
Mobile Camera-Based Adaptive Viewing

Antonio Haro, Koichi Mori, Vidya Setlur, Tolga Capin∗

Nokia Research Center

6000 Connection Drive

Irving, TX 75039, USA

Abstract

In this paper, we present an approach for facilitating user interaction
on mobile devices, focusing on camera-enabled mobile phones. A
user interacts with an application by moving their device. An on-
board camera is used to capture incoming video and the scrolling di-
rection and magnitude are estimated using a computer vision-based
algorithm. The direction is used as the scroll direction in the appli-
cation, and the magnitude is used to set the zoom level. The camera
is treated as a pointing device and zoom level control in applica-
tions. Our approach generates mouse events, so any application
that is mouse-driven can make use of this technique. The user is
free to browse through large data sets on a limited size display with
one hand, ideal for the mobile domain.

CR Categories: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Interaction Styles; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction Techniques; I.4.8 [Im-
age Processing and Computer Vision]: Scene Analysis—Motion

Keywords: camera-based interaction, zoom control, scroll con-
trol, adaptive views, mobile device, computer vision.

1 Introduction

Recent advances in mobile device hardware have made it possible
to store and view large amounts of content. For example, it is now
possible on a smart mobile phone to have personal media consist-
ing of thousands of photos or complex documents and full sized
web content. The key limitations remain in the small display size
and lack of intuitive interaction techniques for navigation of large
datasets.

Mobile devices currently support navigation through a joy-
pad/direction keys or scroll bars on touch sensitive screens using
stylus-based panning. Although these modes of interaction are suf-
ficient for small sized content, more intuitive techniques are re-
quired for navigating larger amounts of information. It is difficult
to use these techniques to navigate a full sized Web page or to select
an item from dozens of choices in a list box of messages, photos,
audio files, phone book entries or other mobile content.

On devices with larger form factors, additional keys provide a better
user experience since keys can be dedicated to specific tasks such
as page up/down and zoom level. Smart phones cannot make use of
such keys due to limited physical space. Stylus-based interaction

∗e-mail:{antonio.haro,koichi.mori,vidya.setlur,tolga.capin}@nokia.com

Figure 1: Picture browsing task. Left: traditional list view, Right:
3D image carousel. Browsing a large collection of images is dif-
ficult using conventional approaches as the user’s attention is fo-
cused on controlling views instead of their objectives.

for navigation is an alternative, but requires two-handed interac-
tion and has been shown to cause additional attentional overhead in
users [Yee 2003]. Consequently, alternative interaction techniques
are desired. Other sensors could be added to mobile devices such as
accelerometers, but these can be difficult to integrate into existing
consumer level devices in both the software and hardware level.

To address these problems, we propose a new navigation technique
for camera-equipped mobile devices, specifically mobile phones,
using the camera sensor as the input device. Our solution is based
on analyzing the series of input images from the camera and esti-
mating the motion of the device. Computer vision techniques are
used to estimate both motion direction and magnitude. The direc-
tion estimates are used for scrolling while the magnitude of the
physical movement drives the current zoom level in an application.
This approach provides a more natural user interaction maximiz-
ing the use of the display, minimizing attentional overhead to the
user, and permitting one-handed interaction. This approach does
not preclude the use of a joypad, and can be used as an extension of
joypad-based interaction, where the joypad could be used for fine
grained selection. We tested our approach on several tasks, includ-
ing an image browsing task in a photo browsing application and a
location finding task in a map viewer application. In informal tests,
users preferred our solution to a joypad-based navigation, but fur-
ther investigation is required to determine the instances where this
holds. Joypads and scroll buttons are adequate for navigation of
small data sets on limited sized displays, but perhaps not for large
or complex data such as media collections or maps.

2 Related Work

Prior work on adaptive views on mobile devices has focused on
performing zooming and/or panning using either additional hard-
ware or sensors. The most relevant work to ours is the work done
in [Igarashi and Hinckley 2000]. Igarashi and Hinckley performed
adaptive zooming by creating equations based on mouse movement
which determine whether to zoom in or out. Our work utilizes the
same equations except that it is driven by camera motion computed
by a tracking algorithm instead of provided by a mouse as there is



Figure 2: The user moves their camera enabled mobile phone. A computer vision based tracking algorithm is used to determine movement
direction and magnitude. These are then treated as mouse events by the application’s event handler, and the user’s view is updated.

none on a mobile device.

Other pointer device-based scrolling techniques include the Al-
phaslider [Ahlberg and Shneiderman 1994], the FineSlider [Masui
et al. 1995] and the Popup Vernier [Ayatsuka et al. 1998]. Those
works focused on how to effectively select an item from a list of a
large number of items. An extended scroll bar component that al-
lows the user to change the scrolling speed was used. Our approach
can be used as an alternative in instances where a pointing device is
not available, such as on a mobile device. Our work is also similar
to the scroll [Siio 1998], and peephole [Yee 2003] displays works
and work on tilt-based interaction [Bartlett 2000; Rekimoto 1996].
In these works, the goal was to perform scrolling on mobile de-
vices in a more intuitive fashion by using additional sensors. Scroll
detection sensors that were used included both mechanical and opti-
cal mouse sensors, position and orientation sensors, and ultrasonic
transmitters/receivers. While additional sensors were required in
those works, we use only the camera as the direction sensor in-
stead of adding new sensors. Doing so allows for regular camera-
equipped smart phones to have an additional interaction modality
without modifying the phone.

Other hardware based solutions to scrolling come from the com-
mercial domain. Apple’s iPod, while not performing zooming,
makes use of a touch sensitive scroll wheel whose scrolling speed
depends on the number of songs in a play list, to maximize dis-
play usage. On other mobile devices such as cell phones, touch
screens are commonly used to address display size limitations.
Touch screens can allow users to interact and scroll through their
data more effectively than using buttons as the stylus can just be
dragged down a scroll bar. However, touch screens have the disad-
vantage of not permitting one handed operation.

Related camera-based tracking work includes the Mozzies game
available for the Siemens SX1 mobile phone, among others that
have been created since then for many smart phone platforms.
While camera motion is indeed estimated in these games to trans-
late sprites accordingly, it should be noted that the detected motion
does not need to be exact as the sprites are rendered on top of the
video but not attached to any feature. As such, only approximate
motion is required. Since our tracked motion needs to match the
user’s physical motion exactly, a higher degree of accuracy is re-
quired which from our testing is not present in current commercial
camera motion tracking-based games. It should also be noted that
in these works, only mobile camera motion is used as input; in our
work we use the magnitude of the motion as well to control zoom
levels, which is novel.

Rohs et al. [2004] perform tracking based on dividing incoming
camera frames into blocks and then determine how the blocks move
given a set of discrete possible translations and rotations. Our al-

gorithm is instead based on tracking individual corner-like features
observed in the entire incoming camera frames. This allows our
tracker to recognize sudden camera movements of arbitrary size,
as long as at least some of the features from the previous frame are
still visible, at the trade-off of not detecting rotations. Kalman filter-
based camera motion estimation was demonstrated by Hannuksela
et al. [2005]. The Kalman tracker has higher motion estimation
accuracy, as expected, since Kalman filtering greatly improves the
quality of intra-frame matching. However, the computational re-
quirements are significantly greater since several matrices must be
multiplied and inverted per frame. On devices with limited com-
putational resources, our algorithm provides sufficient motion and
velocity accuracy for user interaction with many leftover cycles for
intense applications at the trade-off of more limited accuracy since
the temporal filtering in our algorithm cannot match a Kalman filter.

3 Camera-based Movement Estimation

Our approach is to use the mobile phone’s onboard camera as the
source of input. The user’s physical movement of the device is
captured in incoming video, which is analyzed to determine scroll
direction and magnitude. The detected direction is sent to the event
handler exactly as a corresponding mouse event, while the magni-
tude is used to specify the current scroll level. Figure 2 shows an
overview of our system.

Correctly interpreting the observed motion from the camera’s in-
coming video requires accurate tracking. To determine the motion
direction, a feature-based tracking algorithm is used. To determine
the magnitude of the physical movement, motion history images
(MHI) [Davis and Bobick 1997] are used, which were originally
used for performing action and gesture recognition. Our tracking
algorithm provides four directions as application-level events, sim-
ilar to mouse movement: up, down, left and right, in the camera
plane. The magnitude is also passed as an event, where two states
are possible: motion magnitude increasing or decreasing. The rest
of the application remains the same as the only changes are the
cause of the events passed to the event handler. This allows ap-
plications to use the camera easily, without any knowledge of the
underlying tracking algorithms or camera hardware.

3.1 High-level Algorithm Description

The tracking system was implemented on the Symbian OS. The
process diagram of the tracker is presented in Figure 3. Two frames
are grabbed, n and n− 1, using Symbian’s camera API providing



Figure 3: Our tracker uses the current and previous frame captured by the camera for tracking. Corner like features are detected in the new
frame which are matched with the features found in the prior frame so that the prior frame does not have to be reprocessed for features.
Direction estimates are accumulated for a number of frames before a movement direction estimate is made.

JPEG encoded frames. Edge detection is performed on both frames
using the Sobel filter. The thresholded absolute values of the x and
y derivatives are used as features as they peak in corner-like re-
gions. We use a threshold of 50 on both derivatives for each pixel
as this value results in a good number of feature candidates for typ-
ical scenes. Feature matching is performed between frames using
template matching with 15x15 search windows, which we empir-
ically found to be sufficient for our test hardware. With a higher
framerate, the templates could be made even smaller making this
step even faster, however at the 15 fps framerate of our hardware,
this provides good matching performance. Direction voting is per-
formed using variables, and the final decision on motion estimation
is performed every 4 frames. This allows several frames to ‘vote’
on the motion, keeping the scrolling from being incorrect due to
any errors in other parts of the system.

3.2 Feature Detection

Traditional features include edges and corners. However, edges are
not significantly temporally coherent and corner features are too
computationally expensive to find at many image locations while
retaining real-time performance. Instead, corner-like features are
detected using image gradient information (Equation 1).

S(x,y) = (G2
x +G2

y) (1)

Gx(x,y) = ∂ I
∂x

≈ sobelx(x,y), Gy(x,y) = ∂ I
∂y

≈ sobely(x,y)

(2)

S(x,y) is the Sobel operator and the Sobel functions denote convo-
lution with the x and y components of the Sobel kernel. All corners
cannot be detected using the Sobel operator; however, it provides a
useful first-step culling of pixels for additional processing. Frame n
is filtered using the Sobel x and y filters. The Sobel operator is then
applied to every pixel in scanline order. If S(x,y) is greater than
an edge threshold (50 in our implementation), the pixel at (x,y) in
frame n is labeled a feature. Once k features are detected the Sobel
operator is no longer applied, with k = 50 providing good results.

The list of detected features is then passed onto the next step, tem-
plate matching.

3.3 Template Matching

Template matching alone is not reliable since only image pixel dif-
ference errors are used and neither sensor noise nor lighting varia-
tions are modeled. Template matching is used in this algorithm be-
cause it is computationally inexpensive and provides useful match
estimates. We ignore perspective effects and changes in appearance
due to rotation in favor of pure 2D motion since we have limited
processing speed. In practice, we have not found these assumptions
to be problematic in terms of ease of use as the detected motion
matches the user’s motion.

Matching is performed for each feature detected in Frame n. For
each feature, the 15x15 pixel neighborhood around the feature is
tested for image similarity using the sum of squared differences
(SSD) on the captured images, not on the edge images. 15x15 sized
features were chosen as this size is large enough to capture visually
distinct regions and significant intra-frame physical motion on our
test hardware. Let t f denote a 15x15 pixel sized template image
consisting of the pixel neighborhood at (i, j), where feature f was
detected in Frame n. Then, to find the closest match in Frame n−1,
we can use the following equation that is faster to compute and
equivalent to SSD in the case of a non-changing image and tem-
plate:

min
(x,y)∈N

M(x,y) =
7

∑
k=−7

7

∑
l=−7

t f (k +7, l +7) f (x+ k,y+ l) (3)

where N is the 15x15 pixel neighborhood around (i, j). The loca-
tion of the closest match is found by testing every offset around
location (i, j) and comparing the 15x15 sub-image there with the
15x15 sub-image from the feature’s pixel neighborhood. The
matching is performed from the current frame to the previous frame
instead of vice versa since a feature detected in Frame n− 1 may
not be detected in Frame n.



3.4 Direction Estimation

The direction cannot be estimated by simply counting the most
dominant template matching direction amongst all features. Such
estimation would be temporally incoherent since neither the feature
detection nor template matching component is perfectly coherent.
To remove temporal incoherencies, the estimated directions of the
matched feature locations are temporally filtered. For each frame,
the most dominant direction is computed and a counter for that di-
rection is incremented. For each direction, a counter is initialized
at zero. After m frames, where m is typically between 3−5 frames,
the counter with highest count is chosen as the estimated direction
with other counters reset to zero. Only a small amount of temporal
filtering is needed since the features are individually robust. The
direction estimation fails if the camera is moved largely between
frames since at least one feature from the previous frame must be
visible, as in other template matching-based algorithms.

3.5 Determining Camera Motion Magnitude

The directions of dominant camera motion are computed using the
tracking algorithm, but their magnitudes are not known accurately.
Camera motion magnitude must be calculated accurately to deter-
mine how to adjust the scroll speed in applications that need zoom
control. We use motion history images (MHI) [Davis and Bobick
1997] to estimate camera motion magnitude. Motion histories are
encoded in single images such that a single image can be used for
simple, robust and computationally inexpensive gesture recogni-
tion. An MHI is computed by performing background subtraction
between the current and previous frames. At locations where the
pixel values change, the MHI is updated by decrementing by a pre-
defined constant amount. By averaging the intensity values of the
MHI, the average camera motion magnitude is estimated. The fol-
lowing equation calculates the MHI’s value at position (x,y) in the
camera image at time t:

HT (x,y, t) =

{

τ if D(x,y, t) = 1,

max(0,HT (x,y, t −1)−1) otherwise

(4)
where HT is initialized to be 0 in the first frame and D(x,y, t) de-
notes an image difference between frame t and t − 1, with τ being
the number of frames of motion that the MHI should represent. In
this manner, the MHI compactly represents the motion magnitude
from the incoming video, with areas ‘lighting up’ when significant
motion is detected and the whole MHI fading to black if no mo-
tion is detected. The simplicity of the MHI calculation makes it
amenable for use in driving the scroll level and velocity.

4 Mapping Motion to Interaction

In order to support intuitive and efficient user interaction, it is im-
portant to understand what kind of information is provided by the
tracking algorithm, and what the limitations are given the output
of the tracking algorithm. The most basic but potentially most im-
portant input that can be acquired from the tracking algorithm is the
two dimensional movement of the mobile device on a plane parallel
to the camera in 3D. With this type of data, the camera can be used
as an input device to capture the device’s movement in up/down,
left/right directions, as well as its speed in each direction. Mobile
camera-based input has restrictions, primarily due to limitations of
mobile device hardware. Forward and backward motion cannot be

Figure 4: For physical motion in a particular direction at different
magnitudes, the direction and magnitude are decoupled. The scroll
direction is purely direction based, while the zoom level is purely
magnitude based.

detected with the current algorithm, so six degree of freedom move-
ment is not supported. Forward/backward motion is possible to de-
tect if the algorithm were extended, however this would increase
computational demands and reduce the frame rate, impoverishing
the user interaction.

Physical movement speed is another challenge for camera-based in-
teraction. The algorithm must perform all of its video analysis in the
time between camera frames being captured to support real time in-
teraction. As a result, there are implicit limits on the computational
complexity of the tracking. In addition, there is a fundamental as-
sumption in our algorithm that each frame contains some portion
of the prior frame. This assumption is motivated by the observa-
tion that users will typically not move their phones erratically when
focused on a task. We have also verified our tracking algorithm in
informal experiments and found that the algorithm works well in
practice. Users usually operate mobile phones with one hand. Mo-
bile phones can also be used anywhere in an office, school, public
location, home, etc. Considering these use environments, there are
certain interactions which are not appropriate.

Precise tasks: Precise motion is very difficult holding a mobile de-
vice with one hand. Interaction should not require operations like
’move the device 2.5cm up’, or ’move the device 34 degrees from
the horizontal line.’ As a result, camera-based interaction will prob-
ably be most useful when navigating large amounts of data, or zoom
level dependent data.

Large motion: This restriction is more serious in some environ-
ments, such as in crowded public locations. In such situations,
it may be advantageous to provide a ‘clutch’ to turn the tracking
on/off. This would emulate the act of lifting a mouse once the edge
of a desk is reached in traditional desktop interaction. In our in-
formal testing we did not provide a clutch, however in commercial
implementations this is a consideration to keep in mind.

Extended and/or frequent interaction: Using single handed opera-
tion, interactions that require extended time and/or frequent move-
ment may fatigue users.

Our approach works best with coarse selections at different speeds
and scales of data. It is critical that visual feedback follows physical
motion and that the feedback differs according to motion speed, in
order to provide an intuitive user experience. The most typical use
case is moving the device to scroll UI content such as a list or a
document. In the following applications section, we discuss some
example applications using camera-based input.



Figure 5: Camera-based interaction in a document viewing appli-
cation. The user’s physical motion maps directly to the document’s
scrolling. The magnitude of their movement could be used for al-
ternate document views.

5 Applications

We have implemented several test applications using the proposed
approach to clarify its strengths and limitations. In general, any mo-
bile application that requires scrolling and/or zooming could make
use of our approach provided that an onboard camera is present. We
implemented the tracking algorithm and applications in C++ using
the Series 60 second edition feature pack 2 SDK. Our test platform
was a Nokia 6630 mobile phone, which features an ARM 9 220mhz
processor, 10 megabytes of RAM, 176x208 screen resolution, and
a 1.3 megapixel camera capable of capturing frames at 15 fps.

5.1 Document Viewer

Scrolling a document is a common task on mobile devices. For ex-
ample, web content, especially when originally designed for desk-
top computers, typically becomes vertically long due to the narrow
screen width on mobile devices. In addition, scrolling with the joy-
stick is difficult especially when scrolling line by line. An alterna-
tive is to add an extra hardware button for scrolling. However, an
extra button is not a preferable solution for mobile device manufac-
turers due to the lack of extra physical space on the device along
with additional manufacturing costs. In the document viewer pro-
totype application we implemented, the user can vertically scroll
documents by moving the device up and down. The scroll speed
depends on how fast the user moves the device, which is much more
intuitive than changing scrolling speed depending on how long the
user presses the joystick or via menu options and settings. One issue
we identified in this application is that at some point, the user has to
move the device more than they can reach. For example, if the user
is scrolling to the right and is moving the device slowly, the zoom
level will be very high for maximum readability. However, at some
point the user will reach the physical limit of their arm’s motion.
To address this problem, we use the joystick as a ’carriage return’,
which scrolls the document to the beginning of the left again. After
a carriage return, all tracked motion except movement to the right
is ignored. Applications can selectively ignore tracked motions in
such a manner to create a robust physically-based interaction. Fig-
ure 5 demonstrates this application.

Figure 6: Picture browser application. In this prototype, a large
collection of photographs is presented. The user can move their
phone to scroll through the collection. If they slow down their move-
ment, the application automatically adjusts the zoom level to help
the user browse.

5.2 Zoomable Photo Browser

As cameras become more widespread on mobile phones and stor-
age size increases, managing photos becomes a more difficult task
for the user. Challenges include how to view a large amount of in-
formation on a small screen and how to browse with limited input
modalities. Current typical photo viewer applications show photo
thumbnails as lists, grids, or 3D carousels (Figure 1). As image se-
lection and scrolling are done with the joystick, the amount of time
a user needs to browse their images is directly related to the number
of images that they are browsing. Our photo browser test applica-
tion shows thumbnails of the user’s photos in a grid layout. The
user can scroll in four directions (up, down, left, right) by physi-
cally moving the mobile device. In this case it is difficult to view
all the images as some zoom control is required when looking for a
particular image. If the zoom level is not properly set, it is difficult
for a user to select a particular image from the set as the scrolling
will be too fast. To address this problem, we used the technique
introduced in [Igarashi and Hinckley 2000]. Adaptive zooming
based on the magnitude of the user’s physical movement keeps the
scroll speed virtually consistent, allowing the user to browse more
thumbnails by only moving the device faster. Figure 6 demonstrates
this application.

5.3 Vector graphics-based map

Scalable vector graphics are becoming more widespread on mobile
devices since they are amenable for limited display sizes. Vector
graphics are infinitely scalable with no loss in quality, in contrast to
raster graphics. We modified an implementation of the open source
vector graphics language SVG for mobile devices [W3C ] to utilize



Figure 7: Camera-based interaction in a map viewing application.
The map is rendered using vector graphics, so it can be scaled with
no loss in quality. Physically-based scrolling and zooming cou-
pled with vector graphics creates a better navigation experience
for users.

camera-based input rather than keypad presses for scrolling. In par-
ticular, we experimented with SVG map content, since this would
be one of the most common uses for it (Figure 7).

On a mobile device, a user would typically extensively pan and
zoom a map while performing a navigation task. Panned and
zoomed SVG content has no loss in quality due to its vector-based
nature, but is difficult to navigate using only buttons and a joypad.
We performed informal testing and users found zoomable SVG
content often easier to navigate with camera-based panning and
zooming. Further testing is required to determine how physically-
based panning and zooming of content compares to traditional tech-
niques. We believe camera-based interaction is better for getting
to approximate map locations quicker, while joypads are better for
fine-grained interactions such as selecting a particular street on the
map.

6 Conclusion

We introduced a new approach to improve the user experience
on mobile devices, specifically with mobile phones. A computer
vision-based tracking algorithm was presented to detect both phys-
ical motion direction as well as magnitude to permit one-handed
physical movement based interaction. A camera was chosen since
cameras are now widely available on mobile devices and are very
powerful sensors that can be used without introducing new sensors.
We demonstrated our approach in several applications, a document
viewer, a photo collection browser, and a vector graphics based
map. In the future, we would like to collect user feedback to deter-
mine how to improve user interaction further using mobile cameras.

While our tracking algorithm is very computationally efficient and
works well in practice, there are some situations that cannot be han-
dled. Severe lighting differences will cause the template matching
to stop working properly. Motion in front of the camera is ambigu-
ous and can affect tracking results as it is impossible to tell whether
the camera is moving or not without either significantly more ex-
pensive computations or other sensors. Shadows may confuse the
tracking system, but there are known computer vision techniques
for robust tracking in the presence of shadows that will be incorpo-
rated into the tracking algorithm once additional processing speed
is available.

References

AHLBERG, C., AND SHNEIDERMAN, B. 1994. The alphaslider:
a compact and rapid selector. In Proceedings of the SIGCHI
conference on Human factors in computing systems, 365–371.

AYATSUKA, Y., REKIMOTO, J., AND MATSUOKA, S. 1998.
Popup vernier: a tool for sub-pixel-pitch dragging with smooth
mode transition. In Proceedings of the ACM symposium on User
interface software and technology (UIST), 39–48.

BARTLETT, J. 2000. Rock ’n’ scroll is here to stay. IEEE Computer
Graphics and Applications 20, 3 (May/June), 40–45.

DAVIS, J., AND BOBICK, A. 1997. The representation and recog-
nition of human movement using temporal templates. In Pro-
ceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), 928–934.

HANNUKSELA, J., SANGI, P., AND HEIKKILA, J. 2005. A vision-
based approach for controlling user interfaces of mobile devices.
In IEEE Workshop on Vision for Human-Computer Interaction.

IGARASHI, T., AND HINCKLEY, K. 2000. Speed-dependent auto-
matic zooming for browsing large documents. In Proceedings of
the ACM symposium on User interface software and technology
(UIST), 139–148.

MASUI, T., KASHIWAGI, K., AND GEORGE R. BORDEN, I. 1995.
Elastic graphical interfaces to precise data manipulation. In
CHI’95: Conference companion on Human factors in comput-
ing systems, 143–144.

REKIMOTO, J. 1996. Tilting operations for small screen inter-
faces. In Proceedings of the ACM symposium on User interface
software and technology (UIST), 167–168.

ROHS, M. 2004. Real-world interaction with camera-phones. In
International Symposium on Ubiquitous Computing Systems.

SIIO, I. 1998. Scroll display: Pointing device for palmtop comput-
ers. In Asia Pacific Computer Human Interaction, 243–248.

W3C. http://www.w3.org/TR/SVGMobile/. SVG Tiny Profile.

YEE, K.-P. 2003. Peephole displays: pen interaction on spatially
aware handheld computers. In Proceedings of the SIGCHI con-
ference on Human factors in computing systems, 1–8.


