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ABSTRACT
We analyze a massive social network, gathered from the
records of a large mobile phone operator, with more than
a million users and tens of millions of calls. We examine
the distributions of the number of phone calls per customer;
the total talk minutes per customer; and the distinct num-
ber of calling partners per customer. We find that these
distributions are skewed, and that they significantly deviate
from what would be expected by power-law and lognormal
distributions.

To analyze our observed distributions (of number of calls,
distinct call partners, and total talk time), we propose Pow-
erTrack , a method which fits a lesser known but more
suitable distribution, namely the Double Pareto LogNormal
(DPLN) distribution, to our data and track its parameters
over time. Using PowerTrack , we find that our graph
changes over time in a way consistent with a generative pro-
cess that naturally results in the DPLN distributions we
observe. Furthermore, we show that this generative process
lends itself to a natural and appealing social wealth inter-
pretation in the context of social networks such as ours. We
discuss the application of those results to our model and to
forecasting.
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1. INTRODUCTION
Conventional wisdom now holds that power-law distribu-

tions and the processes that generate them are ubiquitous in
an extremely wide range of phenomena, ranging from “real-
world” or physical phenomena and constructs, such as the
degrees of proteins or the number of species per genus of
mammals, to “virtual” phenomena and constructs such as
the degree of nodes in the Internet or the number of cita-
tions received by papers (e.g., see [8] or [18] for an anal-
ysis of two dozen data sets from a wide variety of fields).
The results that led to this state include an extremely large
collection of results showing that i) measured data of the
above phenomena do exhibit heavy-tailed distributions, es-
pecially power-law and lognormal distributions, and ii) sim-
ple generative processes such as preferential attachment can
be used to understand and explain the reasons for the ubiq-
uity of heavy-tailed distributions in the natural and the vir-
tual worlds [15, 18].

We focus in this paper on the analysis of the social net-
work formed by the calls of users in phone networks. The
behavior of users in landline networks has been examined,
for example, by considering communities of interest among
those users [9]. Of particular interest to us, in this paper,
is the analysis of the social network formed by the phone
calls of mobile users in cellular networks. The analysis of
mobile phone graphs is an exciting area of research, because
mobile phones are ubiquitous, they have become a strategic
component of modern life and modern economies, and they
are expected to become a key or even the principal conduit
not just for voice calls, but for Internet access and use in
the future as well [13]. Furthermore, they can provide de-
tailed information on the spatio-temporal behavior of users,
especially on their mobility patterns and on the social net-
works they build and maintain, as reflected by their phone
calls. Several recent studies have used mobile call graph
data to examine and characterize the social interactions of
cell phone users, with a focus on understanding the struc-
tural properties of the graph [12, 17], its evolution and the



evolution of social groups [19], or the spread of new products
and services [25].

In this paper, we examine the mobile call graph, and the
corresponding social networks, obtained from the network of
a large cellular operator. The network we consider is a ge-
ographical subset of a continent-wide network with several
dozens of millions of users and several billions of calls, where
even the subset involves a million users and tens of millions
of calls. We examine the distributions of the number of
phone calls per customer; the total talk time per customer;
and the distinct number of calling partners per customer.
We also observe how those distributions might differ at dif-
ferent points in time. A relatively small number of studies
of similarly-scaled networks have been reported in the litera-
ture (in particular [17, 12]) and, consistent with the conven-
tional wisdom mentioned above, have reported power-law
distributions for measures such as degree distribution, etc.

Our contributions are fourfold. First, we find that the
distributions in our dataset significantly deviate from those
observed in earlier work, and that traditional power laws
often fall short. Second, we introduce our PowerTrack
method which provides significantly better fits using the
lesser known but more suitable Double Pareto LogNormal
(DPLN) distribution. PowerTrack neatly summarizes an
observed data distribution using four parameters, which we
can easily compute at any given point in time, and monitor
over time. Third, we find that our graph changes over time
in a way consistent with a generative process that naturally
results in the DPLN distributions we observe. And fourth,
we show that this generative process lends itself to a natural
and appealing social wealth interpretation in the context of
social networks such as ours.

The rest of the paper is organized as follows. In Section 2,
we provide background information on heavy-tailed distri-
butions and review related work relevant to the paper. In
Section 3, we describe the dataset used in the paper, de-
velop the PowerTrack methodology, and present the results
of analyzing our dataset using typical heavy-tailed distribu-
tions, namely, the power-law and lognormal distributions.
In Section 4, we apply PowerTrack to our dataset, pro-
vide evidence for a fit with the DPLN distribution, examine
how the parameters of the distribution evolve over time, and
discuss several practical applications of our results. In Sec-
tion 5, we derive a generative process based on social wealth
to explain the experimental results of Section 4, and we dis-
cuss the implication of our findings for network and social
scientists. Section 6 concludes the paper.

2. BACKGROUND
In this section, we provide background on skewed distri-

butions, and in particular, power-law and lognormal distri-
butions. We also survey prior work in these areas.

Power Laws
Power laws, which have been observed in an overwhelming
number of settings including graphs and social networks, are
characterized by the following probability distribution:

f(x) = Cx−α , (1)

Examples of power-law degree distributions in graphs in-
clude the Internet AS (Autonomous System) graph with ex-
ponent α = 2.1 − 2.2 [10], the Internet router graph with
exponent ∼ 2.48 [10, 11], the in-degree and out-degree dis-

tributions of subsets of the world wide web with exponents
2.1 and 2.38 − 2.72 respectively [3, 14, 6], the in-degree dis-
tribution of the African web graph with exponent 1.92 [5], a
citation graph with exponent 3 [22], distributions of website
sizes and traffic [1], and many others. Newman [18] provides
a comprehensive list of such work.

Deviations
While power laws appear in a large number of graphs, devi-
ations from a pure power law are sometimes observed. Pen-
nock et al. [21] and others have observed deviations from a
pure power-law distribution in several datasets. Two of the
more common deviations are exponential cutoffs and log-
normals. In exponential cutoffs, the distribution looks like
a power law over the lower range of values along the x-axis,
but decays very fast (exponentially) for higher values. Ama-
ral et al. [2] find such behaviors in the electric power-grid
graph of Southern California and the network of airports,
the vertices being airports and the links being non-stop con-
nections between them.

Lognormals or the “DGX” distribution
The lognormal distribution is a parabola in log-log scales,
but may seem like a power law, if appropriately masked.
Pennock et al. [21] recently found while the whole WWW
does exhibit power-law degree distributions, subsets of the
WWW (such as university homepages and newspaper home-
pages) deviate significantly. They observed unimodal dis-
tributions on the log-log scale. Similar distributions were
studied by Bi et al. [4], who found that a discrete trun-
cated lognormal (called the Discrete Gaussian Exponential
or “DGX”by the authors) gives a very good fit. A lognormal
is a distribution whose logarithm is a Gaussian. The DGX
distribution extends the lognormal to discrete distributions
(which is what we get in degree distributions), and can be
expressed by the formula:

f(x = k) =
A(μ, σ)

k
exp

[
− (ln k − μ)2

2σ2

]
k = 1, 2, . . . (2)

where μ and σ are parameters and A(μ, σ) is a constant
(used for normalization if f(x) is a probability distribution).
The DGX distribution has been used to fit the degree dis-
tribution of a bipartite “clickstream” graph linking websites
and users, telecommunications and other data.

Mobile Call Graphs
In the next section, we show that none of these variations
provide a best-fit to our real-world dataset of mobile phone
calls, thus motivating our core objectives in developing Pow-
erTrack. Mobile networks have been previously analyzed
in literature, e.g., Onnela et. al. [12], Nanavati et. al.
[17]. However, their focus was on characterizing an aggre-
gate snapshot of the network in terms of neighbor distribu-
tion, topology, social interaction, etc. We differ in that we
not only analyze user behavior, but also postulate an under-
lying causal temporal generative process and test it against
temporally diverse datasets. Our results demonstrate a call-
ing behavior that has not been previously analyzed in the
context of call graphs. Furthermore, we leverage the tempo-
ral aspects of our data to gain insight into salient features
of the user calling process.
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Figure 1: Distribution in time period T1 of Partners (Left), Calls (Middle) and Duration in minutes (Right),
for users at S1.

3. GOALS AND PRELIMINARY OBSERVA-
TIONS

We start this section by describing the dataset used in this
paper. We then present the goals and the design rationale
behind our proposed PowerTrack methodology. Finally, we
present the result of analyzing our dataset using the heavy-
tailed distributions typically used in the past to analyze large
graphs, namely the power-law and the lognormal distribu-
tions.

3.1 Dataset
The dataset analyzed in this paper is made of a large col-

lection of Call Data Records (CDRs) from a large cellular
network. This network supports voice, data, and SMS ser-
vices, and the CDRs include information about all 3 types of
services. However, we only consider voice calls in the paper.

CDRs were collected at several Base Station Controllers
(BSCs). The collection function is provided by the equip-
ment deployed in the network, as part of the normal trou-
bleshooting and billing capabilities. We collected call records
at four different switches, which we refer to as S1, S2, S3
and S4. Each of these switches recorded calls made to and
from callers who were physically present in a contiguous geo-
graphical area. The areas covered by the four switches were
also geographically contiguous. Apart from geographical di-
versity, we also incorporated temporal diversity by collecting
records at switch S1 during two (month-long) time periods,
T1 and T2, which were separated by 6 months.

Each of our month-long datasets at any single switch col-
lected roughly 20−50 million call records from and to about
half a million 1 mobile users when they were within its geo-
graphic area. Throughout this paper, we only focus on calls
that terminated successfully.

Call Data Records include several fields about each call
event. Of interest in this paper are the calling and called
parties (source and destination of calls), and the duration of
calls. We emphasize that our interest is in aggregate statis-
tical analysis and therefore, we do not study any particular
individual’s calling pattern. More importantly, in order to
maintain privacy and anonymity, data that could identify
users (e.g. their phone numbers) is not utilized in this study;
we analyze anonymized CDRs, and restrict our focus to the
patterns of calls and networks formed out of these calls.

1We only provide approximate numbers for proprietary rea-
sons.

3.2 Goals and Design of PowerTrack

From the data described above, we obtain a call graph G
which is a tuple (V, E) where V denotes a set of vertices,
representing the mobile users, and E denotes a set of edges,
representing the mobile calls. Specifically, if x and y are
vertices of G, then an edge exists between x and y if x and y
have called each other at least once during the time interval
of interest. We represent multiple calls between any two
nodes by a single edge, which can be associated with a weight
(equal to one to represent connectivity, or equal to the total
number of calls or the number of minutes between the two
nodes during the interval of observation). In this paper, we
assume undirected edges, i.e. we do not distinguish between
callers and callees.

Our goal, then, is to analyze our graph G, and specifically
to characterize the underlying behavior of mobile users and
derive insight into how and why the observed characteris-
tics arise. To achieve our objective, we utilize a three-step
methodology that we refer to as PowerTrack.

The first step involves choosing three instructive per-user
characteristics that measure the behavior of individual users
in the underlying social graph, namely,

• Partners: The total number of unique callers and
callees associated with every user. Note that this is
essentially the degree of nodes in the (undirected and
unweighted) social graph, which has an edge between
two users if either called the other. In addition, we use
the term “call partners” to refer to the set of unique
callers and callees associated with a user.

• Calls: The total number of calls made or received
by each user. In graph theoretic terms, this is the
weighted degree in the social graph where the weight
of an edge between two users is equal to the number
of calls that involved them both.

• Duration: The total duration of calls for each cus-
tomer in minutes. This is the weighted degree in the
social graph where the weight of the edge between two
users is the total duration of the calls between them.

Each of the above metrics can be calculated, per user, from
the call records over any period of time. Prior studies [17]
have used a month of calling behavior to characterize user
characteristics. Furthermore, many phone calling plans are
based on monthly usage. Hence, we decided to use a period
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Figure 2: Power-law fit to the distribution of Part-
ners per user, for S1 during T1.

of one month to calculate the per-user metrics. We also de-
cided to analyze these metrics by studying their probability
distribution functions (PDFs).

In the second step (detailed in Section 3.3 and Section 4),
we analyze the observed distributions of our chosen metrics
and derive statistical distributions that best fit the empirical
distributions. We explore the nature of the best-fit distribu-
tions across geographically diverse datasets as well as tem-
poral instances to gain a better understanding of the social
graph.

In the third step (detailed in Section 5), we use our data
collection over time to gain insights into the generative pro-
cesses that best describe the temporal evolution of the user
calling behavior.

3.3 Power-law and Lognormal Fits
As discussed above, the second-phase of PowerTrack in-

volves using our datasets to estimate the empirical density
functions and fitting them to the standard statistical distri-
butions we expect (based on the shape of the distribution
curves and on past work on graph data analysis) will work
best. For each metric X, we choose a bin size b and estimate
the probability distribution function (PDF) of the metric X
at x = b, 2b, 3b · · · as:

p̂(x) =
‖X ∈ [x − b

2
, x + b

2
‖

‖X‖ · b . (3)

where the R.H.S. uses the empirical probability of observ-
ing X within the interval. The bin size is chosen to be
large enough so that this empirical probability can be well
estimated. In Figure 1, we plot the densities of our three
metrics estimated using the dataset from switch S1 during
time period T1. All three figures are plotted in the log-log
scale. Not surprisingly, we notice that all densities have a
heavy tail which is clearly linear in the log-log scale. The
heavy tail provides motivation to model the densities above
using two well-known distributions, namely the power-law
and lognormal distributions.

We first attempt to model the observed data using power-
law distributions (see Equation 1). Following the lead of
prior work [8], and using code from [7], we determine a
power-law fit by using Maximum Likelihood Estimation (MLE)
to model the tail of the distribution. This power-law fit con-
sists of two parameters - a truncation point that defines the
tail and the exponent of the power-law fit to the tail. The
power-law distribution that best models the distribution of
the Partners metric is shown in Figure 2.
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Figure 3: Lognormal fit to the distribution of Part-
ners per user, for S1 during T1.

Note that, for our metrics of interest, we cannot observe
any data point with values less than one. Hence, we truncate
our empirically observed distributions at one. Here and later
in this paper, to fit an analytical model that is (in some
cases) supported from zero to infinity, we scale our PDF
estimate in Equation 3 so that the areas under the empirical
and modeled PDF curve are the same.

While the power-law best-fit in Figure 2 models the tail
of the distribution well, it does a poor job of modeling the
head of the distribution, which is to the left of the truncation
point. We obtain similar results when we try to use power
laws to fit the distributions of the other two metrics.

Given the inability of power laws to fit the head of our dis-
tributions, we then turn to lognormal distributions (Equa-
tion. 2), which have often been seen as a good alternative
to power laws. Like the power-law distribution, the lognor-
mal distribution also has an almost linear tail. However,
lognormal distributions have a parabolic shape in the log-
log scale, which appears to be similar to the shape of the
distributions in Figure 1. We obtain the best fitting lognor-
mals using Maximum Likelihood Estimation, as described in
[4]. The best lognormal fit to the distribution of Partners is
shown in Figure 3. Though this appears to a better fit than
the power-law fit, it can clearly be improved. We achieve
similar (negative) results trying to fit power-law and lognor-
mal distributions with the other metrics using this dataset,
and with the other datasets as well.

4. ANALYSIS OF THE DISTRIBUTIONS
In the previous section, we discussed the results of us-

ing well-known heavy-tailed distributions - power-law and
lognormal - to fit the distributions of our chosen metrics.
We found that the best-fits show clear scope for improve-
ment especially in modeling the head of the distribution. In
this section, we present the first result from PowerTrack,
namely, that a recently-formulated Double Pareto Log Nor-
mal (DPLN) distribution yields good fits to our empirical
distributions. We start by providing a quick introduction to
the DPLN distribution and discuss its salient properties to
motivate its selection as a best-fit for our empirical distri-
butions. Most of the discussion is based on the work done
by Reed [23].

4.1 The DPLN Distribution
The DPLN distribution arises out of a mixture of lognor-

mal distributions as described below. Consider a random
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Figure 4: Results of using DPLN to model Partners (Left), Calls (Middle) and Duration in minutes (Right),
for users at S1 in the time period T1.

variable representing the state S of a Geometric Brownian
Motion (GBM), i.e., the logarithm of S follows Brownian
motion and, hence, satisfies:

dSt = μStdt + σStdwt (4)

Here, w is the Weiner process and μ, σ are constants. The
initial state S0 is considered to be lognormally distributed
with an underlying normal distribution N(ν, τ 2). After T
time units, the state S is also distributed lognormally with
an underlying normal distribution:

ST ∼ LN(ν + (μ − σ2

2
)T, τ 2 + σ2T ). (5)

Moreover, ST
S0

is also lognormal:

ST

S0
∼ LN(μ − σ2

T
,
σ2

T
). (6)

If the observation time T is exponentially distributed with
parameter λ, then the random variable X = S(T ) has a
DPLN distribution denoted as DPLN(α, β, ν, τ ) where ν
and τ are as above and α > 0 and −β < 0 are roots of the
quadratic equation:

σ2

2
z2 + (μ − σ2

2
)z − λ = 0 . (7)

The complete DPLN distribution is given by:

f(x) = αβ
α+β

[
e(αν+α2τ2/2)x−α−1Φ( log x−ν−ατ2

τ
) +

xβ−1e(−βτ+β2τ2/2)Φc( log x−ν+βτ2

τ
)
]
, (8)

where Φ and Φc are the CDF and complementary CDF of
N(0, 1).

An easier way of understanding the double Pareto nature
of X is by observing that X = S0

V1
V2

where S0 is lognormally
distributed, and V1 and V2 are Pareto distributions with
parameters α and β. Note that X has a mean that is finite
only if α > 1 in which case the mean is given by

αβ

(α − 1)(β + 1)
eν+ τ2

2 .

The distinguishing features of the DPLN distribution are
two linear sub-plots in the log-log scale and a hyperbolic
middle section. These bear a striking similarity to our em-
pirical distributions in Figure 1 thereby motivating our ex-
ploration of DPLN to model them. We explore this in

greater detail in the next sub-section(s) and the role of the
temporal generative process (Equation 4) in Section 5.

4.2 DPLN Best Fits
In order to estimate the parameters (α, β, ν, τ ) of the DPLN

distribution that best fits our empirical data, we initially ex-
plore the method of Maximum Likelihood Estimation, de-
scribed in [23]. We find that this method is sensitive to nu-
merical computation issues, especially floating point round-
ing off errors. Hence, in some cases, we manually obtain
a DPLN fit to our empirical distributions, by performing a
grid search of the parameter space. Though such a manual
approach is not scalable, it suffices for our purpose of illus-
trating its superiority over other distributions. Obtaining a
practical automated fitting method is an important area of
future work.

In Figure 4, we plot our DPLN best fits for the plots in Fig-
ure 1. We plot the best fits based on code from the authors
of [23]. The DPLN is clearly seen to be a better fit to our
data than the power-law and lognormal fits that we derived
earlier. We also numerically substantiate this by quantifying
the difference between the analytical and empirical distribu-
tions via the Residual Sum of Squares (RSS) using geometric
binning. The RSS value for DPLN is 9.8 × 10−6, which is
two orders of magnitude smaller than the RSS of 2.9× 10−4

for the best lognormal fit. Like us, Mitzenmacher [16] also
obtained good fits using DPLN, for file size distributions.

4.3 Temporal Diversity
We now examine call records for S1 from our second month-

long time period T2, which was 6 months after T1. Figure 5
(Left) shows the empirical and DPLN best-fit density func-
tion for Partners, for this data set. Not only does DPLN
continue to model the empirical dataset well, the parame-
ters of the best-fit DPLN distribution do not change sig-
nificantly from T1 to T2. Since users may move out of or
leave the network during the 6-month period between T1
and T2, we observe a different set of users during T2. The
persistence of the best-fit DPLN parameters, in spite of a
dynamic set of users, suggests that the DPLN distribution
might arise due to fundamental large scale social network
characteristics. We will explore this further in Section 5.

4.4 Spatial Diversity
Thus far, we have presented results that used only the

call records collected from S1. To verify that the DPLN na-
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Figure 5: Results of using DPLN to model Partners during T2 for area S1 (Left), S2 (Middle) and S3 (Right).

ture of the empirical distribution was not specific to just a
single area, we examined the data collected from the three
other areas. Figure 5 (Middle and Right) shows the DPLN
best-fits for two such areas during the time period T2. These
plots confirm the general applicability of DPLN to our datasets.
However, the actual best-fit parameters do vary across the
different areas as do the empirical distributions. The demo-
graphics and living standards in the area covered by S1 are
quite different from that of S2 and S3. This is good empir-
ical evidence that the nature of social graphs is not uniform
and can vary significantly, though similar statistical laws
may still apply.

4.5 Other Applications
We now briefly describe ways in which to take advantage

of the DPLN fit to our observed data. While several ap-
plications are possible, we focus on two in particular: an
application to outlier detection, and an application to work-
load management.

4.5.1 Outlier Detection
So far, we have measured the per-user call durations in

units of minutes. Given our success with DPLN fits using
PowerTrack, we are motivated to investigate the distribu-
tion of per-user total call durations in units of seconds, too.
In Figure 6, we plot this distribution. We find that it is
also well-described by a DPLN model (shown in Figure 6).
However, we find two outliers at 27 and 54 seconds. Pow-
erTrack ’s ability to fit the rest of the distribution implies
that these are genuine outliers worthy of investigation. In-
deed, we found that these outliers arose due to a common
exceptional scenario in the calling process, namely, when a
mobile user did not answer an incoming call and the caller
hung up without leaving a voicemail. The 54 seconds repre-
sent users who received exactly 2 such calls during the time
of observation. While this is a specific scenario, it serves to
illustrate the applicability of our model to outlier detection
in general.

4.5.2 Pricing Structure Design
Our results so far provide us with an accurate model of

the workload generated by mobile phone users at large time
scales. In particular, we have a model of the distribution of
user behavior (in terms of total duration of mobile phone
use) over a month. Such models can be used to design
pricing structures that charge users differently according to
their “tiers” of monthly usage (such structures are common
today). For example, our model can maximize total rev-

enue by helping us determine the amount of money each
user (or group of users) is charged. This could be traded off
against the cost of supporting users, to optimize measures
of marginal gain. Furthermore, our models could be used as
input to solving a dynamic system. The pricing structure
impacts the rate at which customers sign up or leave dif-
ferent billing plans. Therefore it would have to account for
the resultant dynamic workload, with the aim of fueling as
much growth in customer base (and revenue) as underlying
network resources can support. Queueing models to address
such systems are common and could utilize our models of
user workload to determine optimized billing decisions.

5. SOCIAL WEALTH: GENERATIVE PRO-
CESS FOR DPLN

In the previous section, we showed the results obtained us-
ing the second step of PowerTrack, namely, the derivation of
best-fits for our observed data. We found that PowerTrack
yielded valuable information about the user characteristics
in our social graph as well as its temporal and spatial varia-
tions. In this section, we present the results of PowerTrack ’s
third step - using data collected over different time periods
to understand the underlying generative process of our social
graph. We start by surveying prior work in power-law and
lognormal generative processes. Then, we describe our so-
cial wealth based generative process and provide substantial
evidence supporting it.

5.1 Proportional Effects
A great deal of work (see [15] for exhaustive references)

has been done to understand how heavy-tailed distributions
such as power-law and lognormal arise. Gibrat [24], for ex-
ample, proposed the law of proportional effects to under-
stand the distribution of sizes of industrial firms. The core
principle behind this law is that the growth of a firm is multi-
plicative and independent of its current size. In other words,
if Xj represents the size of a firm at a discrete time step j,

Xj = FjXj−1 (9)

where Fj is a random variable independent of Xj−1. If the
Fj are independent and identically distributed random vari-
ables, the Central Limit Theorem can be used to show that
Xj is asymptotically lognormal. In fact, if the Fjs are them-
selves lognormal, then Xj is always lognormal. This multi-
plicative model and variants based on it have been used to
lognormally model a wide variety of real-world attributes
(see [15] for a survey).



Figure 6: Results of using DPLN to model the total
call Duration measured in seconds during T1 for area
S1.

As noted in [15], a simple modification to the model above
leads to power-law distributions. Specifically, if the Xj val-
ues are lower bounded by a minimum value, then the re-
sulting distribution turns out to be a power-law instead of
a lognormal. Indeed, Pareto [20] introduced the Pareto dis-
tribution by a similar process to explain tail income dis-
tribution. Note that power laws have been used to model
attributes such as node degrees in many real-world graphs.
Such modeling has been done by describing the graph evo-
lution using a process of preferential attachment [3], which
is similar to proportional effects. Preferential attachment
states that new nodes attach themselves to existing nodes
with a probability that is proportional to their degrees.

5.2 Social Wealth
We start our investigation into the generative process un-

derlying our social graph using data from time periods T1
and T2. Some of the users observed during T1 are not ob-
served in T2 and vice versa, either because they physically
moved away or are no longer subscribers. We eliminate all
such users from our analysis. For the remaining users, in the
spirit of Equation 9, we calculate the ratio XT1

XT2
for each of

our three metrics, where Xt is the user metric during time
period t. We plot the distribution of these ratios in Figure 7.

As seen in Figure 7, the distributions of the ratio appear to
be parabolic on the log-log scale. Hence, we use Maximum
Likelihood Estimation to fit these distributions to lognor-
mals. We find remarkably good fits for all the distributions.
The parameters of these best-fits are also shown in Figure 7.
These results provide good evidence that a lognormal mul-
tiplicative process is behind the temporal evolution of our
social graph.

As discussed in Section 5.1, lognormal multiplicative pro-
cesses (see Equation 9) have been successfully used to model
income distributions. Using these as motivation, we hypoth-
esize that our metrics (Partners, Calls and Duration) cap-
ture social wealth, the social analogue of income. We believe
that our social wealth interpretation provides a natural and
appealing extension of income to the social context, and can
potentially be used to better understand social behavior in

many contexts (e.g., phone networks, the Internet, email
networks). We offer two key arguments to support our so-
cial wealth interpretation.

Our first argument is consistency with Gibrat’s law of pro-
portional effects. The results in Figure 7 not only provide
evidence that there is a lognormal-based multiplicative pro-
cess but also show that such a process accurately models
the generative process of social wealth as captured by any of
our metrics. Another important aspect of the law of propor-
tional effects is the independence between the multiplicative
factor (Fj in Equation 9) and the current attribute (Xj−1

in Equation 9). For our social wealth interpretation, this is
equivalent to independence between Partners (or Calls or
Duration) for users during T1 and the ratio of Partners (or
Calls or Duration) across two time periods T1 and T2. Since
the demonstration of independence is difficult, we use cross-
correlation (which is a necessary but not sufficient condition
for independence). We find cross-correlation coefficients to
be uniformly small: −0.14, −0.06 and −0.02 for Partners,
Calls and Duration respectively.

As discussed in Section 5.1, lognormal multiplicative pro-
cesses result in lognormal distributions. Recall though, from
Section 4.1, that DPLN distributions arise when a random
variable, which has a lognormally-distributed initial value
and evolves according to a lognormal multiplicative process,
is observed at exponentially distributed random observation
times. In other words, if Xt evolves according to a lognormal
multiplicative process and T is exponentially distributed,
then XT is DPLN. Thus, in the framework of our social
wealth interpretation, our data reflects the social wealth of
users who are at different stages in their lifetime, which is
assumed to be exponentially distributed. With this inter-
pretation, the best-fit DPLN distributions achieved using
PowerTrack would be consistent with the notion of social
wealth.

While Figure 7 is consistent with the lognormal multi-
plicative process of DPLN, it is not possible for us to verify
if initial values of social wealth are indeed lognormally dis-
tributed. In fact, since babies rarely use mobile phones on
their own, it may be impossible to directly capture their
social wealth. However, the DPLN fits provided us with a
way to estimate user lifetimes, which in turn can be used to
judge the legitimacy of the best-fit. Consider Equation 7.
Since its roots are α and −β, we have:

αβ =
λ
σ2

2

(10)

1

λ
=

2

αβσ2
(11)

PowerTrack ’s best-fits provide us with estimates of α and β.
The variance of the fitted lognormal distributions in Figure 7

is σ2

T
from Equation 6 where T is 6 months. Thus, we can

estimate the average lifetime of users under our generative
process. We obtain lifetime values of 43, 23 and 15 years for
Partners, Calls and Duration respectively. These values are
close to actual average lifetimes, up to a small multiplicative
factor of 2 or 3. This inaccuracy may be due to the small
values of β, which make estimates of lifetimes highly vari-
able, or it might indicate that social wealth accumulation
(in terms of our metrics) starts only at adulthood. Still, the
lifetime values we obtain are surprisingly close to actual hu-
man lifetimes and offer substantial supporting evidence for
our social wealth interpretation.
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Figure 7: Demonstration of the consistency with our social-wealth generative process. The ratio of user
degrees (Left), number of calls (Middle), and, total talked time (Right), in month T2 and month T1.

5.3 User Calling Patterns
In the previous sections, we explored ensemble call behav-

ior patterns. In this section, we take a closer look at the type
of users that constitute the population. Specifically, we cat-
egorize users according to their social behavior across time,
by analyzing the persistence of the set of call partners of
each user.

For a given user u, let S(T1) be the set of call partners
during time-period T1 and S(T2) the set of call partners
during time period T2. To track the evolution of the social
network of a user, we define a metric, New Caller Ratio as :

η = |S(T1)∪S(T2)|
|S(T1)|+|S(T2)| . (12)

The above metric is always less than one and captures a
key aspect of the evolution of users’ call partners. If a user
calls disjoint sets of users in T1 and T2, then η = 1 (this also
occurs when the user is active in only one of the two time
instances). However, if a user has a persistent set of call
partners, then the metric would be less than one, decreasing
with the number of persistent call partners.

Figure 8 (Top) shows the distribution of η computed
across time instances T1 and T2, for all users at switch
S1. Figure 8 (Bottom) shows the same quantity, for only
those users that were active during both T1 and T2. It is
also instructive to observe the distribution of the call partner
set sizes (i.e., the Partners metric) for these users, labeled
“Data PDF” in both plots.

The plots exhibit an interesting, and somewhat unex-
pected trend. Specifically, the upper right section of both
plots indicate that the highest values of η are exhibited by
customers with the largest Partner values. Intuitively, a
residential customer would not typically call a large num-
ber of new contacts every month. Such calling patterns are
more typical of “robots”, e.g. telemarketers, and spammers;
verification of this hypothesis is an area of future work.

Figure 8 (Top) and (Bottom) differ primarily in the
lower ranges of the X axis. In combination with the dis-
tribution of Partners, this indicates the existence of a large
number of short-lived users who are associated with small
but extremely dynamic sets of call partners. Furthermore,
the trends in the distribution of η and Partners, in Figure 8
(Top), indicate that the left and right tails of the Partners
distribution might be largely comprised of dynamic short-
lived users and the aforementioned “robots”, respectively.

In summary, by tracking the values of η and Partners,

we can potentially distinguish between several important
classes of customers: atypical “robotic” customers like tele-
marketers, characterized by large Partner and η values; and
typical residential customers, who comprise the remainder.
The latter set can be further categorized by identifying the
subset of dynamic short-lived customers. These observa-
tions also have applications to user clustering in the social
graph context, since we expect the residential class of users
to form cliques or well-connected clusters, while the atypi-
cal users with large Partner values would appear as hubs of
large-degree “spokes”. Further study of these applications,
as well as the impact on our observed distributions, requires
collecting more data on temporal behavior; this is an area
of work in the near future.

6. CONCLUSIONS AND FUTURE WORK
Power-law distributions and the processes that generate

them are widely believed to characterize many real-world
phenomena. In this paper, we analyzed user behavior in a
large social network at a mobile phone operator, consisting
of more than a million users and a hundred million calls,
over different time periods. We found evidence suggesting
that key distributions (of the per-user number of distinct
call partners, number of calls and number of minutes) have
fundamentally different characteristics from power-law and
lognormal distributions. Using our proposed method Pow-
erTrack, we found significantly better fits using the DPLN
distribution. DPLN generalizes the power-law and lognor-
mal distributions using four parameters that can be easily
monitored. We found that these parameters remained stable
over time in our datasets.

We also found that our graph evolved over time in a
way consistent with a generative process based on geomet-
ric Brownian motion. Furthermore, this generative process
lends itself to a natural and appealing social wealth inter-
pretation, giving a plausible reason for the success of Pow-
erTrack , and also allowing for extrapolations and interpo-
lations. We hope that our success with PowerTrack spurs
further studies involving other datasets and their underly-
ing generative processes. In particular, we hope that our
analysis will serve as an incentive to study the large-scale
evolutionary aspects of social characteristics.
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Stanley. Classes of small-world networks. Proceedings
of the National Academy of Sciences,
97(21):11149–11152, 2000.

[3] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286:509–512, 1999.

[4] Z. Bi, C. Faloutsos, and F. Korn. The DGX
distribution for mining massive, skewed data. In
Proceedings of ACM KDD, pages 17–26, New York,
NY, 2001. ACM Press.

[5] P. Boldi, B. Codenotti, M. Santini, and S. Vigna.
Structural properties of the African Web. In
International World Wide Web Conference, New
York, NY, 2002. ACM Press.

[6] A. Z. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web: experiments and models.
In International World Wide Web Conference, New
York, NY, 2000. ACM Press.

[7] A. Clauset. Power law distributions in empirical data.
http://www.santafe.edu/~aaronc/powerlaws/

[8] A. Clauset, C. R. Shalizi, and M. E. J. Newman.

Power-law distributions in empirical data. ArXiv
e-print 0706.1062v1, 2007.

[9] C. Cortes, D. Pregibon, and C. Volinsky. Communities
of interest. In IDA ’01: Proceedings of the 4th
International Conference on Advances in Intelligent
Data Analysis, pages 105–114, London, UK, 2001.
Springer-Verlag.

[10] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the Internet topology. In
Proceedings of ACM SIGCOMM, pages 251–262, New
York, NY, 1999.

[11] R. Govindan and H. Tangmunarunkit. Heuristics for
Internet map discovery. In IEEE INFOCOM, pages
1371–1380, Los Alamitos, CA, March 2000. IEEE
Computer Society Press.

[12] J.-P. Onnela, J. Saramaäki, J. Hyvöven, G. Szabó,
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