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Abstract

One of the recent paradigms in networked distributed computing is the
use of mobile agents. Mobile agents are software robots that can autonomously
migrate from node to node within a network. Although mobile agents can
be easily implemented over a message passing network, they provide an
abstraction for designing algorithms in a non-traditional way which can be
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quite natural for certain problems, such as searching, monitoring or intruder
detection. A principle sub-task in most algorithms for mobile agents is the
traversal of the network. We focus on this problem of exploring an initially
unknown network with one or more mobile agents. We also consider the
related problem of constructing a map of the environment being explored by
the mobile agents.

1 Introduction

Mobile agents are software robots (mobile code) that can move autonomously
from node to node within a network, executing its operations and interacting with
the host environment at each node that it visits. Such software robots (sometimes
called bots, or agents) are already prevalent in the Internet, and are used for per-
forming a variety of tasks such as collecting information, negotiating a business
deal, or for online shopping. When the data needed for a computation is phys-
ically dispersed, it can be sometimes beneficial to move the computation to the
data, instead of moving all the data to the node performing the computation. The
paradigm of mobile agent computing is based on this idea.

The use of mobile agents has been advocated for various reasons such robust-
ness against disruptions in network connectivity, improving the network latency
and reducing network load, providing more autonomy, and so on (see e.g. [26]). In
the context of distributed computing, the use of mobile agents has been suggested
by Fukuda et al. [22] as early as the 90’s and some algorithms for message-passing
networks that use token circulation (notably [25]) can be regarded as early exam-
ples of mobile agent algorithms in this area.

On the practical side, one of the major concerns with mobile agents has been
ensuring the agents are safe from tampering by potentially malicious host nodes
and on the other hand the host computer are not harmed by malicious agents[33,
28]. One typical example of a malicious agent is a computer virus that propa-
gates itself through the network. As there could be malicious agents, we could
use good agents to track down and eliminate the harmful agents. This gave rise to
several cops-and-robber games on networks, where a team of “good" agents move
through the network searching for the malicious agent (the robber) and the latter
tries to evade the good agents (the cops). This is only one of several problems
involving mobile agents that has recently captured the interest of the distributed
computing community. Other problems that have studied in the context of dis-
tributed computing are:

• The Rendezvous problem : Gathering multiple mobile agents at a single
location.
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• Black hole search: Locating harmful nodes in the network.

• Distributed treasure-hunt: Locating a resource available at an unknown
node of the network.

• Map construction: Building a map of an unknown network.

• Distributed verification: Verifying some global property of the network.

Some of these areas are already too vast to cover in one combined survey.
The rendezvous problem has been discussed in the recent surveys [30] and [9] as
well as the book [2], while the black hole search problem has been studied by
Markou [27] in the previous edition of this column.

In this article we would focus on the exploration problem which is usually
a basic subtask useful for solving the other problems. The algorithm used for
traversal of a network usually has a significant impact on both the solvability and
the cost of solving these other problems. We would discuss efficient techniques for
traversing an unknown network and for building a map of the network. The article
is structured as follows. Section 2 explains the mobile agent model in detail. The
following section presents exploration techniques for a single mobile agent. We
consider both exploration of labelled as well as unlabelled networks. Section 4
discusses the special case of an agent having limited memory. Finally, Section 5
considers the collaborative exploration of networks by multiple mobile agents.

2 The Mobile Agent Model
In the mobile agent model, the network or the environment is modelled as an
undirected1 connected graph G = (V(G), E(G)). The computation is performed
by a set Q of mobile entities called agents. An agent is an automaton that starts at
some vertex of G, in some given state s0. Each agent has a finite number of states
and the size of the state-space S depends on the amount of memory available to
an agent (which may or may not depend on the size of the network). An agent
with b bits of memory is assumed to have 2b states. The initial placement of the
agents is denoted by the function p : Q → V(G). For any a ∈ Q, p(a) is called the
homebase of agent a.

At any step of the algorithm, a mobile agent located at a node v of the network,
may (1) detect the presence of other agents at the node v and communicate with
them, and (2) perform any computation at node v, using the information available
at node v and its own state information, and (3) change its state and either decide

1This article considers only the undirected environment although there exists results for di-
rected graphs too.
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to stay at node v or move to an adjacent node. When performing computations at
a node v, the agent has access to the (possibly unbounded) memory and compu-
tational power of the node v. When moving from a node v to an adjacent node u,
the agent is allowed to carry only its state information.

In order to enable navigation of the agents in the graph, at each node v ∈ V(G),
the edges incident to v are distinguishable to any agent a at node v. In other words,
there is a bijective function

δv : {(v, u) ∈ E(G) : u ∈ V(G)} → {1, 2, . . . d(v)}
which assigns unique labels to the edges incident at node v (where d(v) is the
degree of v). The function δ = {δv : v ∈ V(G)} is called the local orientation or
port-numbering2.

We consider three different models for communication between mobile agents:
(1) Face-to-Face: In this model, two agents can exchange information only when
they are both located in the same node. (2) Pebble Model: In this case, the agent
is allowed to leave a pebble at its current location v. This pebble is visible to (and
can be picked up by) any agent that subsequently visits node v. (3) Whiteboard
Model: In this case, an agent may write any information at public whiteboards
at its current node v. This information is visible to (and can be modified by) any
agent that subsequently visits node v.

In some cases, the vertices of G may be initially labelled over the set of sym-
bols L by λ : V(G) → L which is the labelling function. When this labelling is
injective, we say that the nodes have distinct identifiers. On the other hand, when
all nodes have the same label c ∈ L we say that the network is anonymous.

The environment is thus, represented by the tuple (G, λ,Q, p, δ). In case the
nodes of the graph are anonymous, we shall omit λ. For the rest of this paper,
n = |V(G)| and m = |E(G)| respectively denotes the numbers of vertices and
of edges of G, while k = |Q| denotes the number of agents and Δ denotes the
maximum degree of a vertex in G. We shall use the words vertex and node as well
as the words graph and network interchangeably.

Since we consider asynchronous networks, the cost of an algorithm is mea-
sured in terms of the number of moves performed by the agents where each move
corresponds to the traversal of a single edge by a single agent. In case of single
agent exploration, the moves cost is same as the time complexity, if we assume
each move to take the same time.

Finally we remark here that the mobile agent model as explained above can
be easily implemented on message-passing networks. In fact, there exist simula-
tion techniques for importing algorithms from mobile agent systems to message-
passing systems and vice versa [10, 15].

2The labels on the edges may correspond to port numbers on a network
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3 Network Exploration by a Mobile Agent
The problem of exploring an unknown environment has been studied extensively
starting from the work of Shannon [34] who first considered the problem for a
finite state automaton moving in a maze. One of the questions that has been
studied is whether finite state automata can explore graphs of arbitrary size. This
question was answered by Rollik [32] who showed that any finite team of finite
state automata cannot explore all graphs. Later Fraigniaud et al.[21] showed that
a single agent needs Ω(logn) bits for traversing arbitrary graphs of size n and
maximum degree at least three. We consider the problem of exploration with
memory restrictions in Section 4.

Depending on the objective of exploration, an algorithm may terminate before
visiting all nodes, or only after visiting each node at least once, or it may not stop
and continue indefinitely. The latter scenario is called perpetual exploration and
is sometimes useful e.g. for network monitoring. In the perpetual exploration
problem [21], the agent is required to periodically visit each node and optimizing
the period of the traversal may be one of the objectives. On the other hand, for
the treasure-hunt problem [35], the agent can stop as soon as it reaches a node
containing the “treasure" (i.e. the resource being searched).

In some cases visiting all edges (not just the nodes) may be necessary (e.g.
for the edge-search problem). In some other cases, the agent may be required to
build a map of the environment (such a map enables the agent to find a shorter
traversal path for subsequent traversals). For any agent traversing a graph, a map
of the network is a copy of the graph G where the edges are labelled with port-
numbers and the node where the agent is located is specifically marked. Access to
a map allows the agent to traverse the network faster and also to perform certain
computations without the need to traverse the network. Thus, a map construction
algorithm is a useful primitive in mobile agent computing.

3.1 Exploration of Labelled Environments
When the nodes of the graph are labelled with distinct identifiers, exploration can
be achieved by the conventional depth-first search (DFS) or breadth-first search
(BFS) algorithms. In fact, the depth-first traversal is asymptotically optimal in
terms of number of moves because it requires Θ(m) edge traversals. A modified
version of the algorithm has been proposed by Panaite and Pelc [29] which makes
m + O(n) moves. In this case, the penalty (i.e. the number of additional edges
traversed) is linear in the numbers of nodes (and not the number of edges). The
algorithm achieves this by using some clever rules for backtracking that avoids
traversing too many of the already explored edges.

Another version of the problem that has been studied by Awerbuch et al. [3]
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is called piecemeal exploration where the agent has to periodically return to its
homebase (e.g. for refuelling), during the exploration. For this version of the
problem, the standard DFS algorithm is not a feasible algorithm; During DFS, an
agent may makeΩ(n) moves between two subsequent visits to the homebase, even
if the diameter of the graph is very small. The BFS algorithm can be used to solve
the problem of piecemeal exploration, but it could require O(m2) moves in the
worst case. Instead, the authors use a combination of DFS and BFS, where BFS
is performed locally within small regions, called strips, while DFS is performed
on a higher level spanning tree that connects these strips together. This algorithm
requires O(m + n1+ε) moves. This was later improved upon by Awerbuch and
Kobourov [4] who gave a recursive piecemeal exploration algorithm that requires
O(m + n log2 n) moves. Eventually Duncan et al. [19] gave an asymptotically
optimal algorithm for performing piecemeal exploration in O(m) moves.

Note that all the above traversal methods require the agent to have sufficient
memory to remember the identifiers of the visited vertices. Thus the agent must
have at least Ω(n log n) bits of memory. For agents with smaller memory, more
involved techniques may be required (c.f. Section 4), thus increasing the time
complexity of exploration. On the other hand, an agent having sufficient memory
can also construct the map of the graph using the information obtained during a
traversal of the graph. Thus, in this case, the problem of map construction is not
different from the task of simply traversing all edges of the graph in an organized
manner. When the nodes of the network are anonymous (not labelled with unique
identifiers), then the task of map construction could be more difficult than simply
performing a traversal of the network. This scenario is considered in the next two
sections.

3.2 Exploration of Anonymous Networks
In an anonymous network, the nodes are not labelled with identifiers and thus the
agent may not be able to distinguish between any two nodes which have the same
degree. Note the edges of the graph are still locally oriented with port-numbers
since otherwise exploration is not possible (as explained before).

Traversal of an anonymous graph can always be achieved by a breadth-first
traversal of all paths up to a depth of D, the diameter of the graph (if the value
of D is known), or up to depth n or, any other upper bound on the diameter.
Note that the knowledge of the size n or the diameter D of the graph is necessary
only for terminating the traversal (one could in principle continue infinitely and
thus ensure that all nodes and edges of the graph will be visited within a finite
time). If the agent knows the value of n, it could perform a depth-first traversal
of the tree containing all paths of length n from the starting vertex. This incurs
a cost of Ω(Δn) moves in graphs of maximum degree Δ. It is possible to have
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a more efficient traversal of the graph using the concept of universal exploration
sequences.

A universal traversal sequence for a graphG is a list of port numbers, such that,
if an agent starting in any node of G chooses to move according to the specified
port numbers, it will eventually visit all nodes ofG. For our purpose, a more useful
notion is that of a Universal Exploration Sequence (UXS) defined by Kouckỳ [24]
as follows. For any node u ∈ G, the ith successor of u, denoted by succ(u, i) is
the node v reached by taking port number i from node u (where 0 ≤ i < d(u)).
Let (a1, a2, . . . , at) be a sequence of integers. An application of this sequence to
a graph G at node u is the sequence of nodes (u0, . . . , ut+1) obtained as follows:
u0 = u, u1 = succ(u0, 0); for any 1 ≤ i ≤ t, ui+1 = succ(ui, (p + ai) mod d(ui)),
where p is the port-number at ui corresponding to the edge {ui−1, ui}. A sequence
(a1, a2, . . . , at) whose application to a graph G at any node u contains all nodes of
this graph is called a UXS for this graph. A UXS for a class of graphs is a UXS
for all graphs in this class. An important result shown in [1] is the following.

Property 3.1. For any positive integers n,Δ, Δ < n, there exists a UXS of length
O(n3Δ2 log n) for the family of all graphs with at most n nodes and maximum
degree at most Δ.

It is also known that such universal sequences are easy to construct and thus,
using the above property a mobile agent can traverse any graph G of size n, incur-
ring a cost polynomial in n, which compares favorably with the exponential cost
of the brute-force algorithm described earlier. However, it is not known whether
there is a more efficient way of traversing arbitrary unknown graphs other than
using universal exploration sequences. Thus there is a big gap in the cost of ex-
ploring anonymous networks compared to networks with uniquely labelled nodes.

If we consider the pebble model of communication where an agent is allowed
to place a pebble on a node to mark it, then it is possible to efficiently traverse
an anonymous graph G (as well as build a map of G). The agent can start with
an initial map containing only its current node and start exploring new edges and
adding them to the map. Whenever the agent traverses an edge e = (v, u) and
arrives at an unknown vertex u, it can place the pebble on u, return back to the
previous vertex v and perform a traversal of the known part of G (that is included
in the current map). If the agent encounters the pebble during this traversal, it can
identify the vertex u in its map. Otherwise, the node u is an unexplored node and
the agent can add this node and the edge e to its map. In both cases, the agent
has extended its map by a single edge and it can now pick up the pebble from
node u and continue the exploration. Using this process a mobile agent with a
single pebble can explore and map an anonymous graph in O(nm) (i.e. O(n2Δ))
moves. Moreover the agent does not need any prior knowledge of the size n of the
network or even an upper bound on n.
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Figure 1: Two non-isomorphic graphs that are indistinguishable to a mobile agent,
and the common base graph of the first two graphs.

As an aside, we remark here that exploration of (strongly connected) directed
graphs using a pebble has also studied [6] and the best known algorithm for map-
ping a digraph using a single pebble has a cost of O(n8Δ2). Thus it seems that
exploring digraphs is much more difficult than exploring undirected graphs and
there exists a large gap between the costs of exploration in these two cases. More-
over, when the agent does not know any upper bound on the size of the network,
a single pebble is not sufficient for exploring digraphs and at least Ω(log log n)
pebbles are necessary, as shown in the above paper.

3.3 Map Construction in Anonymous Networks
Although any arbitrary graph can be traversed by an agent having sufficient mem-
ory, the problem of map construction cannot be solved in all graphs. There exists
graphs which are not recognizable, i.e. an agent traversing such a graph can not
build a map of the graph, even if it is traverses every edge of the graph and even
if it has an unbounded amount of memory allowing it to remember everything
that it sees. This impossibility comes from the existence of symmetries in certain
graphs. Consider for example the two graphs shown in Figure 1. The two graphs
are distinct (non-isomorphic) but an agent traversing the first graph sees exactly
the same as an agent traversing the second graph. Thus, both these graphs are
non-recognizable. There exists a characterization of the family of graphs that are
not recognizable, given by Yamashita and Kameda [36]. This can be explained
in terms of the concept of graph coverings [7]. For any two graphs G and H that
are indistinguishable by an exploring agent, there exists a common base graph B
which is the smallest multi-graph that cannot be distinguished from either G or H.
We say that graph G covers graph B. Map construction can be solved in a graph G
only if it is covering-minimal, i.e. there exists no smaller graph B that is covered
by G.



������ �� 	
� ��� ����� ���	
��

��

Algorithm 1: Map Construction from a uniquely marked node r

Map := T := {r} ;
Add r to Queue;
ROOT_PATHS := ∅;
while Queue is not empty do

Get next node v from Queue and go to v using Map;
while node v has unexplored edges do

Traverse the next unexplored edge e = (v, u);
for each path P ∈ ROOT_PATHS do

Apply label sequence P at node u ;
if successfully reached a marked node then

Add to Map a cross-edge from v to Start(P);
Update the number of explored edges at the node Start(P);
Return to node v using T and exit Loop;

else
Backtrack to node u ;

if All path sequences failed to reach a marked node then
Add a new node u to T and Map ;
Add edge (v, u) to T and Map ;
Insert u to Queue ;
ROOT_PATHS := ROOT_PATHS ∪ PathT (u, r) ;
Backtrack to node v ;

The impossibility of mapping arbitrary anonymous graphs can be overcome
when the mobile agent has some means of marking the nodes of the graph. As
mentioned in the previous section, when the mobile agent is provided with a peb-
ble, map construction can be solved in all connected graphs. A much weaker
assumption, that the starting node of the agent is distinctly marked, is also a suf-
ficient condition for mapping an arbitrary graph. An algorithm that achieves this
was presented in [8] (see Algorithm 1 below). The idea of the algorithm is the
following. Let the starting node (which is distinctly marked) be r. The agent can
perform a breadth-first traversal building a BFS-tree T rooted at r. During the
traversal, whenever the agent explores a new edge and reaches a node v, the agent
checks whether v has been visited before (i.e. whether node v is the same as some
node u in its tree). This can be done by successively applying the label-sequences
for the reverse paths from each node u ∈ T to the root r, and checking if one
of these paths hits the marked node. To this end, the algorithm maintains a data
structure, called ROOT_PATHS, that stores the label-sequence for each path P in
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T going from any node u ∈ T to the root r. For such a stored path P, Start(P)
refers to the node u. During the process of building the BFS-tree T, the algorithm
also constructs a map that contains all the cross-edges discovered by the agent,
in addition to the tree edges belonging to T . The algorithm completes the map
construction in O(n3Δ) moves.

4 Exploration with Small Memory
As mentioned before, a mobile agent requires Ω(log n) bits of memory in order
to explore all graphs of n nodes. It was an open question for a long time whether
exploration of arbitrary graphs can be performed by an agent having logarithmic
memory, until Reingold [31] gave a positive answer. Note that an agent having
Θ(log n) can remember only a few node identifiers in a labelled network. Thus, the
conventional DFS or BFS algorithms cannot be used for exploration. It is possible
to use a UXS to perform the exploration, due to the results of Reingold [31] who
gave a log-space constructible UXS. This however, requires the prior knowledge
of an upper bound on n. When such knowledge is not available, we can use the
following strategy for exploration. The agent has enough memory to remember
the identifier of the starting location (which we call the source). The idea is that
the agent guesses a value N as an upper bound for n and performs a traversal using
UXS for graphs of size N. During this traversal whenever it reaches a vertex v,
the agent performs a check operation and if this operation returns false, then the
agent aborts the current traversal, doubles the value of N, and starts the whole
procedure again using the new value of N and the current vertex as source. The
checking operation at a vertex v, simply visits each neighbor w of v, remembers
the identifier of w, returns to the source and performs another traversal to check if
the traversal visits w. If not, then the checking operation returns false. Otherwise
it continues to check the other neighbors of v and finally return true. If the agent
completes the traversal without having to increase N anymore then this traversal
has visited all nodes of G. So the agent can stop. Thus the algorithm performs
exploration with stop, without the need for any prior knowledge of the network
size.

In case of anonymous networks, some upper bound on the value of n is always
necessary for exploration, unless the network is a tree. For anonymous tree net-
works, Gasieniec et al.[23] gave an algorithm for an agent with O(log n) memory
to explore the network and return to its starting location, without any prior knowl-
edge of the network size. Earlier Diks et al. [17] showed that Ω(log log log n)
memory is necessary for tree exploration with stop and Ω(log n) memory is re-
quired if the agent needs to return to the starting location. Note that in a tree
network, exploration without stop can be performed even by an agent having no
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memory, using the simple strategy of always leaving a node by the next port (in
cyclic order) from the one through which it arrived. This is often called the right-
hand-on-the-wall strategy.

The exploration of arbitrary graphs with agents having O(1) memory (i.e. fi-
nite state automata), has also been well investigated. In this case there must be
some additional mechanism to help the agent perform its task of exploration. For
example the nodes or edges of the network may be labelled in such a way as to
allow the finite state agent to complete the exploration. Dobrev et al. [18] con-
sidered the problem of assigning port numbers to the edge of the graph in such a
way that an agent with no memory performing a right-hand-on-the-wall walk can
periodically visit all nodes of the graph. The objective is to obtain a small period
of traversal and the above paper achieved a period of 10n for graphs of size n.
Eventually this was improved to a period of (4 + 1/3)n − 4 in a more recent paper
by Czyzowicz et al. [12]. For an agent with O(1) bits of memory, the authors
presented an algorithm and a corresponding port assignment that allows periodic
traversal with a period of at most 3.5n. In contrast, there exists a trivial lower
bound of 2n − 2 for the period of traversal by any agent (irrespective of memory
size). For the case of the agent with no memory, a stronger lower bound of 2.8n
was shown in the same paper. Thus there still exists a small gap between the best
known lower and upper bounds for the problem.

5 Network Exploration by Multiple Agents
We have so far considered the exploration problem for a single agent. When
there are multiple agents starting from the same node of the network, they may
collaborate with each-other to explore the network collectively. Note that if the
agents are all identical and follow the same deterministic algorithm, then all the
agents would move together and we would not gain anything from having multiple
agents instead of one. Thus, there must be some means of breaking symmetry
between the agents. For example, if the agents have distinct names then each
agent can follow a different path and thus explore different parts of the network
concurrently.

Another possible scenario is when multiple agents start from distinct nodes
of the network. In this case each agent may independently explore the network
using the techniques discussed in the previous sections. However if the agents
mark the nodes during the exploration then there needs to be some agreement
between the agents so that an agent does not get confused when it encounters a
node marked by some other agent. For example, Algorithm 1 presented in the
previous section, assumes a uniquely marked homebase; this algorithm would
fail when there are multiple agents starting from distinct nodes. The problem
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of distributed exploration with multiple agents initially dispersed in the graph, is
considered in Section 5.2.

5.1 Collaborative Exploration
The collaborative exploration of a network by a team of collocated mobile agents
was studied by Fraigniaud et al. [20]. They considered tree networks where a
team of k synchronous mobile agents labelled as 1, 2, . . . k located at the root of
the tree, need to explore all nodes and return to the starting node. The paper
provided an algorithm that takes O(D + n/ log k) time for the exploration by k
agents, thus providing an improvement by a factor of (log k) over single agent
exploration. The agents do not know the exact topology or, even the size of the
network. The main idea of the algorithm is the following. At any stage of the
algorithm, the agents available at node v are distributed among its subtrees in such
a way that the number of agents in any two (unexplored) subtrees does not differ
by more than one. Whenever a subtree has been explored completely all agents in
that subtree move to its parent. The authors show how to implement this strategy
in a distributed manner, where the communication between agents is achieved by
reading and writing information on whiteboards available at each node.

Note that any algorithm for collaborative exploration by k agents must require
Ω(D+ n/k) time. Thus there is an overhead of k/ log k in the above algorithm and
it is not known whether this overhead can be reduced. A lower bound of 2 − 1/k
was shown for the overhead of any collaborative exploration algorithm using k
agents.

Collaborative exploration of arbitrary graphs has been considered in the con-
text of the black hole search problem [11]. The objective, in this case, is to locate
harmful nodes (called black holes) in the network and any agent arriving at such
a node dies and cannot continue with the exploration. The above paper provided
an exploration algorithm for k agents that takes O(n/k) time when the number of
black holes is at most k/2 and k = O(

√
n). However this algorithm assumes that

the network topology is known in advance by the mobile agents.

5.2 Distributed Exploration
When there are multiple mobile agents initially dispersed among the nodes of an
anonymous network it is possible to collectively explore the network if the agents
can communicate by leaving marks. In particular we will assume the whiteboard
model of communication where agents can read and write information on public
whiteboards at each node that the agent visits. If the agents have distinct identities,
each agent can individually explore the complete network by performing a DFS
marking each visited node with its identifier. On the other hand if the agents are
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identical (i.e. no distinct names) then the marks made by an agent would not
be distinguishable from those of another agent. In this case some cooperation
between the agents seems necessary. A distributed exploration of the network
can be performed by the following algorithm [13], which we call a distributed
depth-first search (DDFS).

Procedure DDFS: An agent A starts from its homebase a depth-first search traver-
sal marking the nodes that it visits (unless they are already marked) and labelling
them with numbers 1, 2, 3, and so on. Each node marked by the agent and the
edge used to reach it are added to a tree data structure stored in the memory of the
agent. If the agent reaches an already marked node, it backtracks to the previous
node and tries the other edges incident to the node. The agent stops when there
are no unexplored edges incident to the nodes of its tree. The tree obtained at the
end of the traversal is called the territory TA of the agent.

It can be easily shown that the territories obtained by the agents in the above
process, forms a spanning forest of the graph G. Thus, each node of the agent
is visited by some agent and the agents together complete the exploration of the
graph. The exploration requires O(m) moves in total. If the agents are required
to perform periodic traversals of the graph, then any subsequent traversal of G
can be performed using only (2n− 2k) moves in total (by restricting each agent to
traverse its own territory).

The above technique was extended in [14] to perform map construction in
those cases when G is covering-minimal (i.e. when it is possible to construct a
map of G). The map construction algorithm proceeds in two phases. In the first
phase, the agents simply perform procedure DDFS. At the end of this procedure
there is exactly one agent in each tree in the forest and each agent a has a map of
the tree Ta that it belongs to. The second phase of the algorithm is a competition
between neighboring agents, during which each losing agent merges its territory
with the corresponding winning agent. This process is repeated with the objective
of eventually forming a single tree spanning the graph G. As a final step, nodes of
the tree are assigned unique labels and then all non-tree edges are added to obtain
a complete map of G. The main complication in the algorithm in the competition
phase which proceeds in several rounds (at most k rounds when there are k agents).
Overall, the algorithm has a cost of O(mk) moves in total.

6 Conclusions
We considered the exploration of unknown networks (graphs) by mobile agents
that can autonomously move along the edges of the graph. Graph exploration
is a basic subtask in most mobile agent algorithms and efficient techniques for
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exploration can help to speed up the computation by mobile agents. We also
studied techniques for constructing a map of an initially unknown network. Map
construction algorithms help us to execute algorithms for known topologies in
unknown environments (or, in dynamic environments where it is not possible to
have a-priori knowledge of the network topology).

The scope of this article is restricted in many ways. We consider mainly the
exploration of undirected graphs instead of the more difficult task of exploring
strongly connected directed graphs. In fact, it is not always possible to explore
arbitrary digraphs if the nodes are not uniquely labelled and there is no marking
device. Secondly, the algorithms presented in this survey are for the fault-free
scenario and it is possible to consider the exploration problem in the presence
of various failures, such as node failures, agent crashes, and the failure of mark-
ing devices. Finally, this article excludes many interesting results on randomized
algorithms for exploration e.g. based on random walks by mobile agents.
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