JDBC classes on a need to have
basis, thus continuously subjecting itself to the

PAPASTAVROU ET AL.: MOBILE AGENTS FOR WORLD WIDE WEB DISTRIBUTED DATABASE ACCESS 811

Fig. 10. Distribution in the DBMS-aglet with Messages approach, first

query.

Fig. 11. Distribution in Traditional applet approach, first query.

communication link's random behavior. Having the agent
residing on the remote and powerful database server, we
avoid this disturbing fluctuation since we minimize the
client's communication.

The lack of outliers in the data sets was suggested by a
comparison of the mean and median values of each data set,
indicating that the difference between the two values is
insignificant. The latter result allowed us to consider the
mean of the samples (tests) taken as a reliable measure for
continuing the statistical analysis. On the other hand, a
correlation analysis showed the lack of any linear depen-
dency between any two approaches.

The reliability of the mean as a measure of tendency for
each sample and the lack of any linear dependencies among
the approaches, as well as the number of observations
(measurements) (which come up to 30 or more), allow us to
use the Z-test [23] in order to compare the means of the
populations of interest, using the information of the
corresponding samples to a certain degree of certainty. In
our case, the population of interest is the set of all the real
times in seconds required by a client to query the remote
database using one approach, either for first or for
subsequent query, with a certain client connectivity.

The Z test proved that the time required for the ªDBMS-
aglet with Messagesº approach for first queries is always
less than the time required for any other approach (see full
version [24]). A similar analysis has been made for all
approaches concerning subsequent queries proving that the
best approach for all cases of the client connectivity is the
ªTraditional Applet.º The difference, however, from the
ªDBMS-aglet with Messagesº approach is insignificant.
Taking the results from the Z test, we safely produced the
time required for short and long transaction for each
approach under a given Web client connectivity case. A
short transaction's cost is the sum of 1) the time required for
the first query and 2) the time required for two subsequent
requests. For a long transaction, item 2 is the time required
for five subsequent requests. Figs. 12 and 13 illustrate the
time required for short and long transactions, respectively.

As shown in both graphs, the ªDBMS-aglet with
Messagesº approach requires considerably less time than

any other approach, and the applet approach significantly
more than any other does, except in the fixed network case.
In fact, in a wireless and dial-up environments, this
variation of the framework provides a performance im-
provement of approximately a factor of ten. For the fixed
network, the gains are about 40 percent and 30 percent,
respectively.

6.2 The Multidatabase DBMS-Aglets

6.2.1 Prototype Implementation: Accessing Multiple

Databases

The goal of this application is to provide the user with the
capability of querying a number of distributed heteroge-
neous databases and joining the result tables of each query
to produce the final result. The application has been tested
for two different configurations; one consisting of a set of
three and one consisting of a set of six remotely located
databases.

The experiment began with the user initiating (by
downloading the DBMS-applet), within the context of the
local Tahiti server, the Coordinator DBMS-aglet. Through
the applet's graphical interface, the user issued a set of SQL
subqueries and the IP addresses of various hosts where the
databases are located. When the user enters the execute
command, the Coordinator DBMS-aglet moved to the fixed
network (e.g., on the Web server), created three/six DBMS-
aglets, and gave them vital information including:

. Credentials, passwords, etc.

. The IP address of the remote host to visit.

. The query to execute with the database server on
each host.

. The IP address to return to the Coordinator
DBMS-aglet.

Each DBMS-aglet is then dispatched to the remote hosts
carrying along the above information. Arriving at the hosts,
each DBMS-aglet presented its credentials, connected to the
local SQL database server, and performed its query. As soon
as the results were available, each DBMS-aglet dispatched
home (their home is the Web server) with the results (a
database table). Arriving back home, each DBMS-aglet

812 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2000

Fig. 12. Short transactions graph. Fig. 13. Long transactions graph.

delivered the results to the Coordinator DBMS-aglet. The
Coordinator DBMS-aglet, using a Java-thread based ap-
proach, joined the various results and delivered the final
outcome to the client.

6.2.2 Performance Comparison

We have performed a statistical analysis similar to the
statistical analysis we performed for the single DBMS-aglet
approach. The Multidatabase DBMS-aglet approach, as
shown in Fig. 14, by far outperforms the traditional applet
approach. Fig. 14, due to space consideration, only presents
the fix network comparison since it is the only environment
the applet approach could fare positively. In the other two
environments, the aglet framework, as it could be easily
projected from the single database approach (see Section
6.1), completely outstrips the traditional applet approach.

The multidatabase aglet approach performs extremely
well since it does not have to deal with the downloading of
the various JDBC drivers and its interaction with the client
is minimized to transmitting the final result. The perfor-
mance does not significantly change with the number of
queries since the DBMS aglets are sent to the various
destinations to work in parallel. For the reverse reasons, the
applet approach shows a linear degradation in
performance.

7 IMPLEMENTATION ISSUES

7.1 The Role of the Implementation Platform

In this work, we have used IBM's Aglets Workbench [7].
Aglets have mainly concentrated on functionality and not,
thus far, on performance [28]. To give an example, in the
Aglets workbench, whenever an agent is transferred to a
new destination, all the reachable objects are transported
along with it. This is done even in the cases where the agent
is sent to the same destination multiple times. Other Java-
based mobile agents platforms include ObjectSpace's
Voyager [22], Mitsubishi's Concordia [27], IKV++ Grass-
hopper [25], and General Magic's Odyssey [26]. While they
are all based on Java, each one of them adds its own special
implementation features that can significantly affect
performance.

In this section, we report on our experiments in
implementing our framework using a different agent

platform, namely Voyager. The results show that the new
implementation of our framework outperforms the applet
approach, even in the case of the fixed network.

We performed the same tests under the same network/
system configuration, as well as the needed statistical
analysis. Worth noting is that the porting of our framework
in the Voyager platform was performed smoothly and in a
timely fashion. Figs. 15, 16, and 17 compare the Voyager
implementation with the Applet and Aglet approach for all
the proposed frameworks.

In all approaches, for the subsequent query, the Voyager
implementation by far outperforms the Aglet implementa-
tion. For the ªsingleº (see Fig. 15) and the ªmessengerº (see
Fig. 16) approaches the performance is very close to that of
the Applet approach. The ªmessageº (see Fig. 17) approach,
however, outperforms the Applet approach by a factor of
thirteen. This improvement is attributed to Voyager's agent
transportation procedure. Voyager is based on RMI, while
Aglets implement their own agent transport protocol (ATP).
Aglets, in each and every agent transport, transmit all the
needed class objects as well, while Voyager transports

PAPASTAVROU ET AL.: MOBILE AGENTS FOR WORLD WIDE WEB DISTRIBUTED DATABASE ACCESS 813

Fig. 14. Multidatabase DBMS-aglets vs. Traditional multidatabse

applets.

Fig. 15. Voyager vs. Aglet for the ªSingleº approach.

Fig. 16. Voyager vs. Aglet for the ªMessengerº approach.

(following the RMI philosophy) the needed object classes
only once and on a need-to-use base. Any subsequent
request is satisfied by objects now cached at the destination.

The performance of the first query, however, is dis-
appointing. In every approach, the Voyager implementation
performs the worst; see Figs. 15, 16, and 17. This ªbadº
performance is the trade off for higher flexibility. This
difference in performance is attributed to the fact that
during the execution of the first query, the Voyager
implementation requires the downloading (to the client)
of all the needed classes for the dynamic creation of the
agent execution environment. Aglets do not need to do that
since the required classes are preloaded to the client (the so
called aglet plug in).

Mobile agents, however, provide unique flexibility
allowing alternate ways of approaching the same problem.
The result of this flexibility is shown in Fig. 18. In the chart,
the Voyager implementation is shown to outperform both
the Aglet and Applet approaches for the first, as well as the
subsequent, query. This was achieved by creating the
ªparkedº agent on the Web server and not on the client,
thus avoiding the need to download the agent execution
environment on the client. The agent execution environ-
ment is created locally on the Web server. On the client, we
only send the proxy of the ªparkedº agent to enable the
communication of the DBMS-applet with the ªparkedº
agent. The client gets the user request, composes the SQL
query and, alone with the other needed information,
submits it via a message to the proxy, and, hence, to the
ªparkedº agent. The ªparkedº agent receives the informa-
tion (i.e., the Database's URL, the SQL query, etc.) and
moves to park and execute it at the remote destination.

7.2 Scalability

Our experimental results show that (as expected) which
mobile agent platform is used to implement our framework
affects its performance. For instance, in the particular case
of Fig. 18, the fact that the Voyager mobile agent platform
provides the ability to remotely create an agent, resulted in
an efficient implementation that outperformed all other
approaches. The fact that this or other features are or are not

supported by the Aglets framework is not addressed
further here since 1) such features can be easily added to
the Aglets framework6 and 2) our focus in this paper is to
show how mobile agents can be used to efficiently support
web access to remote databases and not a thorough
evaluation of the existing mobile agent platforms.

Such results can be found in [31], [32], where we have
studied and compared the various Java-based mobile agent
platforms (i.e., Aglets, Voyager, Concordia, and Grass-
hopper) based on a number of mobile-agent specific
benchmarks that we have developed. Agent transportation,
multithreading, CPU timeslicing, message queuing, and
communication protocols are some of the issues affecting
the performance, efficiency, and scalability of an agent
platform.

Another issue that heavily depends on the agent
execution environment and its implementation is scalabil-
ity, both in terms of the number of concurrent clients and
the size of the results. In general, in terms of the number of
mobile agents that they can efficiently support, Aglets
scored at the lower end while Voyager at the higher end of
the scale [31], [33]. Initial scalability tests of the DBMS-Aglet
frameworks agreed with those results, indicating that the
Aglets implementation of the framework does not scale
very well. Results, though, that tested scalability based on
the size of the result set, have shown that the Aglets
Framework scales better than the traditional applet
approach [33].

7.3 Dynamic Configuration

An important advantage of the various DBMS-Aglet
frameworks is that they can be configured dynamically.
Currently, the approach chosen by various database
vendors (e.g., Oracle [34]) to employ the client/agent/
server (c/a/s) model, is to have appropriate components
configured and set up a priori for each different application.
This results in a static configuration. Accessing a new site
becomes, if not impossible quite cumbersome, prohibiting

814 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2000

Fig. 17. Voyager vs. Aglet for the ªMessageº approach. Fig. 18. Voyager special implementation of the ªMessageº approach.

6. In fact, with the addition of an extra class library, the ªAglet.com,º the
current version of Aglets can provide a somewhat inflexible version of this
feature.

global utilization of network resources. To access a server at
a network site, the site must be appropriately configured in
advance to include necessary software modules. Combining
the c/a/s model with the capabilities provided by mobile
agents permits dynamic configuration of the model.

The ªmessengerº approach can be viewed as the
adaptation of the c/a/s model, where the communication
with the server is done via agents, one could call it ªc/a/s-
MA.º On the other hand, the ªmessageº approach can be
viewed as the direct materialization of the c/a/s model. We
are mostly interested in the ªmessengerº and ªmessageº
approaches since these are the direct adaptations of the

c/a/s model. These approaches can allow for dynamically

configuring applications to follow each of the c/a/s models.

Such dynamic generation of the c/a/s software model

offers flexibility, adaptability, and ease of use. Note that we

can dynamically send and install the DBMS-assistant

stationary aglet where needed as well. Furthermore, the

mobile agent implementation/materialization of this mod-

el(s) further enhances its applicability to mobile wireless

computing, making applications more light-weight, tolerant

to intermittent connectivity, and adaptable to dynamically

changing environments.

PAPASTAVROU ET AL.: MOBILE AGENTS FOR WORLD WIDE WEB DISTRIBUTED DATABASE ACCESS 815

Fig. 19. Time needed to set up the c/a/s model(s) for the wireless, dial-up, and the fixed network. The set up times are the same for both the

ªmessageº and ªmessengerº approach since only a single agent is sent to the fixed network.

TABLE 2
Fixed Networks 10MBits

Fig. 19 summarizes the time needed to set up each of the

models. For the wireless and dial-up cases, this time is 9.7 to

10.1 seconds and 4.8 to 5.4 seconds, respectively. In the

wireline case, to set up the various models takes between

2.7 and 3.2 seconds. Note that the times recorded in Section 5

for the first query includes the setup time as well. We

considered this appropriate since we wanted to charge for

the dynamic installation of the models.

7.4 Other Approaches

Another popular class of approaches, called Server Side
Include (SSI) [35], [26], suggest the use of scripting
languages inside html code. Such a scripting language
defines the parameters for a database transaction between

816 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2000

TABLE 3
Dial up 28,800

TABLE 4
Wireless 9,600

the database server and the Web browser. In this case, the
Web server program must be modified to interpret the
scripting language. The idea is simple and easy to
implement, but it suffers from the fact that each database
transaction requires the opening of a new connection with
the database Server (like CGI). In addition, it suffers from
compatibility problems since the use of a dedicated web
Server program is required. The model following by these
approaches is the client/agent/server model (or c/a/s like
model) and, thus, they are additionally suffer from all the
problems presented in the previous subsection.

8 CONCLUSIONS

Web technology advanced distributed systems by provid-

ing the underlying fabric for communication among

participating processes located at remote computers con-

nected through the Internet. In this paper, we have

introduced a new approach for accessing remote databases

from the Web using Java mobile agents. The proposed

ªDBMS-Aglet Frameworkº supports light-weight, portable,

and autonomous clients as well as operation on slow or

PAPASTAVROU ET AL.: MOBILE AGENTS FOR WORLD WIDE WEB DISTRIBUTED DATABASE ACCESS 817

Fig. 20. Histograms for Wireless 9600 b/s client connectivity. A similar analysis for the Fixed Network 10 Mb/s and the Dial up 28,800 can be found in

[24] or www.ada.cs.ucy.ac.cy/~cssamara/dbms-agents.

expensive networks, such as wireless wide area networks

(WANs). Moreover, the framework was shown to be

1. Flexible: It could be set up dynamically and
efficiently,

2. Scalable: Its extension to support multidatabase
systems not only maintained but also increased its
performance benefits, and

3. Robust: The statistical analysis found the DBMS-
aglet framework more stable than the current JDBC-
based database connectivity.

In addition, the implementation of the framework

showed that it outperforms the current approach. In fact,

in wireless and dial-up environments and for average size

transactions, the client/agent/server adaptation of the

framework (namely the ªParked aglet using Messageº

method) provides a performance improvement of approxi-

mately a factor of ten. For the fixed network, the gains are

about 40 percent and 30 percent, respectively. Considering

that the Aglets-based implementation platform is more

tuned towards functionality than performance, the possibi-

818 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2000

Fig. 21. Z Test for Wireless 9600 b/s client connectivty. The first column contains the first queries comparison and the second column contains the
subsequent queries comparison. A similar analysis for the Fixed Network 10 Mb/s and the Dial up 28,800 can be found in [24] or
www.ada.cs.ucy.ac.cy/~cssamara/dbms-agents.

lities for even better performance are extremely positive.
This assumption is substantiated by early experiments
conducted with the Voyager implementation. Finally, the
framework is generic and portable and can be used not only
within the Web but stand-alone as well for direct Java
database connectivity.

APPENDIX A

DESCRIPTIVE STATISTICAL ANALYSISÐSUMMARY

Please see Tables 2, 3, and 4.

APPENDIX B

HISTOGRAMSÐWIRELESS 9600

Please see Fig. 20. A similar analysis for the Fixed Network
10 Mb/s and the Dial up 28,800 can be found in [24] or
www.ada.cs.ucy.ac.cy/~cssamara/dbms-agents.

APPENDIX C

Z TESTÐWIRELESS 9600

The Z-test is used to compare the mean times required by a

Web client to query a remote database (for first or

subsequent request, given a client connectivity case). The

null hypothesis of the Z-tests suggests that the mean time

for querying a remote database for the first or subsequent

time using the first approach is less than using the second.

Comparing the critical with the statistic value, the null

hypothesis is either accepted or rejected. By repeating this

procedure, as shown in Fig. 21, we conclude that for first

queries, the best approach for all cases of client connectivity

is the ªDBMS-aglet with Messagesº and for subsequent

queries, the best approach is the ªTraditional Applet.º
When the queries' cost has been taken into combination,

namely for the short and long transaction, the Z test
indicated that the ªDBMS-aglet with Messagesº is the best
approach for all connectivity cases and the applet approach the
worst except in the fixed network case.

ACKNOWLEDGMENTS

The authors would like to thank Hariklea Kazeli for
performing the statistical analysis and Constantinos Spyrou
for implementing part of this work. We also would like to
thank Marios Dikaiakos for his comments and suggestions
and Mitsuru Oshima from IBM Tokyo for his valuable
assistance in our initial efforts to ªmasterº the Aglets
Workbench.

REFERENCES

[1] ªThe Java2 Language: An Overview, White Paper,º available at
http://java.sun.com/docs/white/index.html.

[2] E. Pitoura and G. Samaras, Data Management for Mobile Computing.
Kluwer Academic, 1997.

[3] B. Jepson, Database Connectivity: The Lure of Java, Java Report.
Whiley Computer Publishing, 1997.

[4] B. Jepson, Java Database Programming. Wiley Computer Publish-
ing, 1997.

[5] R. Greem, Article: Java Access to SQL Databases. Canadian Mind
Products, 1997.

[6] C.G. Harrison, D.M. Chessm, and A. Kershenbaum, ªMobile
Agents: Are They a Good Idea?,º research report, IBM Research
Division, 1995.

[7] IBM Japan Research Group ªAglets Workbench,ºweb site: http://
aglets.trl.ibm.co.jp.

[8] E. Anuff, Java Sourcebook. Whiley Computer Publishing, 1996.
[9] B.F. Burton and V.W. Marek, Applications of Java Programming

Language to Databases Management. Univ. of Kentucky, 1997.
[10] T. Berners-Lee and D. Connolly, ªHypertext Markup Language

Specification 2.0,º internet draft, Internet Eng. Task Force (IETF),
HTML Working Group, available at www.ics.uci.edu/ietf/html/
html2spec.ps.gz, June 1995.

[11] T. Berners-Lee, R. Fielding, and H. Frystyk, ªHypertext Transfer
ProtocolÐHTTP/1.0 Specification,º internet draft, Internet Eng.
Task Force (IETF). Available at www.ics.uci.edu/pub/ietf/http/
draft-fielding-http-spec-01.ps.Z, Aug. 1995.

[12] T. Berners-Lee, R. Caililiau, A. Luotonen, H.F. Nielsen, and A.
Secret, ªThe World Wide Web,º Comm. ACM, vol. 37, no 8, pp. 76-
82, Aug. 1994.

[13] Sun Microsystems Inc. Java Development Kit, web site http://
java.sun.com.

[14] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G.
Tsudik, ªItinerant Agents for Mobile Computing,º J. IEEE Personal
Comm., vol. 2, no. 5, Oct. 1993.

[15] J.E. White, ªMobile Agents. General Magic White Paper,º web site
http://www.genmagic.com/agents, 1996.

[16] Z. P. Lazar and P. Holfelder, ªWeb Database Connectivity with
Scripting Languages,º World Wide Web J., web site: http://
www.w3j.com/6/s3.lazar.html, Spring 1997.

[17] S.P. Hadjiefthymiades and D.I. Martakos, ªA Generic Framework
for the Development of Structured Databases on the World Wide
Web,º Proc. Fifth Int'l World Wide Web Conf., web site http://
www.w3.org/, May 1996.

[18] Borland DataGateway for Java, available at http://www.borland.
com/datagateway/.

[19] ª S yman t e c dbANYWHERE , º a v a i l a b l e a t h t t p : //
www.symantec.com.

[20] ªIBM DB2,ºavailable at http://www.software.ibm.com/data/
db2/.

[21] G. Samaras, E. Pitoura, and P. Evripidou, ªSoftware Models for
Wireless and Mobile Computing: Survey and Case Study,º
Technical Report TR-99-5, Univ. of Cyprus, Mar. 1999.

[22] ObjectSpace Voyager,2 ªTechnical Overview,ºweb site: http://
www . o b j e c t s p a c e . c o m / v o y a g e r / w h i t e p a p e r s /
VoyagerTechOview.pdf.

[23] J.C. Daniel and W.W. Terrell, Business Statistics for Management and
Economics. seventh ed., 1995.

[24] S. Papastavrou, E. Pitoura, and G. Samaras, ªMobile Agents for
WWW Distributed Database Access,º (Extended version) Techni-
cal Report TR 98-12, Univ. Of Cyprus, Computer Science Dept.,
Sept. 1998.

[25] M. Breugst, I. Busse, S. Covaci, and T. Magedanz, ªGrasshopper:
A Mobile Agent Platform for IN Based Service Environments,º
Proc. IEEE IN Workshop, May 1998.

[26] J . White , ªGeneral Magic White Paper ,º http://
www.genmagic.com/agents/, 1996.

[27] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, and B. Peet,
ª Concordia: An Infrastructure for Collaborating Mobile Agents,º
Lecture Notes in Computer Science, vol. 1,219, 1997. http://
www.meitca.com/HSL/Projects/Concordia/.

[28] D. Lange and M. Oshima, Programming and Deploying Java Mobile
Agents with Aglets. Addison Wesley, 1998.

[29] T. Papaioannou et. al., ªMobile Agents Technology in Support of
Sales Order Processing in the Virtual Enterprise,º Proc. Third IEEE/
IFIP Int`l Conf. Information Technology for Balanced Automation
Systems in Manufacturing, L.M. Camrinha-Matos, H. Afsaranesh,
and V. Marik, eds., p. 23, Aug. 1998.

[30] S. Weissman Lauzac and P.K. Chrysanthis, ªProgramming Views
for Mobile Database Clients,º Proc. Ninth DEXA Conf. and
Workshop Database and Expert Systems Applications: Mobility in
Databases and Distributed Systems, Aug. 1998.

[31] G. Samaras, M. Dikaiakos, C. Spyrou, and A. Liberdos, ªMobile
Agent Platforms for Web-Databases: A Qualitative and Quantita-
tive Assessment,º Proc. the Joint Symp. (ASA/MA '99), Proc. First
Int'l Symp. Agent Systems and Applications (ASA '99), Proc. Third
Int'l Symp. Mobile Agents (MA '99), pp. 50-64, 1999.

PAPASTAVROU ET AL.: MOBILE AGENTS FOR WORLD WIDE WEB DISTRIBUTED DATABASE ACCESS 819

[32] M. Dikaiakos and G. Samaras, ªA Performance Analysis Frame-
work for Mobile-Agent Systems,º Proc. First Ann. Workshop
Infrastructure for Scalable Multi-Agent Systems, Proc. Fourth Int'l
Conf. Autonomous Agents 2000, June 2000.

[33] S. Papastavrou, P.K. Chrysanthis, G. Samaras, and E. Pitoura, ªAn
Evaluation of the Java-based Approaches for Web Database
Access,º Proc. of the Fifth IFCIS Int'l Conf. Cooperative Information
Systems (CoopIS '2000), Sept. 2000.

[34] Oracle, http://www.oracle.com/oramag/oracle/00-Jan/
10m.ob.htm and http://www.oracle.com/mobile/.

[35] Allaire ªCold Fussion,ºavailable at http://www.allaire.com/
products/coldfusion/index.cfm.

[36] G. Helmayer, G. Kappel, and S. Reich, ªConnecting Databases on
the Web: A Taxonomy of Gateways,º Proc. Eighth DEXA Int'l Conf.
and Workshops, Sept. 1997.

Stavros Papastavrou received the BSc degree
from the Department of Computer Science of the
University of Cyprus, Cyprus in 1998 and the
MSc degree in computer science from the
University of Pittsburgh in 2000. He is now a
PhD canndidate at the University of Pittsburgh.
His work on utilizing mobile agents for Web
database access has received the best paper
award of the 1999 IEEE International Confer-
ence on Data Engineering (ICDE '99). His

research interests include mobile agents technology, Web databse
connectivity, and mobile data management. He is a student member of
the IEEE

George Samaras received the PhD degree in
computer science from Rensselaer Polytechnic
Institute in 1989. He is currently an associate
professor at the University of Cyprus, Cyprus. He
was previously at IBM Research Triangle Park,
North Carolina, and taught at the University of
North Carolina at Chapel Hill (adjunct assistant
professor, 1990-1993). He served as the lead
architect of IBM's distributed commit architecture
(1990-1994) and coauthored the final publication

of the architecture (IBM Book, Sc31-8134-00). He was a member of
IBM's wireless division and particpated in the design/architecture of
IBM's WebExpress, a wireless Web browsing system. He recently
(1997) coauthored a book on data management for mobile computing
(Kluwer Academic). He has a number of patents relating to transaction
processing technology and numerous technical conference and journal
publications. His work on utilizing mobile agents for Web databse
access has received the best paper award of the 1999 IEEE
International Conference on Data Engineering (ICDE '99). He has
served as proposal evaluator at a national and international level and he
is regularly invited by the European Commission to serve as project
evaluator and auditor in areas related to mobile computing and mobile
agents. He also served on IBM's internal international standards
committees for issues related to distributed transaction processing
(OSI/TP, XOPEN, OMG). His research interests includes mobile
computing, mobile agents, transaction processing, commit protocols
and resource recovery, and real-time systems. He is a voting member of
the ACM and the IEEE Computer Society.

Evaggelia Pitoura received the Bsc degree
from the Department of Computer Science and
Engineering of the University of Patras, Greece
in 1990 and the MSc and PhD degrees in
computer science from Purdue University in
1993 and 1995, respectively. Since September
1995, she has been on the faculty of the
Department of Computer Science of the Uni-
versity of Ioannina, Greece. Her main research
interest are data management for mobile com-

puting and network-centric databases. Her publications include several
articles in international journals (including IEEE Transaction on Knowl-
edge and Data Engineering, ACM Computing Surveys, Information
Systems) and conferences (including VLDB, ICDE, ICDCS, CIKM) and a
recent published book on mobile computing. She received the best
paper award in the IEEE International Conference on Data Engineering
(ICDE '99) for her work on mobile computing agents. She has also
coauthored a tutorial on mobile computing presented in IEEE Interna-
tional Conference on Data Engineering (ICDE '00). She has also served
on a number of program committees and was program cochair of the
MobiDE workshop held in conjunction with MobiCom '99. She is a
member of the IEEE.

820 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2000

