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Mobile Big Data Analytics

Using Deep Learning and Apache Spark
Mohammad Abu Alsheikh, Dusit Niyato, Shaowei Lin, Hwee-Pink Tan, and Zhu Han

Abstract—The proliferation of mobile devices, such as smart-
phones and Internet of Things (IoT) gadgets, results in the recent
mobile big data (MBD) era. Collecting MBD is unprofitable
unless suitable analytics and learning methods are utilized for
extracting meaningful information and hidden patterns from
data. This article presents an overview and brief tutorial of
deep learning in MBD analytics and discusses a scalable learning
framework over Apache Spark. Specifically, a distributed deep
learning is executed as an iterative MapReduce computing on
many Spark workers. Each Spark worker learns a partial deep
model on a partition of the overall MBD, and a master deep
model is then built by averaging the parameters of all partial
models. This Spark-based framework speeds up the learning of
deep models consisting of many hidden layers and millions of
parameters. We use a context-aware activity recognition appli-
cation with a real-world dataset containing millions of samples
to validate our framework and assess its speedup effectiveness.

Index Terms—Distributed deep learning, big data, Internet of
things, cluster computing, context-awareness.

I. INTRODUCTION

Mobile devices have matured as a reliable and cheap plat-

form for collecting data in pervasive and ubiquitous sensing

systems. Specifically, mobile devices are (a) sold in mass-

market chains, (b) connected to daily human activities, and

(c) supported with embedded communication and sensing

modules. According to the latest traffic forecast report by

Cisco Systems [1], half a billion mobile devices were globally

sold in 2015, and the mobile data traffic grew by 74% gen-

erating 3.7 exabytes (1 exabyte = 1018 bytes) of mobile data

per month. Mobile big data (MBD) is a concept that describes

a massive amount of mobile data which cannot be processed

using a single machine. MBD contains useful information for

solving many problems such as fraud detection, marketing and

targeted advertising, context-aware computing, and healthcare.

Therefore, MBD analytics is currently a high-focus topic

aiming at extracting meaningful information and patterns from

raw mobile data.

Deep learning is a solid tool in MBD analytics. Specifically,

deep learning (a) provides high-accuracy results in MBD
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analytics, (b) avoids the expensive design of handcrafted

features, and (c) utilizes the massive unlabeled mobile data

for unsupervised feature extraction. Due to the curse of

dimensionality and size of MBD, learning deep models in

MBD analytics is slow and takes anywhere from a few hours

to several days when performed on conventional computing

systems. Arguably, most mobile systems are not delay tolerant

and decisions should be made as fast as possible to attain high

user satisfaction.

To cope with the increased demand on scalable and adaptive

mobile systems, this article presents a tutorial on developing

a framework that enables time-efficient MBD analytics using

deep models with millions of modeling parameters. Our frame-

work is built over Apache Spark [2] which provides an open

source cluster computing platform. This enables distributed

learning using many computing cores on a cluster where the

continuously accessed data is cached to running memory, thus

speeding up the learning of deep models by several folds. To

prove the viability of the proposed framework, we implement a

context-aware activity recognition system [3] on a computing

cluster and train deep learning models using millions of

data samples collected by mobile crowdsensing. In this test

case, a client request includes accelerometer signals and the

server is programmed to extract the underlying human activity

using deep activity recognition models. We show significant

accuracy improvement of deep learning over conventional

machine learning methods, improving 9% over random forests

and 17.8% over multilayer perceptions from [4]. Moreover,

the learning time of deep models is decreased as a result

of the paralleled Spark-based implementation compared to a

single machine computation. For example, utilizing 6 Spark

workers can speedup the learning of a 5-layer deep model

of 20 million parameters by 4 folds as compared to a single

machine computing.

The rest of this article is organized as follows. Section II

presents an overview of MBD and discusses the challenges of

MBD analytics. Section III discusses the advantages and chal-

lenges of deep learning in MBD analytics. Then, Section IV

proposes a Spark-based framework for learning deep models

for time-efficient MBD analytics within large-scale mobile

systems. Section V presents experimental analysis using a real-

world dataset. Interesting research directions are discussed in

Section VI. Finally, Section VII concludes the article.

II. MOBILE BIG DATA (MBD): CONCEPTS AND FEATURES

This section first introduces an overview of MBD and then

discusses the key characteristics which make MBD analytics

challenging.
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A. The Era of MBD

Figure 1 (a) shows a typical architecture of large-scale

mobile systems used to connect various types of portable

devices such as smartphones, wearable computers, and IoT

gadgets. The widespread installation of various types of sen-

sors, such as accelerometer, gyroscope, compass, and GPS

sensors, in modern mobile devices allows many new applica-

tions. Essentially, each mobile device encapsulates its service

request and own sensory data in stateless data-interchange

structure, e.g., Javascript object notation (JSON) format. The

stateless format is important as mobile devices operate on

different mobile operating systems, e.g., Android, IOS, and

Tizen. Based on the collected MBD, a service server utilizes

MBD analytics to discover hidden patterns and information.

The importance of MBD analytics stems from its roles in

building complex mobile systems that could not be assembled

and configured on small datasets. For example, an activity

recognition application [3], [5] uses embedded accelerometers

of mobile devices to collect proper acceleration data about

daily human activities. After receiving a request, the service

server maps the accelerometer data to the most probable

human activities which are used to support many interactive

services, e.g., healthcare, smart building, and pervasive games.

MBD analytics is more versatile than conventional big

data problems as data sources are portable and data traffic

is crowdsourced. MBD analytics deals with massive amount

of data which is collected by millions of mobile devices.

Next, we discuss the main characteristics of MBD which

complicate data analytics and learning on MBD compared to

small datasets.

B. Challenges of MBD Analytics

Figure 1 (b) shows the main recent technologies that have

produced the challenging MBD era: large-scale and high-

speed mobile networks, portability, and crowdsourcing. Each

technology contributes in forming the MBD characteristics in

the following way.

• Large-scale and high-speed mobile networks: The growth

of mobile devices and high-speed mobile networks, e.g.,

WiFi and cellular networks, introduces massive and

contentiously-increasing mobile data traffic. This has

been reflected in the following MBD aspects:

– MBD is massive (volume). In 2015, 3.7 exabytes

of mobile data was generated per month which is

expected to increase through the coming years [1].

– MBD is generated at increasing rates (velocity).

MBD flows at a high rate which impacts the latency

in serving mobile users. Long queuing time of re-

quests results in less satisfied users and increased

cost of late decisions.

• Portability: Each mobile device is free to move inde-

pendently among many locations. Therefore, MBD is

non-stationary (volatility). Due to portability, the time

duration for which the collected data is valid for decision

making can be relatively short. MBD analytics should be

frequently executed to cope with the newly collected data

samples.

• Crowdsourcing: A remarkable trend of mobile applica-

tions is crowdsourcing for pervasive sensing which in-

cludes a massive data collection from many participating

users. Crowdsensing differs from conventional mobile

sensing systems as the sensing devices are not owned

by one institution but instead by many individuals from

different places. This has introduced the following MBD

challenges:

– MBD quality is not guaranteed (veracity). This as-

pect is critical for assessing the quality uncertainty

of MBD as mobile systems do not directly manage

the sensing process of mobile devices. Since most

mobile data is crowdsourced, MBD can contain

low quality and missing data samples due to noise,

malfunctioning or uncalibrated sensors of mobile de-

vices, and even intruders, e.g., badly-labeled crowd-

sourced data. These low quality data points affect the

analytical accuracy of MBD.

– MBD is heterogeneous (variety). The variety of MBD

arises because the data traffic comes from many spa-

tially distributed data sources, i.e., mobile devices.

Besides, MBD comes in different data types due to

the many sensors that mobile devices support. For

example, a triaxial accelerometer generates proper

acceleration measurements while a light sensor gen-

erates illumination values.

MBD analytics (value) is mainly about extracting knowledge

and patterns from MBD. In this way, MBD can be utilized

for providing better service to mobile users and creating

revenues for mobile businesses. The next section discusses

deep learning as a solid tool in MBD analytics.

III. DEEP LEARNING IN MBD ANALYTICS

Deep learning is a new branch of machine learning which

can solve a broad set of complex problem in MBD analytics,

e.g., classification and regression. A deep learning model

consists of simulated neurons and synapses which can be

trained to learn hierarchical features from existing MBD

samples. The resulting deep model can generalize and process

unseen streaming MBD samples.

For simplicity, we present a general discussion of deep

learning methods without focusing on the derivations of par-

ticular techniques. Nonetheless, we refer interested readers to

more technical papers of deep belief networks [6] and stacked

denoising autoencoders [7]. A deep model can be scaled to

contain many hidden layers and millions of parameters which

are difficult to be trained at once. Instead, greedy layer-

by-layer learning algorithms [6], [7] were proposed which

basically work as follows:

1) Generative layer-wise pre-training: This stage requires

only unlabeled data which is often abundant and cheap

to collect in mobile systems using crowdsourcing. Fig-

ure 2 shows the layer-wise tuning of a deep model.

Firstly, one layer of neurons is trained using the un-

labeled data samples. To learn the input data structure,

each layer includes encoding and decoding functions:

The encoding function uses the input data and the layer
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Fig. 2: Generative layer-wise training of a deep model. Each

layer applies nonlinear transformation to its input vector and

produces intrinsic features at its output.

parameters to generate a set of new features. Then,

the decoding function uses the features and the layer

parameters to produce a reconstruction of the input data.

As a result, a first set of features is generated at the

output of the first layer. Then, a second layer of neurons

is added at the top of the first layer, where the output

of the first layer is fed as input of the second layer.

This process is repeated by adding more layers until

a suitable deep model is formed. Accordingly, more

complex features are learned at each layer based on the

features that were generated at its lower layer.

2) Discriminative fine-tuning: The model’s parameters

which were initialized in the first step are then slightly

fine-tuned using the available set of labeled data to solve

the problem at hand.

A. Deep Learning Advantages in MBD Analytics

Deep learning provides solid learning models for MBD

analytics. This argument can be supported with the following

advantages of using deep learning in MBD analytics:

• Deep learning scores high-accuracy results which are a

top priority for growing mobile systems. High-accuracy

results of MBD analytics are required for sustainable

business and effective decisions. For example, a poor

fraud detection results in expensive loss of income for

mobile systems. Deep learning models have been reported

as state-of-the-art methods in solving many MBD tasks.

For example, the authors in [8] propose a method for

indoor localization using deep learning and channel state

information. In [9], deep learning is successfully applied

to inference tasks in mobile sensing, e.g., activity and

emotion recognition, and speaker identification.

• Deep learning generates intrinsic features which are

required in MBD analytics. A feature is a measurement

attribute extracted from sensory data to capture the un-

derlying phenomenon being observed and enable more

effective MBD analytics. Deep learning can automatically

learn high-level features from MBD, eliminating the need

for handcrafted features in conventional machine learning

methods.

• Deep Learning can learn from unlabeled mobile data

which minimizes the data labeling effort. In most mo-

bile systems, labeled data is limited, as manual data

annotation requires expensive human intervention which

is both costly and time consuming. On the other hand,

unlabeled data samples are abundant and cheap to collect.

Deep learning models utilize unlabeled data samples for

generative data exploration during a pre-training stage.

This minimizes the need for labeled data during MBD

analytics.

• Multimodal deep learning. The “variety” aspect of MBD

leads to multiple data modalities of multiple sensors (e.g.,

accelerometer samples, audio, and images). Multimodal

deep learning [10] can learn from multiple modalities and

heterogeneous input signals.



4

B. Deep Learning Challenges in MBD Analytics

Discussing MBD in terms of volume only and beyond the

analytical and profit perspectives is incomplete and restricted.

Collecting MBD is unprofitable unless suitable learning meth-

ods and analytics are utilized in extracting meaningful in-

formation and patterns. Deep learning in MBD analytics is

slow and can take a few days of processing time, which does

not meet the operation requirements of most modern mobile

systems. This is due to the following challenges:

• Curse of dimensionality: MBD comes with “volume” and

“velocity” related challenges. Historically, data analyt-

ics on small amounts of collected data (a.k.a. random

sampling) was utilized. Despite the low computational

burdens of random sampling, it suffers from poor perfor-

mance on unseen streaming samples. This performance

problem is typically avoided by using the full set of

available big data samples which significantly increases

the computational burdens.

• Large-scale deep models: To fully capture the information

on MBD and avoid underfitting, deep learning models

should contain millions of free parameters, e.g., a 5-layer

deep model with 2000 neurons per layer contains around

20 million parameters. The model free parameters are

optimized using gradient-based learning [6], [7] which is

computationally expensive for large-scale deep models.

• Time-varying deep models: In mobile systems, the con-

tinuous adaptation of deep models over time is required

due to the “volatility” characteristic of MBD.

To tackle these challenges, we next describe a scalable frame-

work for MBD analytics using deep learning models and

Apache Spark.

IV. A SPARK-BASED DEEP LEARNING FRAMEWORK FOR

MBD ANALYTICS

Learning deep models in MBD analytics is slow and com-

putationally demanding. Typically, this is due to the large

number of parameters of deep models and the large number

of MBD samples. Figure 3 shows the proposed architec-

ture for learning deep models on MBD with Apache Spark.

Apache Spark [2] is an open source platform for scalable

MapReduce computing on clusters. The main goal of the

proposed framework is speeding up MBD decision-making

by parallelizing the learning of deep models to a high perfor-

mance computing cluster. In short, the parallelization of a deep

model is performed by slicing the MBD into many partitions.

Each partition is contained in a resilient distributed dataset

(RDD) which provides an abstraction for data distribution by

the Spark engine. Besides data caching, RDDs of a Spark-

program natively support fault-tolerant executions and recover

the program operations at worker nodes.

In short, our Spark-based framework consists of two main

components: (1) a Spark master and (2) one or more Spark

workers. The master machine initializes an instance of the

Spark driver that manages the execution of many partial

models at a group of Spark workers. At each iteration of the

deep learning algorithm (Figure 2), each worker node learns a

partial deep model on a small partition of the MBD and sends

the computed parameters back to the master node. Then, the

master node reconstructs a master deep model by averaging

the computed partial models of all executor nodes.

A. Parallelized Learning Collections

Learning deep models can be performed in two main steps:

(1) gradient computation, and (2) parameter update (see [6],

[7] for the mathematical derivation). In the first step, the

learning algorithm iterates through all data batches indepen-

dently to compute gradient updates, i.e., the rate of change,

of the model’s parameters. In the second step, the model’s

parameters are updated by averaging the computed gradient

updates on all data batches. These two steps fit the learning

of deep models in the MapReduce programming model [11],

[12]. In particular, the parallel gradient computation is realized

as a Map procedure, while the parameter update step reflects

the Reduce procedure. The iterative MapReduce computing of

deep learning on Apache Spark is performed as follows:

1) MBD partitioning: The overall MBD is first split into

many partitions using the parallelize() API of Spark.

The resulting MBD partitions are stored into RDDs and

distributed to the worker nodes. These RDDs are crucial

to speedup the learning of deep models as the memory

data access latency is significantly shorter than the disk

data operations.

2) Deep learning parallelism: The solution of a deep

learning problem depends on the solutions of smaller

instances of the same learning problem with smaller

datasets. In particular, the deep learning job is divided

into learning stages. Each learning stage contains a set

of independent MapReduce iterations where the solution

of one iteration is the input for the next iteration. During

each MapReduce iteration, a partial model is trained on

a separate partition of the available MBD as follows:

a) Learning partial models: Each worker node com-

putes the gradient updates of its partitions of the

MBD (a.k.a. the Map procedure). During this step,

all Spark workers execute the same Map task in

parallel but on different partitions of the MBD. In

this way, the expensive gradient computation task

of the deep model learning is divided into many

parallel sub-tasks.

b) Parameter averaging: Parameters of the partial

models are sent to the master machine to build

a master deep model by averaging the parameter

calculation of all Spark workers (a.k.a. the Reduce

procedure).

c) Parameter dissemination: The resulting master

model after the Reduce procedure is disseminated

to all worker nodes. A new MapReduce iteration is

then started based on the updated parameters. This

process is continued until the learning convergence

criterion is satisfied.

As a result, a well-tuned deep learning model is generated

which can be used to infer information and patterns from

streaming requests. In the following, we discuss how the
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proposed framework helps in tackling the key characteristics

of MBD.

B. Discussion

The proposed framework is grounded over deep learning

and Apache Spark technologies to perform effective MBD an-

alytics. This integration tackles the challenging characteristics

of MBD as follows.

• Deep learning: Deep learning addresses the “value” and

“variety” aspects of MBD. Firstly, deep learning in MBD

analytics helps in understanding raw MBD. Therefore,

deep learning effectively addresses the “value” aspect

of MBD. MBD analytics, as discussed in this article,

is integral in providing user-customized mobile services.

Secondly, deep learning enables the learning from mul-

timodal data distributions [10], e.g., concatenated input

from accelerometer and light sensors, which is important

for the “variety” issue of MBD.

• Apache Spark: The main role of the Spark platform in the

proposed framework is tackling the “volume”, “velocity”,

and “volatility” aspects of MBD. Essentially, the Spark

engine tackles the “volume” aspect by parallelizing the

learning task into many sub-tasks each performed on a

small partition of the overall MBD. Therefore, no single

machine is required to process the massive MBD volume

as one chunk. Similarly, the Spark engine tackles the

“velocity” point through its streaming extensions which

enables a fast and high-throughput processing of stream-

ing data. Finally, the “volatility” aspect is addressed by

significantly speeding up the training of deep models.

This ensures that the learned model reflects the latest

dynamics of the mobile system.

The proposed framework does not directly tackle the “ve-

racity” aspect of MBD. This quality aspect requires domain

experts to design conditional routines to check the validity

of crowdsourced data before being added to a central MBD

storage.

V. PROTOTYPING CONTEXT-AWARE ACTIVITY

RECOGNITION SYSTEM

Context-awareness [3], [5] has high impact on understand-

ing MBD by describing the circumstances during which the

data was collected, so as to provide personalized mobile

experience to end users, e.g., targeted advertising, healthcare,

and social services. A context contains attributes of informa-

tion to describe the sensed environment such as performed

human activities, surrounding objects, and locations. A context

learning model is a program that defines the rules of mapping

between raw sensory data and the corresponding context

labels, e.g., mapping accelerometer signals to activity labels.

This section describes a proof-of-concept case study in which

we consider a context-aware activity recognition system, e.g.,

detect walking, jogging, climbing stairs, sitting, standing, and

lying down activities. We use real-world dataset during the

training of deep activity recognition models.

A. Problem Statement

Accelerometers are sensors which measure proper accelera-

tion of an object due to motion and gravitational force. Modern

mobile devices are widely equipped with tiny accelerometer

circuits which are produced from electromechanically sensitive

elements and generate electrical signal in response to any

mechanical motion. The proper acceleration is distinctive

from coordinate acceleration in classical mechanics. The latter

measures the rate of change of velocity while the former

measures acceleration relative to a free fall, i.e., the proper

acceleration of an object in a free fall is zero.

Consider a mobile device with an embedded accelerometer

sensor that generates proper acceleration samples. Activity

recognition is applied to time series data frames which are

formulated using a sliding and overlapping window. The
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number of time-series samples depends on the accelerome-

ter’s sampling frequency (in Hertz) and windowing length

(in seconds). At time t, the activity recognition classifier

f : xt → S matches the framed acceleration data xt with the

most probable activity label from the set of supported activity

labels S = {1, 2, . . . , N}, where N is the number of supported

activities in the activity detection component.

Conventional approaches of recognizing activities require

handcrafted features, e.g., statistical features [3], which are

expensive to design, require domain expert knowledge, and

generalize poorly to support more activities. To avoid this, a

deep activity recognition model learns not only the mapping

between raw acceleration data and the corresponding activity

label, but also a set of meaningful features which are superior

to handcrafted features.

B. Experimental Setup

In this section, we use the Actitracker dataset [13] which

includes accelerometer samples of 6 conventional activities

(walking, jogging, climbing stairs, sitting, standing, and lying

down) from 563 crowdsourcing users. Figure 4 (a) plots

accelerometer signals of the 6 different activities. Clearly,

high frequency signals are sampled for activities with active

body motion, e.g., walking, jogging, and climbing stairs. On

the other hand, low frequency signals are collected during

semi-static body motions, e.g., standing, sitting, and lying

down. The data is collected using mobile phones with 20Hz

of sampling rate, and it contains both labeled and unlabeled

data of 2, 980, 765 and 38, 209, 772 samples, respectively. This

is a real-world example of the limited number of labeled

data compared with unlabeled data as data labeling requires

manual human intervention. The data is framed using a 10-

sec windowing function which generates 200 samples of

time-series samples. We first pre-train deep models on the

unlabeled data samples only, and we then fine-tune the models

on the labeled dataset. To enhance the activity recognition

performance, we use the spectrogram of the acceleration signal

as input of the deep models. Basically, different activities

contain different frequency contents which reflect the body

dynamics and movements.

We implemented the proposed framework on a shared clus-

ter system (https://www.acrc.a-star.edu.sg) running the load

sharing facility (LSF) management platform and RedHat

Linux. Each node has 8 cores (Intel Xeon 5570 CPU with

clock speed of 2.93Ghz) and a total of 24GB RAM. In our

experiments, we set the cores in multiples of 8 to allocate

the entire node’s resources. One partial model learning task

is initialized at each computing core. Each task learns using

a data batch consisting of 100 samples for 100 iterations.

Clearly, increasing the number of cores results in quicker

training of deep models. Finally, it is important to note that dis-

tributed deep learning is a strong type of regularization. Thus,

regularization techniques, such as the sparsity and dropout

constraints, are not recommended to avoid the problem of

underfitting.

TABLE I: Activity recognition error of deep learning and other

conventional methods used in [4]. The conventional methods

use handcrafted statistical features.

METHOD RECOGNITION ERROR (%)

Multilayer perceptrons 32.2

Instance-based learning 31.6

Random forests 24.1

Deep learning (5 layers of 2000

neurons each)

14.4

C. Experimental Results

1) The impact of deep models: Figure 4 (b) shows the

activity recognition error under different setups of deep models

(number of hidden layers and number of neurons at each

layer). Specifically, the capacity of a deep model to capture

MBD structures is increased when using deeper models with

more layers and neurons. Nonetheless, using deeper models

evolves a significant increase in the learning algorithm’s

computational burdens and time. An accuracy comparison

of deep activity recognition models and other conventional

methods is shown in Table I. In short, these results clarify that

(1) deep models are superior to existing shallow context learn-

ing models, and (2) the learned hierarchical features of deep

models eliminate the need for handcrafted statistical features

in conventional methods. In our implementation, we use early

stopping to track the model capacity during training, select

the best parameters of deep models, and avoid overfitting.

The underfitting is typically avoided by using deeper models

and more neurons per layer, e.g., 5 layers with 2000 neurons

per layer. Next, a speedup analysis is presented to show the

importance of the Spark-based framework for learning deep

models on MBD.

2) The impact of computing cores: The main performance

metric of cluster-based computing is the task speedup metric.

In particular, we compute the speedup efficiency as T8

TM

, where

T8 is the computing time of one machine with 8 cores, and

TM is the computing time under different computing power.

Figure 4 (c) shows the speedup in learning deep models when

the number of computing cores is varied. As the number of

cores increases, the learning time decreases. For example,

learning a deep model of 5 layers with 2000 neurons per

layer can be trained in 3.63 hours with 6 Spark workers. This

results in the speedup efficiency of 4.1 as compared to a single

machine computing which takes 14.91 hours.

3) MBD veracity: A normalized confusion matrix of a deep

model is shown in Figure 5. This confusion matrix shows

the high performance of deep models on a per-activity basis

(high scores at the diagonal entries). The incorrect detection

of the “sitting” activity instead of the “lying down” activity is

typically due to the different procedures in performing the

activities by crowdsourcing users. This gives a real-world

example of the “veracity” characteristic of MBD, i.e., uncer-

tainties in MBD collection.

In the next section, we identify some notable future research

directions in MBD collection, labeling, and economics.
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VI. FUTURE WORK

Based on the proposed framework, the following future

work can be further pursued.

A. Crowd Labeling of MBD

A major challenge facing MBD analysts is the limited

amounts of labeled data samples as data labeling is typically a

manual process. An important research direction is proposing

crowd labeling methods for MBD. The crowd labeling can be

designed under two main schemes: (1) paid crowd labeling,

and (2) embedded crowd labeling. In the paid crowd labeling,

the crowdsourcing mobile users annotate mobile data and are

accordingly paid based on their labeling performance and

speed. Under this paid scheme, optimal budget allocation

methods are required. In the embedded crowd labeling, data

labeling can be also achieved by adding labeling tasks within

mobile application functional routines, e.g., CAPTCHA-based

image labeling [14]. Here, the mobile users can access more

functions of a mobile application by indirectly helping in the

data labeling process. More work is required for designing

innovative methods for embedded crowd labeling without

disturbing the user experience or harming the mobile appli-

cation’s main functionality.

B. Economics of MBD

MBD, as discussed in this article, is about extracting

meaningful information and patterns from raw mobile data.

This information is used during decision making and to

enhance existing mobile services. An important research di-

rection is proposing business models, e.g., pricing and auction

design [15], for selling and buying MBD among mobile

organizations and parties.
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C. Privacy and MBD Collection

As MBD is people-centric, mobile users would be con-

cerned about the risks of sharing their personal mobile data

with a service server. Thus, a low percentage of users will opt

out of sharing their personal data unless trustworthy privacy

mechanisms are applied. Meanwhile, anonymized data collec-

tion, i.e., data that could not be used to identify individuals,

is adopted by many services. An alternative research direction

is proposing fair data exchange models which encourage the

sharing of mobile data in return of rewarding points, e.g.,

premium membership points.

VII. CONCLUSIONS

In this article, we have presented and discussed a scalable

Spark-based framework for deep learning in mobile big data

analytics. The framework enables the tuning of deep models

with many hidden layers and millions of parameters on a com-

puting cluster. Typically, deep learning provides a promising

learning tool for adding value by learning intrinsic features

from raw mobile big data. The framework has been validated

using a large-scale activity recognition system as a case study.

Finally, important research directions on mobile big data have

been outlined.
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