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SUMMARY

This article presents the design, implementation and application of Mobile-C, an IEEE Foundation
for Intelligent Physical Agents (FIPA) compliant agent platform for mobile C/C++ agents. IEEE FIPA
standards are a set of specifications designed to ensure the interoperation between agents in a heterogeneous
network. Mobile-C conforms to the FIPA standards both at agent and platform level. Mobile-C extends
FIPA standards to support mobile agents by integrating an embeddable C/C++ interpreter—Ch—
into the platform as a mobile agent execution engine and defining a mobile agent mobility protocol
to direct agent migration process. Agent migration in Mobile-C is achieved through FIPA agent
communication language (ACL) messages encoded in XML. Using FIPA ACL messages for agent migration
provides a straightforward but effective way for inter-platform agent migration in FIPA compliant agent
systems as both agent communication and migration can share the same communication mechanism.
Choosing scriptable C/C++ as a mobile agent language allows mobile agents easy interfacing with low-level
software modules and underlying hardware. Mobile-C has been used to simulate highway traffic detection
and management. The agent-based traffic detection and management system uses agent technology for
real-time distributed traffic information fusion. Mobile agents in the system are used for dynamic code
deployment and performing unanticipated actions. The application of agent technology shows a great
potential for enhancing the interoperability, flexibility and distributed computing capabilities of intelligent
transportation systems. Copyright c© 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the past decade, distributed middleware, such as Object Management Group’s (OMGs) Common

Object Request Broker Architecture (CORBA), Sun’s Java Remote Method Invocation (RMI),

Microsoft’s Distributed Component Object Model (DCOM), SOAP, the OMG’s CORBA Common

Object Services, Sun’s Java 2 Enterprise Edition (J2EE) and Microsoft’s .NET Web services, has

emerged as a set of software protocols and service layers that help to solve the problems specifically

associated with heterogeneity and interoperability in distributed systems [1]. The rapid progress of

distributed object computing (DOC) middleware has provided enhanced environments for managing

distributed resources and the systems built on this technology have gained wide applications in desktop

business information systems. However, the commercial off-the-shelf DOC middleware technology is

not yet mature enough to cover the realm of autonomous, mobile, dynamic, time-critical and embedded

distributed systems [2]. To satisfy these requirements, further research is needed to generate more

flexible middleware that will be able to adapt robustly to dynamically changing requirements and

environmental conditions.

Agent-based computing has emerged as a powerful technology for the development of distributed

complex software systems in the 1990s [3–5]. Indeed, many researchers believe that agents represent

the most important new paradigm for software development since object-oriented design [6], and the

concept of intelligent agents has already found a diverse range of applications in manufacturing [7–9],

process control and real-time control systems [10–12], electronic commerce [13–15], network

management [16,17], transportation systems [18,19], information management [20,21], scientific

computing [22,23], health care [24] and entertainment [25]. The reason for the growing success of

agent technology in these areas is that the inherent distribution allows for a natural decomposition of

the system into multiple agents that interact with each other to achieve a desired global goal [19].

The agent technology can significantly enhance the design and analysis of problem domains under

the following three conditions [26]: (1) the problem domain is geographically distributed; (2) the

subsystems exist in a dynamic environment; and (3) subsystems need to interact with each other more

flexibly. Mobile agents are software components that are able to move between different execution

environments [27]. Several benefits that mobile agents provide make mobile agent technology a good

programming paradigm for building agile distributed systems [28]. Mobile agents can be created

dynamically at runtime and dispatched to source systems to perform tasks with the most updated code

and algorithms. Mobility significantly enhances the flexibility and adaptability of large scale distributed

systems.

This article presents Mobile-C [29,30], an IEEE the Foundation for Intelligent Physical Agents

(FIPA) [31] compliant agent platform, and its application in real-time traffic detection and management

systems. FIPA is one of two international agent standards, FIPA and OMGs Mobile Agent System

Interoperability Facility (MASIF) [32]. The strength of FIPA standards is that it promotes the

interoperation of agents and agent systems across heterogeneous agent platforms. To support this,

FIPA has been working on specifications that range from agent platform architecture to support inter-

agent communication, communication languages and content languages for expressing exchanging

messages, ontologies to define semantic contents of messages and interaction protocols that direct

agent communication through an admissible sequence of messages between agents. FIPA has been

increasingly accepted in the agent community, and the compliance with FIPA standards has been

recognized as a crucial property for the interoperability of agents.
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The development of Mobile-C is primarily motivated by applications that contain low-level

hardware, such as detection systems and control systems. Since most of these types of systems

are written in C/C++, Mobile-C chooses C/C++ as the mobile agent language for easy interfacing

with control programs and underlying hardware. In an application presented in Section 6, distributed

control programs are designed to be wrapped into distributed stationary agents. Being compliant with

FIPA standards allows these heterogeneous stationary agents and mobile agents in the system to

interoperate with each other to accomplish complicated tasks. Since the mobility service is optional in

the FIPA standards, there is no mandatory component to support mobile agents in the platform abstract

architecture. Mobile-C extends FIPA standards and integrates an embeddable C/C++ interpreter—Ch

[33–35]—into the agent platform as a mobile agent execution engine. An agent mobility protocol

has been designed to regulate the entire migration operation. Mobile agent migration in Mobile-C is

achieved through FIPA agent communication language (ACL) messages. Using FIPA ACL messages

for agent migration in FIPA compliant agent systems simplifies agent platform, reduces development

effort and easily achieves inter-platform migration through well-designed communication mechanisms

provided in the agent platform. Messages for agent communication and migration are expressed in

FIPA ACL and encoded in XML.

Mobile-C has been used to simulate highway traffic detection and management for Intelligent

Transportation Systems (ITSs). Agent-based real-time traffic detection and management system is a

decentralized, autonomous, interoperable and scalable system. The system includes both stationary

agents and mobile agents. The stationary agents are usually located at distributed detection stations

and transportation management center (TMC). The communication between agents allows detection

stations to cooperate with each other to perform distributed real-time traffic information fusion, which

will dramatically reduce data transmission and the response time to incidents. The system also used

mobile agents to perform unanticipated actions by dynamically deploying new algorithms and code.

The remainder of the article is structured as follows. Section 2 examines several notable mobile

agent systems. Section 3 introduces the system architecture of Mobile-C. Section 4 presents Mobile-C

mobility facilities. Section 5 discusses the implementation issues of the main components of Mobile-C

agent platform. Section 6 describes a sample application of Mobile-C for highway traffic detection and

management. Sections 7 and 8 discuss and summarize the presented work, respectively.

2. RELATED WORK

An increasing interest in agent technology results in numerous mobile agent systems being developed

in the past decade. This section reviews seven notable mobile agent systems: Mole, Aglets, Concordia,

D’Agents, Ara, TACOMA, and JADE. The first six mobile agent systems are not compliant to agent

standards, whereas JADE is a FIPA compliant agent system.

Mole [36] is one of the earliest mobile agent systems to have been developed in Java. Mole supports

weak migration. Mole offers the common means of communication mechanisms, including message

passing and remote method invocation. In addition, Mole provides a session-oriented communication

concept. Agents that want to communicate with each other have to establish a session before the actual

communication begins.

Aglets [37] is another one of the earliest Java-based mobile agent systems and has been used in

some commercial applications. The Aglet system supports weak migration only, using the standard
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Java object serialization mechanism to marshal and unmarshal the state of the aglet into a stream.

Aglet defines its own transport protocol, Agent Transfer Protocol, modelled on top of HTTP. It also

provides access control and message protection to prevent attacks from malicious agents and server

authentication to avoid agents moving to malicious hosts and blocking suspicious agents coming from

malicious hosts [38].

Concordia [39] is a typical Java-based agent system, running on top of a standard Java virtual

machine. The Concordia server, which consists of a set of Concordia managers, is the major building

block of the system and runs on each node of a Concordia network. It provides services for agent

communication, migration, security, persistence and other high-level services. Concordia provides

two inter-agent communication mechanisms, asynchronous distributed events and collaboration, built

on top of a standard Java remote method invocation. Concordia supports weak migration only.

Within Concordia, an agent can travel to multiple hosts based on its Itinerary, which specifies multiple

destinations to which an agent travels and the work for the agent to accomplish at each location.

Agent-Tcl [40] is a mobile agent system originally supporting mobile agents written in Tcl scripting

language. Subsequently, the system has been extended to allow the programmer to write mobile

agents in multiple mobile agent languages and renamed to D’Agents [41]. The most recent version of

D’Agents supports three different programming languages, Tcl, Scheme and Java. D’Agents supports

strong mobility for Tcl and Java, moving all variables and heap data with the agent. The agent’s code is

also shipped to the target host as part of the agent’s state image. The core D’Agents supports three low-

level communication mechanisms, messages, streams and events. High-level communication services,

such as directory service, are provided through libraries or stationary service agents.

Ara [42,43] is a platform that supports multiple agent languages and strong migration. Agents in

Ara can be written in three languages: Tcl, C/C++, and Java. Agents programmed in one of these

three languages are executed within an interpreter for the language and supported by a special runtime

system, the core of Ara. Ara offers synchronous communication via service points and asynchronous

communication by means of a tuple space for local agent communication. The basic security in the Ara

is ensured by interpreters.

TACOMA [44] (Tromsø And Cornell Mobile Agents) project is aimed to study scientific and

engineering issues raised in the agent programming paradigm. A series of TACOMA prototypes have

been experimented. Version 1.0 provided basic support for agents written in the Tcl language. Later,

the system has been extended to support multiple languages. To support agents on small PDA devices,

the TACOMA team built TACOMA LITE with a small footprint. TACOMA supports weak mobility.

Agent states and initialization data are encapsulated in a data structure called briefcase. Agents in

TACOMA communicate with each other through passing briefcases.

JADE (Java Agent DEvelopment Framework) [45] is a software framework for the implementation

of agent systems through a middle-ware that complies with the FIPA specifications. JADE employs

three methods to dispatch messages among agents. A message is delivered through Java local calls

when agents are in the same container, Remote Method Invocation (RMI) calls among agents in

different containers of the same platform and FIPA delivery when crossing platform boundaries.

The agent mobility in JADE is achieved through Java object serialization.

Although numerous mobile agent systems have been implemented, many of them have been

implemented in Java. There are several mobile agent systems supporting mobile C/C++ agents,

including Ara and TACOMA described above. These two systems are not compliant to agent standards.

In Ara, mobile agents written in C/C++ are interpreted by its customized C/C++ interpreter—Mobile
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Agent Computing Environment (MACE) [42,46]. MACE interprets customized MACE byte code in

a way similar to Java interpreting Java byte code. MACE byte code is generated in two steps. First,

a GUN C front end generates Register Transfer Language (RTL) code from the source code of an agent

in a format for the Motorola MC680X0 microprocessor. Next, a MACE compiler transforms RTL code

into MACE byte code. Since MACE byte code is about five times longer than the equivalent Motorola

MC680X0 native code [42], the Ara core compresses the agent code during migration. In TACOMA,

mobile agent written in C is not interpreted. Instead, mobile agent source code sent to remote hosts is

compiled by different C compilers in the remote hosts and the resulting binary code is then executed

by vm bin virtual machines [47].

Nine implementations in ten publicly available FIPA-compliant agent platforms provided at [48]

have been implemented in Java. The remaining one is implemented by April programming language

and the InterAgent Communication System. The mobile agent system Mobile-C presented in this

article is written in C with a small footprint. Mobile-C uses an embeddable C/C++ interpreter—Ch

[33–35]—to support the execution of mobile agent C/C++ source code. The interface between the

mobile agent platform and mobile agents can be easily achieved through Ch Software Development

Kit (SDK) and Embedded Ch. Mobile-C is compliant to the FIPA standards and the inter-agent

communication and inter-platform agent migration are based on FIPA ACL messages encoded in XML.

3. THE SYSTEM ARCHITECTURE OF MOBILE-C

The system architecture of Mobile-C is shown in Figure 1. Agencies are the major building blocks

of the system and are installed in each node of Mobile-C. They are the actual runtime environment

for stationary agents (SA) and mobile agents (MA). They also serve as ‘home bases’ for locating and

messaging mobile and detached agents, collecting knowledge about a group of agents and providing an

environment in which a mobile agent executes [49]. The core of an agency is the agent platform, which

provides local services for agents and proxies to access remote agencies. An agent platform represents

the minimal functionality required by an agency in order to support the execution of agents. The main

functionalities of an agent platform can be summarized as follows.

• Agent Management System (AMS): AMS manages the life cycle of agents. It controls the

creation, registration, retirement, migration and persistence of agents. AMS maintains a directory

of Agent Identifiers (AID), which contains transport addresses (amongst other things) for

registered agents. Each agent must register with an AMS in order to get a valid AID.

• Agent Communication Channel (ACC): ACC routes messages between local and remote entities,

realizing messages using FIPA ACL. This service is responsible for all of the remote interactions

that take place between the distributed components, such as inter-agent communication and inter-

platform agent migration. All of the interactions can be performed via ACL message exchange.

• Agent Security Manager (ASM): ASM is responsible for maintaining security policies for the

platform and infrastructure, such as communication and transport-level security.

• Directory Facilitator (DF): DF serves yellow page services. Agents in the system can register

their services with DF for providing to the community. They can also look up required services

with DF.
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Figure 1. The system architecture of Mobile-C.

• Agent Execution Engine (AEE): AEE serves as the execution environment for the mobile agents.

Mobile agents must reside inside an engine to execute. AEE has to be platform independent in

order to support a mobile agent executing in a heterogeneous network.

4. SYSTEM SUPPORT FOR MOBILE AGENTS IN MOBILE-C

The mobility service is optional in the FIPA standards. There are no mandatory components to

support mobile agents in the agent platform abstract architecture. One of the FIPA specifications,

which specifies the minimum requirements and technologies to allow agents to take advantage of

mobility, is in ‘Deprecated’ status and may be obsolete after a grace period. To support mobile agents,

Mobile-C has extended FIPA standards that we will describe in the remainder of this section.

4.1. Mobile agent execution engine

Running foreign code on a host introduces numerous new requirements on a runtime environment.

The most obvious requirements are the portability and security of mobile code execution [41].

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1711–1733
DOI: 10.1002/spe



MOBILE-C 1717

Figure 2. System support for mobile agents.

A common solution for these requirements is executing mobile agents in a virtual environment, an

interpreter or a virtual machine. This approach is appropriate when considering the requirements

of portability and security. Since mobile agents run in a virtual environment, they are platform

independent once the environment has been ported to all necessary platforms. Furthermore, the host

protection can be achieved because the virtual environment can completely control the access of

interpreted mobile agents to the host systems.

Mobile-C chooses C/C++ as mobile agent language. C/C++ is suitable for creating complex mobile

agents because C/C++ is highly structured with a large and powerful set of functions. C/C++ is one

of the most popular programming languages, which has been widely used for system programming

and also for different applications. Choosing C/C++ as mobile agent language makes a huge body of

existing C/C++ code available for reuse in mobile agent programs. Moreover, comparing with other

languages, C has a unique advantage of easy interface with low-level hardware. For agent systems that

are implemented in C/C++, there is an additional advantage for C/C++ mobile agents. C/C++ mobile

agents can easily communicate with the agent platform because both programs share the same data

structures, function prototypes and language syntaxes. The interface between platform space and the

mobile agent space can be easily achieved.

Mobile-C integrates an embeddable C/C++ interpreter—Ch [33–35]—into the agent platform as

a mobile agent execution engine as shown in Figure 2. To prevent malicious mobile agents from

tampering outside their own boundary, mobile agents executing within Mobile-C are protected from

each other, as well as agent platforms. Each mobile agent is interpreted inside a Ch, which is embedded
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into the system as a separate thread. A mobile agent runs within an interpreter, controlled and served

by the agent platform. An agency creates an AEE thread when receiving a request to execute a

mobile agent and terminates this thread after the execution of the mobile agent. The agent platform

of an agency mediates mobile agents to communicate with other agents or access the host system.

The interpreter restricts mobile agents by invoking only allowed functions and accessing their own

address space in the interpreter space. The agent platform memory space exists outside the interpreter

space. The interface between interpreter space and agent platform space can be accomplished by Ch

SDK and Embedded Ch, which will be introduced in detail in the next subsection.

Ch is an embeddable C/C++ interpreter for cross-platform scripting, shell programming, numerical

computing and embedded scripting. Ch supports all of the language features and standard libraries

of the ISO C90 standard, major new features in C99 and classes in C++. It also supports an

increasing number of C/C++ libraries, including POSIX, TCP/IP socket, Winsock, Win32, X11/Motif,

GTK+, OpenGL, ODBC, SQLite, CGI, LAPACK, LDAP, PCRE, Gnome Libxml2, Oracle XDK for

XML, NAG statistics library, Intel OpenCV for computer vision, ImageMagick for image processing,

SigLib for signal processing and National Instruments’ NI-DAQ and NI-Motion. For the engineering

application purpose, Ch extends C and provides two- and three-dimensional graphical libraries for

graphical output, computational arrays for matrix computation and advanced numerical analysis

functions based on LAPACK for linear system analysis. Since Ch is a super set of C, the mobile agent

language in Mobile-C follows the C standard. All of the functions and APIs available in the C standard

and C/C++ libraries listed above can be used to model mobile agents. More information about Ch can

be found in [35].

Ch has the following security mechanisms. First, from the language point of view, Ch is designed

to be type-safe and secure. Pointers and dynamic memory allocation are powerful features of C/C++.

However, inexperienced developers might lack the confidence to use them. Inappropriate handling of

pointers and memory allocation/deallocation may cause a program crash. Ch provides an additional

built-in string type with automatic memory management to resolve this problem. It also automatically

checks the range of strings and arrays to avoid memory corruption. In addition, safe Ch is introduced

as a restricted shell to run remote code obtained from the open network. Similarly to a Java virtual

machine executing Java applets, safe Ch uses a sandbox security model to provide security protection.

4.2. The interface between the mobile agent space and the agent platform space

An agent execution engine is a dedicated environment for executing mobile agent code. In Mobile-C,

an embeddable C/C++ interpreter—Ch—is used as the agent execution engine for mobile agents.

Ch runs in a separate thread, and each mobile agent runs in its own Ch environment. Ch is dynamically

embedded into the agent platform on arrival of each mobile agent. Ch SDK and Embedded Ch [35]

serve as the interface between mobile agent space (Ch space) and agent platform space (binary C/C++

space) as shown in Figure 3. Ch SDK enables mobile agents to access global variables in the agent

platform space or call functions in the compiled C/C++ libraries, such as static libraries, shared libraries

or Dynamically Linked Libraries (DLLs). Embedded Ch allows agent platforms to run mobile agent

code, invoke mobile agent functions, or access variables in the mobile agent space. With the power

of Ch SDK and Embedded Ch, mobile agents in the interpreter space can easily access the host

system—calling system functions and accessing variables in the binary space. On the other hand,

C/C++ programs can also call functions and access variables in the mobile agent space.
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Figure 3. The interface between mobile agent space and agent platform space.

4.3. Mobile agent migration

Agent migration has been defined as a process in which an agent changes its executing host during the

life cycle of the agent. An agent state is composed of the execution state and the data state. An agent’s

execution state mainly refers to the current control information, such as program counter, and all of

the stack information that is required to characterize the current execution point. An agent’s data state

consists of essential properties of the agent, the internal and global data. According to whether an

execution state is transferred, an agent can migrate in two different ways: strong migration, and weak

migration. Strong migration means that all of the agent execution state and data state are captured and

transferred to a target host. After a strong migration, the agent continues to execute its program exactly

at the point at which it has been interrupted before the migration. Weak migration means that only the

data state is transferred from one host to another.

Since the current version of Ch does not offer the capability to capture the execution state of a

process or thread, Mobile-C supports weak migration in the current implementation. The task of a

mobile agent is divided into multiple subtasks similar to the approach presented in [50]. These subtasks

can be performed in different hosts and are listed in a task list. New subtasks can be added into

the list and the task list can be modified dynamically, based on the new conditions. The ability to

dynamically change the task list significantly improves the flexibility of a mobile agent. However, once

a subtask has started to execute in a certain host, the mobile agent cannot move until the termination of

the execution. Agent migration in Mobile-C is achieved through ACL messages encoded in XML,

which convey agents as the content of messages. Using FIPA ACL messages for agent migration
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Figure 4. Agent migration based on a task list and a task progress pointer.

in FIPA compliant systems achieves inter-platform migration through mandatory communication

mechanisms in the agent platform. A mobile agent message contains the data state and code of an agent.

The data state of a mobile agent includes general information of a mobile agent and tasks that the

mobile agent is going to perform in destination hosts. The general information of a mobile agent

includes agent name, agent owner and the home agency that creates the mobile agent. Task information

includes number of tasks, a task progress pointer and the description of each task. During agent

migration, the return results from previous tasks and the values of global variables are also encapsulated

into the agent message. The strategy to resume agent execution after migration uses a task progress

pointer as shown in Figure 4.

4.4. Agent mobility protocol

The process of agent migration can be triggered by an agent itself or users through the graphical user

interface (GUI) via AMS. The agent mobility protocol that realizes the entire migration operation can
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Figure 5. The agent mobility protocol.

be expressed in agent UML [51] as shown in Figure 5. The description of each interaction step is given

below.

1. The local agent platform sends a ‘Request’ message with the mobility requirements of the mobile

agent to the remote agent platform.

2. If the migration request is accepted, the remote agent platform sends an ‘Agree’ message;

otherwise, a ‘Refuse’ message.

3. Once the migration is accepted, the local agent platform wraps the information related to the

mobile agent, including agent code and data state necessary to resume agent state, into a mobile

agent message. Then, the ACL mobile agent message with type ‘Mobile-Agent’ is delivered to

the destination agent platform.

4. When the remote agent platform receives this ACL mobile agent message, the remote agent

platform retrieves the agent code and data state from the mobile agent message. It then requests

to create a new thread and resumes the execution of the mobile agent.

5. After the remote agent platform successfully resumes the execution of the mobile agent, it

notifies the source agent platform with an ‘Inform’ ACL message. The source agent platform

then destroys the mobile agent and terminates the agent thread.
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Figure 6. The program structure of an agency.

5. THE IMPLEMENTATION OF AGENCIES

Agencies run in each node of the network in Mobile-C. From the programming point of view, an

agency is a multi-thread server program. The program structure of an agency is shown in Figure 6.

When the execution starts, the agency first initializes the system and creates threads for all of the

components in the agent platform. After system initialization, the agency waits for defined events.

When the agency receives a request to run a mobile agent, it creates a new thread and embeds

an embeddable C/C++ interpreter—Ch—into the thread for executing mobile agent code. After the

mobile agent migrates to other hosts, this thread is terminated automatically. If the agency receives a

termination request, it terminates the execution of agent platform and the system itself. In the current

Mobile-C implementation, each mobile agent runs in an Embedded Ch inside its own thread. The use

of multiple threads to implement multiple agents is much more efficient than a multi-process approach

because the start-up and termination of multi-processes and expensive Inter-Process Communication

(IPC) are avoided. Multiple mobile agents in a common address space will not introduce a memory

protection problem because protection is already ensured by interpreters. The agency governs mobile

agent threads, and the agent platform mediates interaction among agents and controls mobile agents

accessing to the host system.

The agent platform is the core of an agency. As described in Section 3, the main components of

an agent platform are AMS, ASM, DF, ACC and AEE. The agent platform is initiated when the
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Figure 7. The multi-thread implementation of an agent platform.

agent system starts. The agent platform is also a multi-thread program. Each component works in

an individual thread, which ensures that all of the components can work concurrently as shown in

Figure 7. AMS is responsible for managing agents, including creation, registration and migration.

All of the registered agents are records in an agent list. The node of the agent list contains information

for each agent, such as agent type, AID for stationary agent and data state for mobile agents. AMS is

also responsible for accepting and dispatching mobile agents, including creating an object of a mobile

agent from a mobile agent message, requesting for executing and suspending the execution of a mobile

agent and generating a mobile agent message to pack the data state and code of a mobile agent. The DF

manages agent services registered with it. To speed up searching a request service, a Service Hash Table

and two types of linked lists are designed to record available agent services.

According to the FIPA specifications, an agency should provide mechanisms for both receiving and

sending messages. This requirement is satisfied by a listening thread, a connecting thread and an ACC

processing thread as shown in Figure 7. The listening thread is used to listen for client connections.

Once it accepts a new client connection, it adds this client to a connection list. On the other hand, the

connecting thread is responsible for connecting to other hosts. The ACC processing thread processes

linked lists of client connections and requests for connecting remote hosts. ACC facilitates the remote

horizontal communication via ACL messages, such as remote agent to agent communication and

agent platform to agent platform communication. Remote horizontal communication in Mobile-C is

implemented on top of TCP/IP. The transport protocol uses HTTP. Messages are sent asynchronously to

a recipient agent identified by its global unique identifier. The local agent to agent platform information

exchange is achieved by Ch SDK and Embedded Ch, an interface between agent platform space (binary

C/C++ space) and mobile agent space (Ch space or C/C++ script space).
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6. APPLICATION: AGENT-BASED REAL-TIME TRAFFIC DETECTION AND

MANAGEMENT SYSTEM

6.1. Overview

The domain of traffic and transportation management is well suited for an agent-based approach

because of its geographically distributed and dynamic changing nature [52]. However, the applications

of agent technology in this field are primarily seeking the usage of intelligent agents for simulation

purposes [53,54]. Most applications that address real-world roadway network management are still at

the research stage [18,19,26]. Our research project, agent-based real-time traffic detection and man-

agement system (ABRTTDMS) [55] aims at providing autonomous traffic information fusion for ITSs.

Real-time traffic information is the core of ITSs. The current ITS information architecture is typically

centralized. The raw data from the field surveillance systems are transmitted to the TMC, and the

computation of multi-site statistics has to be performed at the TMC. The delay of data transmission

and processing would affect the evaluation of traffic flow at real-time and slows the response process to

traffic incidents. Furthermore, most of the existing surveillance systems are proprietary and are not able

to interoperate with each other. The integration of different detection systems is, therefore, difficult and

costly.

The agent and advanced communication technology allow application developers to enhance inter-

operability and distributed computing capability of information systems in ITSs. The interoperability

and cooperation are critically needed in making decisions based on information across systems,

organizational and jurisdictional boundaries. The distributed computing capability enables detection

stations to cooperate with each other in a certain area to perform traffic information fusion, which will

dramatically reduce the response time to incidents in an emergency. The goal of the ABRTTDMS is to

add interoperability and distributed computing capability to the existing centralized traffic detection

and management information systems. This goal can be achieved by wrapping detection stations

to distributed agents. Compliance with FIPA standards allows distributed agents interoperating with

each other and exchanging information across multiple sites. The integration system can combine

information from multiple detection stations and systems, evaluate traffic flow, respond traffic flow

changes and evaluate operational responses to traffic flow changes in real-time. The integration of

data from multiple detection stations and systems will help operations become more efficient by

enabling a more comprehensive view of the environment. In addition to stationary distributed agents,

ABRTTDMS uses mobile agent technology to further enhance the flexibility and adaptability of traffic

detection and management systems. The use of mobile agents in the system will be further discussed

in Section 6.2.

The system architecture of the ABRTTDMS has been designed to have multiple levels as shown

in Figure 8. The lowest level is composed of various detectors such as loop detectors [56], laser

detectors [57] and video cameras [58]. Laser detection agents (LRDAs), loop detector agents (LPDAs),

and video camera detector agents (VCDAs) are used to process the output of the corresponding

detectors and provide the desired intelligence. A traffic detection execution system (TDES) agent

coordinates all of the LRDAs, LPDAs, and VCDAs in a sub-network and communicates with other

TDES agents and an upper-level TMC agent. The TMC agent delegates tasks to the lower-level agents

and analyzes the information from these agents. It also dispatches mobile agents to different agencies

to perform certain tasks. As the system architecture is open, new detection systems can be easily

integrated into the system by wrapping them into agent-based sub-systems.
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Figure 8. The system architecture of the ABRTTDMS.

Either laser detectors or loop detectors can detect the real-time traffic parameters. In the current

ABRTTDMS implementation, real-time traffic parameters are detected by the laser-based vehicle

detection system shown in Figure 9. The detection system was developed in the Integration Engineering

Lab at the University of California, Davis sponsored by Caltrans [57,59,60]. The laser-based detectors

are designed to detect the delineations, such as length and width, as well as velocities of passed vehicles

on highways. The real-time detection data are sent to LRDAs continuously.

The video cameras in the system are used to verify the incidents. Multiple types of cameras may be

employed to meet different purposes. For example, omni-view cameras can be used to provide a much

broader range of coverage than standard rectilinear cameras, and infrared cameras can be used during

the night time [61]. The VCDA controls the operation of different cameras, processes the video stream

and estimates the required traffic parameters.

6.2. Mobile agents in ABRTTDMS

The ABRTTDMS has two types of agents: stationary agents, and mobile agents. LRDAs, LPDAs,

VCDAs, TDES agents and TMC agent are stationary agents. Mobile agents in the ABRTTDMS are

used for dynamic code deployment and performing unanticipated actions. There are instances where

Homeland Security attempts to track individual vehicles. A mobile agent with vehicle signatures

filtering and re-correlating data between stations as needed might be a good solution for this purpose.

One of the other useful applications is to obtain traffic information that is not available in the system.

The TMC incoming data, data format and traffic parameters calculated from these data are fixed in

the current traffic information systems. For the functionality that was not implemented at the design

stage, the existing code cannot provide required information. To obtain additional information, raw data
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Figure 9. A laser-based vehicle detection system.

have to be sent to the TMC. The raw data usually generated by detectors are huge. Instead of moving

raw data, we move computation to the data source. A mobile agent equipped with an appropriate

computational logic can migrate through specified stations in the network. At each station it accesses

raw data, processes raw data locally with new algorithms and sends results back to its dispatcher—the

TMC agent. Using mobile agents can avoid transferring a huge volume of raw data to the TMC, reduce

the network transmission load, overcome the network latency and provide secure data access. We will

now give a simulated application example of using Mobile-C in the ABRTTDMS.

In this example, the real-time vehicle information in the ABRTTDMS is saved in geographically

distributed databases in detection stations as shown in Table I. The databases have been implemented

in a popular open source database—MySQL. For the quick evaluation of traffic conditions at several

nodes in the network, a mobile agent is a promising approach for performing this dynamic information

query task. Figure 10 shows an example of using a mobile agent to find the average vehicle velocities

at Detection station 4 (Mace) and Detection station 3 (UC Davis) in the sub-network 2 (Davis) during

the time interval from 12:25 pm to 12:40 pm on 1 March 2005. To get this information, a mobile agent

visits these detection stations and makes database queries to retrieve the required information. The first

four fields of the database in Table I record the time when the vehicles have been detected. The average

vehicle velocities at detection stations are based on the values of the fields V FEND and V BEND in

the database, which are the front velocity and rear velocity of the passed vehicles. The fields 1–6 in the
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Table I. Vehicle information database (field 1–6).

T DAY T HOUR T MINUTE T SECOND V FEND V BEND

1 12 26 32 42.1 42.25
1 12 28 19 52.5 55.9
1 12 31 15 41.5 47.35
1 12 36 12 41.61 48.25
1 12 36 50 51.8 52.65
1 12 37 13 53.8 51.35

Figure 10. Mobile agents for remote information query.
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<NAME> mobagent </NAME>
<OWNER> IEL </OWNER>
<HOME> iel2.engr.ucdavis.edu:5138 </HOME>
<TASK task = "2" num = "0">

<DATA number of elements="0" name ="results mouse2"
complete ="0" server="mouse2.engr.ucdavis.edu:5167">

<DATA ELEMENT> </DATA ELEMENT>

<AGENT CODE>

Mobile agent code on mouse2.

</AGENT CODE>
</DATA>
<DATA number of elements = "0" name = "results bird1"

complete = "0" server = "bird1.engr.ucdavis.edu:5125">
<DATA ELEMENT> </DATA ELEMENT>

<AGENT CODE>

Mobile agent code on bird1.

</AGENT CODE>
</DATA>

</TASK>

Figure 11. The content of the mobile agent message from the host iel2 to the host mouse2.

database at the Mace detection station on 1 March 2005 at 12:00 pm are shown in Table I. Other fields

include vehicle acceleration, length, lane number and detection station domain name.

In Figure 10, the host name of TMC agent, Detection station 4, and Detection station 3 is iel2,

mouse2 and bird1, respectively. The mobile agent dispatched by host iel2 visits remote host mouse2

and bird1. Figure 11 shows part of the mobile agent message sent from host iel2 to host mouse2.

The mobile agent message contains the general information of the agent, including agent name,

agent owner and home agent platform. The agent tasks are described within the TASK tag. The task

attribute of the TASK element specifies how many tasks the mobile agent has. The num attribute

indicates how many tasks have been completed. The DATA element contains agent data, code and

return results related to each task. For example, the attributes, number of elemets, name, complete

and server specify the size of return data array, the name of return data array, the number of times

that the mobile agent code has been executed on the remote host and the remote host domain name

and port number, respectively. The sub-element DATA ELEMENT contains the return data from the

task. The sub-element AGENT CODE includes mobile agent code to be executed in the remote host.

For simplicity, the mobile agent code is omitted in Figure 11. The mobile agent in this example has

two tasks and no task has yet been completed. Two hosts that the mobile agent is going to visit are

mouse2.engr.ucdavis.edu and bird1.engr.ucdavis.edu. The server port numbers of these two hosts are

5167 and 5125.

The mobile agent accesses the vehicle information databases at mouse2 and bird1 through

Open Database Connectivity (ODBC) [62] as shown in Figure 12. Ch has a binding to ODBC,
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Figure 12. Access databases through Ch ODBC.

called Ch ODBC [63]. With Ch ODBC, the mobile agent running in Ch can use ODBC APIs to access

databases in different platforms. At each detection station, the mobile agent initiates an ODBC driver,

connects to the database and performs any specified queries. When the mobile agent completes its task

at each detection station, it migrates to the next detection station as shown in Figure 10, and finally

sends the results back to the TMC agent as shown in Figure 13.

7. DISCUSSIONS

As previously described, the motivation of developing Mobile-C is for the applications in distributed

systems that have a high degree of coupling with low-level hardware. The characteristics of distributed

nodes in these systems, such as real-time mechatronic systems and sensor networks, are small,

relatively resource poor, and involving real-time information fusion and hardware control. Most real-

time operating systems (OSs) and application programs run in real-time OSs are implemented in C.

To easily interface with application programs and underlying hardware, C is the language of choice for

the implementation of mobile agents in this type of applications. Also, a mobile agent system with a

small footprint is desirable for integration with systems that have limited resources.

The design philosophy of Mobile-C is to be small, embeddable and easy to interface with low-level

software and hardware. The footprint of Ch is smaller than the Java virtual machines used in most

FIPA compliant agent systems. To further minimize the size of the system, Ch supports MiniXML to

generate and parse XML messages. From the agent platform point of view, Mobile-C, to the best of our

knowledge, is the first system that uses mobile agent messages for mobile agent migration. Using FIPA

ACL messages for agent migration simplifies the agent platform because both agent communication

and migration can share the same communication mechanism. For small systems that need to store

distributed data locally, an embeddable database SQLite might be a good choice to meet the need.

The SQLite is a small C library that implements a self-contained, embeddable, zero-configuration SQL

database engine. By using SQLite, data can be stored in data files without need of configuration. Ch has

a package called Ch SQLite [64], which allows mobile agents to access SQLite database directly. Ch is

embeddable. Using Ch as a mobile agent execution engine makes Mobile-C easily embeddable into
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Figure 13. The graphical user interface of the TMC agent.

other C application programs. Ch SDK and Embedded Ch allow mobile agents and applications to

interface with each other.

Comparing with other C/C++ mobile agent systems that are not compliant with agent standards,

Mobile-C uses a source-level C/C++ interpreter to support the execution of mobile agents. Although

the interpreted C/C++ mobile agent code, to a certain extent, sacrifices the execution speed of

the mobile agent code comparing with binary C/C++ code, the benefit it brings to the system is

significant. It allows mobile agent code works in heterogeneous platforms, provides secure execution

and simplifies the implementation of the agent system. In addition, since the major computation of

the system is performed by stationary agents, the interpretation of mobile agent code should not

cause significant computational problems in most cases. Contrary to most agent systems, Mobile-C

supports both stationary agents and mobile agents. This choice was made because we recognize the

necessity of stationary agents for autonomous local information fusion and control, providing required

intelligence and, more importantly, working collaboratively with other stationary agents through agent

communication. The use of mobile agents is mainly for increasing the flexibility and adaptability of

the systems.
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One additional advantage of Mobile-C, to be presented in a separate paper, is that mobile agents

in Mobile-C can directly process XML data through an interpretive software package Ch XML [65].

This salient feature exceeds the normal use of XML for agent communication messages and provides a

solid foundation for using XML to form a programmable information base in the mobile agent systems,

including agent data, communication messages and access control policies.

8. CONCLUSIONS

The design, implementation and application of an IEEE FIPA compliant agent platform, Mobile-C,

has been presented in this article. Mobile-C conforms to the IEEE FIPA standards at both agent-level

and platform-level. To support mobile agents, Mobile-C integrates an embeddable C/C++ interpreter—

Ch—into the platform as a mobile agent execution engine and defines an agent mobility protocol to

regulate entire agent migration operation. Mobile agent migration is realized through ACL messages.

Mobile agents, including its data state and code, are transported to a remote agent platform via ACL

messages, and the execution of mobile agents is resumed by a task progress pointer. ACL messages

are encoded in XML. Our experience shows that using XML to encode different types of messages,

including simple agent communication messages and messages containing mobile agents, is simple,

convenient and easy to change.

Mobile-C is designed for the applications in large-scale hardware related distributed systems.

Mobile-C is small, embeddable and easy to interface with low-level software and underlying

hardware. Mobile-C has potential to be used to support code mobility in many engineering

applications, such as agile manufacturing systems, autonomous sensor fusion networks and intelligent

transportation systems. Mobile-C has been used to simulate highway traffic detection and management.

The ABRTTDMS is designed for the traffic information fusion from different detection stations on

highways to perform real-time traffic condition evaluation. The mobile agents in the system increase

the flexibility and adaptability of the traffic information system. The simulation results demonstrate the

effectiveness of mobile agents for the dynamic code deployment and performing unanticipated actions.
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