
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

May 1998

Mobile Code Security Techniques Mobile Code Security Techniques

Jonathan T. Moore
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation

Jonathan T. Moore, "Mobile Code Security Techniques", . May 1998.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-98-28.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/168
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/168
mailto:repository@pobox.upenn.edu

Mobile Code Security Techniques Mobile Code Security Techniques

Abstract Abstract
This paper presents a survey of existing techniques for achieving mobile code security, as well as a
representative sampling of systems which use them. In particular, the problem domain is divided into two
portions: protecting hosts from malicious code; and protecting mobile code from malicious hosts. The
discussion of the malicious code problem includes a more in-depth study of the Java security model, as
well as touching upon several other systems. The malicious host problem, however, is much more difficult
to solve, so our discussion is mostly restricted to ongoing research in that area.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-98-28.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/168

https://repository.upenn.edu/cis_reports/168

Mobile Code Security Techniques

Jonathan T. Moore

University of Pennsylvania

School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

Mobile Code Security Techniques

Jonathan T. Moore

Department of Computer and Information Science

University of Pennsylvania

jonm@dsl.cis.upenn.edu

May 9, 1998

Abstract

This paper presents a survey of existing techniques

for achieving mobile code security, as well as a rep-

resentative sampling of systems which use them. In

particular, the problem domain is divided into two

portions: protecting hosts from malicious code; and

protecting mobile code from malicious hosts. The

discussion of the malicious code problem includes a

more in-depth study of the Java security model, as

well as touching upon several other systems. The

malicious host problem, however, is much more diffi-

cult t o solve, so our discussion is mostly restricted to

ongoing research in that area.

1 Introduction

The recent explosion of the Internet, and in par-

ticular, the World Wide Web, offers an astounding

amount of interconnected computing resources. How-

ever, for most users, their use of Internet resources is

primarily limited by bandwidth. In particular, espe-

cially in home computers, there are many CPU cycles

to spare in comparison to the rate at which data can

be retrieved.

This suggests that rather than attempting to move

data across a network, we might be best served by

trying to move applications, which may very well be

more compact than the data they operate upon or

produce. The usual term for this is mobile c o d e

code which is written on one computer is transmit-

ted in some form to a second computer, where it is

executed. The two main forms of mobile code that

we will discuss here are applets and agents.

Applets consist of mobile code which is fetched

to be executed in a local environment. This tech-

nique was popularized by web browsers with embed-

ded Java [GJS96] virtual machines. In particular, it

allowed web publishers to reasonably serve interest-

ing "active" content such as animations or games,

rather than just static Hypertext Markup Language

(HTML) [BLC95] pages or bandwidth-dependent in-

teractive Con~mon Gateway Interface (CGI) [CGI98]

content. Here, the user which hosts the executing

applet can be viewed as the consumer.

Agents, on the other hand, are mobile programs

which are sent out into the network to perform some

task for their owner. One of the earliest mobile agent

systems was Telescript [TV96], produced by General

Magic. Intelligent agents might be able t o perform

web searches or shop for bargain airline tickets. The

idea is that various business would host agent execu-

tion environments, and consumers would produce the

mobile code and send it out into the network.

In either the applet case or the agent case, we have

mobile code which is produced by one party and run

in an environment controlled by another party. Natu-

rally, this raises some very important questions about

the security of mobile code. In the applet case, the

consumer would like to execute useful applets while

protecting his system from malicious ones. In the

agent case, however, the consumer would like to be

able to protect his agents from malicious servers. In

this paper, we will refer to these two viewpoints as

the malicious code problem and the malicious h o s t

problem, respectively.

The remainder of this paper explores the security

issues involved with mobile code and surveys existing

techniques for addressing them. We will begin with a

discussion of the malicious code problem in Section 2,

as that is the more well-understood viewpoint of mo-

bile code security. We will then proceed with the ma-

licious host problem in Section 3, studying the cur-

rent approaches to address this set of concerns. This

paper is not an overview of mobile code systems; we

restrict ourselves to the security issues involved and

the techniques for solving them. A good overview of

mobile code programming languages may be found

in [Tho97], and an introduction to the mobile agent

paradigm may be found in [Kna96].

2 Malicious Code

The security issues involved with running untrusted

code are fairly clear. Consider the most straightfor-

ward method of allowing applets: a user downloads

an applet in an appropriate binary executable format

and simply runs it. Since this would imply that the

applet would run with the permissions of the code

consumer, the user's system would be quite vulner-

able. The applet might be able to randomly write

to memory, possibly crashing the machine'. Even

worse, the applet would be able t o read, modify, or

even delete the user's private files.

A first attempt might be to require a step of au-

thentication before running an applet. Then the user

could be sure only to run code which came from

specific trusted sources. This approach however, is

unsatisfying in a t least two ways. Firstly, not only

this would require some sort of public key infrastruc-

ture to scale well, but it might severely limit which

applets a user can run-even an "untrusted" server

might provide useful and benign code. Secondly, and

more importantly, though, even code from "trusted"

sources might contain bugs which could have ma-

licious (though unintentional) consequences on the

user's system.

This would suggest that an ideal solution to the

malicious code problem would be one which caught

and prevented unsafe actions, whether intentional or

not. Then not only could the user feel confident

about downloading applets from untrusted sources,

but would also have some measure of protection from

buggy software. Three different techniques for solv-

ing this problem include safe interpreters, fault iso-

lation, and code verification. The next three subsec-

tions will address each of these techniques in turn.

2.1 Safe Interpreters

As mentioned above, running straight binaries
presents some serious security and safety problems.

'Operating systems without address spaces are distressingly

common in the home computing environment!

Master Safe
Interpreter i Interpreter !

-..................

padded cell

hidden command

Figure 1: Safe-Tcl architecture [OLW97]

A very common approach to addressing this issue is

to forgo compiled executables and instead to inter-

pret the mobile code instead. In this way, the inter-

preter has fine-grained control over the applet, and

can examine each instruction or statement and decide

whether to execute it or not. Now the safety of the

system is reduced to the correctness of the security

policy implemented by the interpreter; a careful code

review could provide some measure of confidence to

this effect. By contrast, determining whether an ar-

bitrary applet program is "safe" is not decidable, and

requiring the user to review all incoming mobile code

is certainly not scalable.

Safe-Tcl. One safe interpreter system which illus-

trates some common security and safety techniques is

the Safe-Tcl system [OLW97]. The major construct

in use is the padded cell, depicted in Figure 1. Each

applet is isolated in a safe interpreter where it can-

not interact directly with the rest of the application.

In turn, the execution environment of the safe inter-

preter is controlled by a (trusted) master interpreter.

This is facilitated by the Tcl language, in which in-
terpreters are first-class values and are highly config-

urable. In particular, any "unsafe" functions can be

hidden from the namespace of the padded cell, thus
preventing the applet from invoking them.

Of course, if function hiding is used too liberally,

it can render an applet not only harmless but also

useless! There are certainly cases where the mobile

code might need to access disk (e.g., for temporary

storage), create a window on the display, or perform

some network communication. The Safe-Tcl system

uses aliases to allow controlled use of unsafe func-

tions. An alias is simply an upcall to the master in-

terpreter which serves to guard some system resource

and decide whether to grant or deny the request. The

padded cell approach, through proper use of function

hiding and aliasing in the construction of the safe

interpreters, thus allows multiple applets to be run-

ning concurrently, each having its own security policy.

Clearly, Safe-Tcl is quite flexible.

However, care must be taken regarding allowing

applets to communicate. In their paper describing

the system, Ousterhout et al. point out that the

composition of two sets of safe commands is not nec-

essarily safe itself; i.e., applets can collude to acquire

more access than they might individually have been

granted2. Despite the complexity of the cooperating

applet problem, the padded cell approach does sim-

plify the setting of security policies for single applets.

Figure 2 shows how this simplification is accom-

plished; namely, all interaction between trusted and

untrusted components of the system occurs through

well-defined interfaces (the aliases), so security efforts

may be focused there.

Extensions to Safe-Tcl. As we just mentioned,

Safe-Tcl provides an environment which takes care

of the safety issues of applets and allows flexibility in

the policy for addressing the security issues. Here we

mention two projects which use Safe-Tcl and apply

their own security policies to solve the malicious code

problem.

The first is the Upper Atmospheric Research Col-

laboratory (UARC) [JRP96], a system designed to al-

low scientists to collaborate remotely. In UARC, the

applications (e.g., test data viewers) are downloaded

from a central authority and then executed, allowing

simple centralized administration. The main appli-

cation is called the browser, and serves the same role

as the master interpreter in the Safe-Tcl architecture;

interpreters for different types of applets (including

Safe-Tcl itself, Java-enabled Netscape, or Java's ap-

 or example, an applet granted network access exclusively
to hosts inside a firewall might cooperate with an applet al-

lowed only to communicate with hosts outside the firewall, thus

effectively bypassing the firewall itself.

padded cell

0 trusted @ alias untrusted

Figure 2: Code interactions in Safe-Tcl [OLW97]

pletviewer [GM96]) are then run as subsidiary safe

interpreters. The browser abstracts system resources

into objects and associates with them access control

lists. Access is controlled by using cryptographic au-

thentication to classify the local user, the applet's

source machine, and the applet's author. Config-

urable policies then perform intersections of the var-

ious principal's rights to grant the least common ac-

cess.

A different approach is used by the

D'agents [BKR98] system (formerly known as

Agent Tcl [Gra96]). Here, the applets are agents
are written in Tcl, Java, or Scheme and run in

interpreters modified to allow process migration.

Resource control is based on an economic system

where each agent carries electronic cash and must

pay resource managers for access to resources.

Special processes serve as "banks" which validate

transactions and issue the electronic cash. There are

additionally "arbiter" processes which are used to

discourage cheating on transactions (i.e., receiving

service and then not paying for it, or accepting
payment and then not rendering the service pur-

chased). Here, each party gives some small amount

of "collateral" electronic cash which is forfeited if

the other party cries foul, thus discouraging cheating

or false accusation. Specifically, these resource

managers serve as the master interpreter sides of the
aliases in Safe-Tcl. In general, this market-based
approach allows the servers to control resource usage

by varying their pricing structures and by having the

banks limit the outflow of currency to the agents.

Unfortunately, neither of these systems represents

a completely general solution to setting security pol-

icy for downloaded applets. In the UARC system, for

example, usefully empowered applets are restricted

to the "official" UARC software-other software is

(probably rightfully so) extremely limited in the ac-

cess control it is granted. Of course, the UARC

system is a very specialized application for atmo-

spheric scientists, and although the general archi-

tecture could easily be instantiated in other collab-

orative environments, it is not meant to be a one-

size-fits-all application. The D'agents work, on the

other hand, seems a little more general; it would be

straightforward for a server to set prices on CPU cy-

cles, memory, and disk space based on its current

load. One large difficulty seems to be setting a price

on read or write access to local files-clearly some

useful applets might need this service. It would seem

that some sort of authentication would be necessary

so that a price could reasonable set for trusted agents

or a sale refused to untrusted ones. The paper by

Bredin et al. does not address this issue; their focus

rather seems to be simply allowing machine owners

to "rent" their spare computational resources.

Telescr.ipt/Odyssey. General Magic was one of

the first companies to offer a commercial mo-

bile agents system. Their original system, Tele-

script [TV96], in light of the overwhelming success

of the Java applet platform, has since been reim-

plemented in Java as is now being marketed as the

Odyssey [Whig81 system. Nevertheless, much of the

original Telescript paradigm has been preserved.

In Telescript, the notion of security has been in-

cluded in the design of the object-oriented source lan-

guage. The class hierarchy includes certain semantic

limitations: a class can be sealed and thereafter may

not be extended or subtyped; also, a class can be

abstract and thereby not able to be instantiated. In

addition, there are operators to turn pointers into

protected references; an object may not be modified

by accessing it through a protected reference. This

gives a sort of read-only capability-based feel to the

system.

However, one of the main features of the Telescript

language is that the security policy for a system may

be specified directly in the language. Specifically,

each agent (called a process) carries with it a permit

which lists its rights. The permit includes limitations

on total lifetime, total memory usage, and CPU pri-

ority, but a hosting site may always choose to grant

a more restricted set of rights than does the permit.

Other rights expressed by the permit include the abil-

ity to spawn new processes, the ability to travel to

another site, and the abilities to either grant or deny

rights to other processes.

In his survey of agent programming lan-

guages [Tho97], Thorn points out some weak aspects

of the Telescript system:

The Telescript system includes a number of

features to restrict the actions of agents, but

they seem to suffer from a lack of systematic

design. It is not clear how to be convinced of

the consistency of the implemented security

restrictions.

One pitfall of having permissions built into the lan-

guage is that a programming error may lead to a pro-

cess with a permit that is too permissive. As Thorn

puts it: "[Telescript processes] can be hard or im-

possible to control once launched." Thus, unlike the

Safe-Tcl approach, where there is a clear distinction

between trusted and untrusted code (recall Figure 2),

in Telescript we may have a jumble of agents execut-

ing on a given host, all with differing access rights

and perhaps interacting in unexpected ways.

Java. Java [GJS96] is perhaps the most well-known

applet system in existence. Unfortunately, it is

known not only for its security system, but also for

the vulnerabilities of that system [Sun98]. We begin

by summarizing nitzinger and Mueller's overview of

Java security [FM96].

The sources of Java applets are compiled down into

bytecode instructions on the Java Virtual Machine

(JVM). An implementation of the JVM is then em-

bedded in an application, e.g., a web browser, which

allows the applet to be interpreted. A local security

manager class is loaded a t start-up. All access to

unsafe operations must be approved by the security

manager. The default restrictions for an applet in-

clude: no local disk access; all stand-alone windows

created by the applet are clearly labeled "untrusted" ;

and no network connections to computers other than

the server from which the applet was downloaded.

When the bytecodes for the applet arrive at the

browser, they are run through a static verifier. The

verification process confirms that the bytecodes ad-

here to the Java language specification (i.e., no

forging of pointers, class loaders, or security man-

agers). In addition, the verifier checks for violations

of namespace restrictions, stack over- or under-flows, Trust Manager JVM as well as to runtimes produced

and illegal type casts. by JavaSoft [Go196].

Once the bytecodes pass the verification stage, a Finally, in [WBDF97], Wallach et al. specify three

class loader is invoked which dynamically links them techniques for extending Java's security architecture.

into the namespace. In particular, the class loader Two of these ways, the addition of capabilities and

keeps separate namespaces for local (trusted) classes hiding classes a la Safe-Tcl, have already been dis-

and for downloaded (untrusted) classes; this prevents cussed here, so we will simply touch upon the last

applets from spoofing an existing trusted class. Con- technique, extended stack introspection. The idea is

trol is then passed to the bytecode interpreter, and to require each class to be digitally signed by some

the applet is executed. principal, which could be a person, the JVM itself,

The ubiquity of Java applets suggests that this se- or even another class. When an access request is

curity model is not overly restrictive-useful work made for a resource, the established identity is used

can be done this way. However, flaws in JVM imple- to access a permissions matrix. Any rights which are

mentations of this model, particularly in class loaders granted are then encoded in the execution stack: sub-

and security managers, can be exploited to circum- sequently called classes then inherit the rights, but

vent the security measures employed. Another short- when the calling class returns, the rights are popped

coming of this original model is that all applets are off the stack, thus preventing a calling class from

given the same set of access rights-there is only one obtaining the callee's rights. Wallach et al. note

security manager per browser. that the Netscape Communicator 4.0 implements ex-

An extension of the Java system meant to alleviate tended stack introspection.

this problem is the use of Java Archive (JAR) files.

These files are digitally signed by their producers; Other interpreted systems. The OCaml [Ler95]
public key cryptography can then be used to guaran- programming language implementation has also been
tee the origin of the bytecodes, and differing security used to implement a web browser, MMM. Like Java,

managers may be used based upon the level of trust applets consist of bytecode files which are dynam-

placed in the applet's author. JAR files, however, are ically linked and interpreted. However, the security

not in as widespread use as the basic JVM system. model is quite different from that of the JVM. In par-

ticular, the bytecodes are not subjected to the same

Java extensions. Electric Communities' Trust rigorous verification process. Instead, a crytographic
Manager [Corn] is a security framework which allows checksum of the interfaces of the downloaded mod-

the specification of the level of trust placed in vari- ules is used; the OCaml language is strongly and stat-

ous principals, and permits rights to be delegated to ically typed, and so a reliance is made on a certified

classes from trusted sources while still retaining the compiler to achieve safety for the system. Security is

ability to revoke them. They have modified Sun's achieved using familiar techniques: much as the Java

JVM to allow certificate-based policy decisions that class loader maintains a Separte namespace for local

allow for the more granular security control hinted at and remote classes, the CICaml system permits local

by JAR files. The changes extend the set of restric- module thinning which results in allowing imported

tions which can be placed on a downloaded applet, modules to only see a (safe) subset of the locally ex-

including control over whether other classes can be ported modules' intc3rf~ces3.

imported or downloaded and control over the pack- Finally, PLAN (Programming Language for Active

age membership of any downloaded applets. Packets) [HKM+98] is a language meant to replace

In [HI97], Hagimont and Ismail proposed an ex- network packet headers. Agents here are subject to

tension to Java and the JVM which adds software special requirements specific to their execution envi-

capabilities [Lev84] for This would allow ronment (i. e., on network routers). Authentication of

mutually-suspicious Java-based mobile agents to con- every packet would be extravagantly costly, and tight

trol the degree of privilege sharing involved in a co- ~0ntr01 of router resources is very important. The

operative exchange, Their system relies on an in- language thus has limited expressibility-there is no
frastructure which will allow agents to mutually au- direct recursion nor general looping constructs. HOW-
thenticate and will permit the granting of an agent's ever, the language is sufficiently expressive to write - - -
initial permissions when it arrives on a server. Ca- 373is is essentially similar to the function hiding capabili-

pabilities have been added to Electric Communities' ties of safe-TC~.

programs which run exponentially long in their size,

so the system still needs CPU timers and allocation

checks. Future work in further language restrictions

may permit the removal of these watchdog overheads.

2.2 Fault Isolation

As the reader may perhaps infer from the relative

length of the previous subsection, interpreted systems

are by far the most common platforms for solving the

malicious code problem. However, interpreters suf-

fer a serious performance overhead when contrasted

with compiled machine code. Users whose Java ap-

plets run achingly slow may wistfully yearn for the

ability to safely execute regular binaries. Fortu-

nately, it is possible to move towards this goal using

a fairly straightforward method known as sandbox-

ing [WLAG93].

Here, the untrusted code is loaded into its own part

of the address space known as a fault domain4. The

code is then instrumented to be sure that each load,

store, or jump instruction is to an address in the fault

domain. This is accomplished in one of two ways:

1. insert a conditional check of the address and

raise an exception if it is invalid, or

2. simply overwrite the upper bits of the address to

correspond to those of the fault domain,

where the tradeoff is that the former alternative is

more useful for debugging but the latter incurs less

overhead.

These techniques provide safety at a much lower

cost5 than interpreters. However, we are still sub-

ject to security concerns, for which the system shares

techniques with the safe interpreters of the previ-

ous subsection. Additional instrumentation is done

to cause system calls to be turned into calls to ar-

bitration code, similar to the aliasing technique of

Safe-Tcl. One major drawback of the sandboxing

approach is that the downloaded code is no longer

platform-independent, which was one of the major

design goals for the Java system [FM96].

One additionally relevant technique of software

fault isolation can be found in the VINO operating

system [SESS96]. Although VINO does not support

mobile code per se, it does support dynamic kernel

4Also known as a sandbox. The idea is that the untrusted
code will only be allowed to "play in its own sandbox."

5Wahbe et al. found overheads as low as 10.30% over unin-

strumented code.

extensions and attempts to address the problem of

a misbehaving piece of dynamic code. Although the

concern here is more one of buggy code, the results

would apply to an applet which attempted to hog the

resources on its hosting machine.

The kernel extensions (called grafts) are run in a

sandboxed address space to prevent them from read-

ing or writing inappropriate data or from executing

bad instructions. In addition, the grafts are run

in the context of a lightweight transaction system.

This allows the system to simply kill a graft which

is interfering with other processes while still leaving

the kernel data structures in a consistent state. Al-

though less important in the applet domain, coop-

eration among various pieces of mobile code is a key

aspect of many mobile agent systems. This technique

would allow a malicious agent to be terminated, even

if it held a resource like a lock, without leaving shared

data in an inconsistent state.

2.3 Code Verification

Although software fault isolation certainly provides

mobile code safety with higher performance than in-

terpretation, we are still subject to the overheads of

the code instrumentation, as well as the overheads of

the indirected calls which access resources. A tech-

nique called proof-carrying code (PCC) [NL97] can be

used to address some of these issues.

Here, the mobile code host decides upon a security

policy for an applet. This policy is then codified in

the Edinburgh Logical Fkamework (LF) [HHP93] and

published. Now, a burden is placed on the applet au-

thor not only to compile the applet t o machine code,

but also to generate a proof that the code conforms

to the conditions specified in the security policy.

Now the code consumer need only verify that the

proof supplied is valid and demonstrates that the bi-

nary satisfies the security conditions6, and then sim-

ply load and execute the code.

One key question which affects the usefulness of

this approach is that of what program properties are

expressible and provable in the LF logic used to pub-

lish the security policy and encode the proof. PCC

has succesfully been applied to minimum and maxi-

mum CPU cycle bounds, memory usage and safety,

network bandwidth consumption, and type safety. In

addition, there is a PCC compiler available for a safe

'Proof verification is usually far less computationally inten-

sive than proof generation, which may not even be decidable!

subset of C, allowing automatic generation of the

safety proofs.
PCC is a very promising approach. The mobile

code host can now avoid not only the instruction

overhead of sandboxing, but also some of the policy-

checking overhead implicit in using the Safe-Tcl alias

approach for achieving system security. It does, how-

ever, have some drawbacks. Like the basic sandbox-

ing technique, PCC sacrifices platform-independence

for performance. In addition, porting is not necessar-

ily straightforward: the LF-encoded security policy

and the safety proof must necessarily be closely tied

to the operating system and hardware of the machine

in question. Nevertheless, the benefits seem to out-
weight these disadvantages: PCC is being spun off

into a commercial venture, Cedilla Systems [Lee98].

3 Malicious Hosts

and will conclude with a theoretical method to pre-

serve secrecy.

3.1 Detecting Tampering

As mentioned earlier, we cannot use technical means

to protect our agents from harm. If mobile agent sys-

tems existed in a vacuum, it would not seem possible

to obtain a satisfactory attempt to solve the mali-

cious host problem, but fortunately, they do not. If

we can provably identify a malicious host, then the

threat of off-line legal, societal, or physical7 action

would serve to discourage the operators of malicious

hosts. Furthermore, it may be that an agent's owner

could get some measure of recompense or revenge for

the loss of his agent.

The techniques presented in this subsection all rely
- -

upon a public key infrastructure to permit the mu-

tual authentication of users, hosts, and/or agents. In

particular, since we are interested in proving that a
Now that we have extensively explored the malicious host was in fact malicious, the use of digital signs-

code problem, let us turn to the converse point of tures will be of primary importance,

view: the malicious host problem. This problem

presents itself primarily in the context of mobile agent

programming, where a consumer may have a vested Execution tracing- Vigna [Vig971 suggests one

interest in the correct execution of his agent. F~~ ex- method to allow tamper detection which involves pro-

ample, a shopping agent might carry electronic cash, ducing an execution trace of an agent's Program.

and it would be undesirable if a host could dupe the Firstly, the agent's code is divided into two types

agent into paying a high price for some good, or even of instructions: those which depend only upon the

worse, to simply "mug" the agent and steal its money. agent's internal state, and those whose results de-

The malicious host problem is daunting indeed; pend upon interaction with the evaluation environ-

the host certainly needs access to an agent,s code ment. For the former type of instruction, we require

and state in order to execute it, so how can sensi- the server to record in the trace only the new values

tive data be kept secret, or how can we guarantee of any variables in the agent. For the latter type,

an honest execution of the agent,s algorithm? chess however, in addition to recording the new values, the

et al. [CGH+95] observe that there are limits to the Server must sign them.

protection that can be achieved for mobile agents. Once the execution has finished, the server corn-

Firstly, if any portion of an agent's code or state is to putes a cryptographic hash of the entire trace and

be kept private, it must be encrypted. Secondly, we returns it to the agent's owner; the hash is in some

cannot prevent denial-of-service attacks which ran- Sense a receipt of the agent's execution. NOW, should

domly modify the agent's code or which simply ter- the agent's owner suspect foul play, he can denland

minate the agent without the assistance of special- to be shown the trace. The host must then produce

purpose trusted hardware. the trace, for which the hash value can be verified,

Therefore, solutions to the malicious host problem and then the trace can be examined to determine if

should focus on two themes: the host either:

1. being able to prove that tampering occurred, and 1. incorrectly executed an internal-only instruc-

tion, or
2. preventing leakage of secret information.

The following subsections outline some current re- 2. "lied" to the agent during one of its interactions

search into this very difficult problem. We will begin
with the environment.

with two techniques for the detection of tampering, 7e.g . , socks and doorknobs.

However, there are practical problems with this ap- to the owner who gets some confidence that y was

proach. Firstly, this does not alert the agent's owner correct. The main drawback seems to be the burden

to any foul play; it merely allows it to be provably placed upon the server. Firstly, the construction of

identified if the owner's suspicious are raised. Sec- the holographic proof y' is an NP-complete problem,

ondly, it places a very high burden on the servers which would seem to make it impractical, particularly

(especially the honest ones), as they must store all if the trace y is already too large to simply transmit

of their execution traces in case someone demands back to the owner.

them.

Authenticating Partial Results. Yee pee971

presents two ways to detect tampering by malicious

hosts. The first method involves the use of partial re-

sult authentication codes (PRACs). An agent is sent

out with a set of secret keys kl , ..., k,. At server i, the

agent uses key ki to sign the result of its execution

there, thereby producing a PRAC, and then erases

ki from its state before moving to the next server.

This means that a malicious server cannot forge the

partial results from previous hops; at worst, it could

merely remove them from the agent.

The PRACs should now allow the agent's owner

(who also possesses kl, ..., k,) to automatically cryp-

tographically verify each partial result contained in

a returning agent. The property that these messages

guarantee is perfect forward integrity:

If a mobile agent visits a sequence of servers

S = sl, ..., s,, and the first malicious

server is s,, the none of the partial re-

sults generated a t servers si, i < c, can be

forged. [Yee97]

However, if the tampering occurs simply through

dishonest interactions with the running agent, this

scheme will not automatically detect it. Again, we

must rely upon the suspicions of the agent's owner to

cause the PRACs to be examined-the PRACs will

all be cryptographically valid, although one or more

may not be semantically valid.

Yee presents a speculative approach to detecting

this semantic tampering based on computationally

sound proofs [Mic94]. For a program x, let y be an

execution trace for x. Now, the host could send y

back to the owner to be verified, but execution traces

could be quite large so their transn~ission may be too

costly in terms of bandwidth. Instead, the host can

encode y as a holographic proof y' that y was the re-

sult of running x. This proof y' has the property
that the owner needs only examine a few bits of y'

to be convinced of its correctness. The server then

uses a tree hashing scheme to hash the proof down

to a small root value, which is then transmitted back

3.2 Preserving Secrecy.

Sander and Tschudin [ST971 present a theoretical re-

sult aimed at allowing an agent to preserve some se-

crecy from the malicious host. The motivation is

that there are some situations in which simple de-

tection after-the-fact is insufficient or unsatisfactory.

Two examples are when the cost of legal action is

greater than the financial loss caused by tampering

and when an agent sent to digitally sign something

on its owner's behalf has a private key compromised.

Essentially, the problem we would like to solve is

the following: our agent's program computes some

function f , and the host is willing to compute f (x)

for the agent, but the agent wants the host to learn

nothing substantive about f . The protocol presented

works in the following way, where E is some encryp-

tion function:

1. The owner of the agent encrypts f .

2. The owner creates a program P(E(f)) which im-

plements E (f) and puts it in the agent.

3. The agent goes to the remote host, where it com-

putes P (E (f)) (x), and returns home.

4. The owner decrypts P (E(f)) (x) and obtains

f (x).

The basic idea is to convert the basic algorithm into

a garbled algorithm whose results can only be made

sense of by the owner of the agent.

Sander and Tschudin consider representing the

function f as a polynomial and then showing that

certain classes of homomorphic encryption schemes

would enable the protocol interaction above. How-

ever, there is some question whether a computation-

ally feasible homomorphic encryption function exists:

the above protocol would allow an efficient symmetric

encryption algorithm with a hardwired secret key to

be itself encrypted and sent to a second party. This

second party would then be able to use this func-

tion to encrypt data without discovering the secret

key, thus effectively providing a public key encryp-

tion system. Since there is no known efficient public

key algorithm, this suggests that the encrypted algo-

rithm must itself be inefficient (i.e. applying E to a

function results in nontrivial "code bloat.").

4 Conclusions

The malicious code problem is by far the more well-

understood half of mobile code security concerns.

The wide-ranging popularity of applet-enabled web

browsers alone testifies to the fact that reasonable so-

lutions to this problem exist. Nonetheless, research is

actively ongoing to continue analyzing and automat-

ing security policies and attempting to remove run-

time overhead for enforcement.

The malicious host problem, however, seems to be

far less tractable. There are not yet any computa-

tionally feasible methods to detect tampering, and

even some of the techniques for proving that tam-

pering occurred place a large burden on servers. In

addition, it is not clear that it is possible to reason-

[CGH+95] D. Chess, B. Grosof, C. Harrison,

D. Levine, and C. Parris. Itinerant

Agents for Mobile Computing. Research

Report RC 20010, IBM Research Divi-

sion, March 1995.

[CGI98] The CGI Specification.
h t t p : //hoohoo . ncsa . uiuc . edu/ cg i /

i n t e r f a c e . html, May 1998.

[Com] Electric Communities. Using the

EC Trust Manager to Secure Java.

http://www.communities.com/

company/ papers/ t r u s t .

[FM96] J . S. Fritzinger and M. Mueller. ~ a v a ~ ~

Security. Sun Microsystems, Inc.,

http://java.sun.com/ secu r i ty /

whitepaper .ps, 1996.

[GJS96] J . Gosling, B. Joy, and G. Steele. The

Java Language Specification. Addison-

Wesley, 1996.

ably provide an agent with any sort of secrecy while

it executes in a hostile environment. These problems
[GM96] J . Gosling and H. McGilton. The Java

Language Environment: A White Paper,
all would go to explain the lack of widespread use

May 1996. Sun Microsystems, Inc.,
of mobile agents, and in some cases would tend to

http://java.sun.com/ docs/ white/
indicate that secure uses of the agents may be quite

langenv.
limited by a lack of secrecy.

[Go1961

Acknowledgements

I would like to thank Matt Blaze for pointing out

clearly the reduction of a public key encryption al-

gorithm to a secret key encryption algorithm in the

Sander and Tschudin scheme. Upon closer inspec-

tion, this result was in the paper, but I probably [Gra96]

would never have seen it had I not known to look

for it.

References

[BKR98] J . Bredin, D. Kotz, and D. Rus.

Market-based Resource Control for Mo-

bile Agents. In Proceedings of Au-

tonomous Agents, May 1998. To appear. [HI971

[BLC95] T . Berners-Lee and D. Connolly. Hy-

pertext Markup Language-2.0. RFC
1866, Network Working Group, Novem-

ber 1995.

T. Goldstein. The Gateway Se-

curity Model in the Java Elec-

tronic Commerce Framework. Java-

soft, http://www.javasoft.com/

products/ commerce/

j ecf _gateway. ps, November 1996.

R. S. Gray. Agent Tcl: A Flexible and

Secure Mobile-agent System. In Proceed-

ings of the 1996 Tcl/Tk Workshop, pages

9-23, July 1996.

R. Harper, F. Honsell, and G. Plotkin.

A Framework for Defining Logics. Jour-

nal of the Association for Computing Ma-

chinery, 40(1):143-184, January 1993.

D. Hagimont and L. Ismail. A Pro-

tection Scheme for Mobile Agents on
Java. In Proceedings of the 3rd An-

nual ACM/IEEE International Confer-

ence on Mobile Computing and Network-
ing, pages 215-222, September 1997.

[HKM+98] M. W. Hicks, P. Kakkar, J . T . Moore,

C. A. Gunter, and S. M. Nettles. PLAN:

A Programming Language for Active

Networks, April 1998. Submitted to the

International Conference on Functional

Programming (ICFP'98).

[JRP96] T . Jaeger, A. D. Rubin, and A. Prakash.

Building Systems that Flexibly Down-

load Executable Content. In Proceedings

of the 6th USENIX Secuity Symposium,

pages 131-148, June 1996.

[Kna96] F . Knabe. An overview of mobile agent

programming. In Proceedings of the

Fijlh LOMAPS Workshop on Analysis

and Verification of Multiple-Agent Lan-

guages, June 1996.

[ST971 T. Sander and C. F. Tschudin. Protecting

Mobile Agents Against Malicious Hosts.

Lecture Notes in Computer Science on

Mobile Agent Security, November 1997.

To appear.

[Sun981 Java Security Frequently Asked Ques-

tions (FAQ) , 1998. Sun Microsystems,

Inc., h t t p : / / java. sun. com/ s f aq.

[Tho971 T. Thorn. Programming Languages for

Mobile Code. ACM Computing Surveys,

29(3):213-239, September 1997.

[TV96] J . Tardo and L. Valente. Mobile Agent

Security and Telescript. In Forty-

First IEEE Computer Society Conference

(COMPCON), 1996.

[Lee981 P. Lee. Proof-Carrying Code. Invited [Vig97] G. Vigna. Protecting Mobile Agents

talk, Switchware retreat, New Hope, NJ, through Tracing. In Proceedings of the

April 1998. Third Workshop on Mobile Object Sys-

tems, June 1997.
[Ler95] X. Leroy. Le systgme caml special light:

modules et compilation efficace en caml. [WBDF97] D. S. Wallach, D. Balfanzi, D. Dean, and

Research report 2721, INRIA, November E. W. Felton. Extensible Security Archi-

1995. tecture for Java. Technical Report 546-

[Lev841 H. M. Levy. Capability-Based Computer

Systems. Digital Press, 1984.

97, Department of Computer Science,

Princeton University, April 1997.

[Whig81 J . White. Mobile Agents
[Mic94] S. Micali. CS Proofs. In Proceedings

White Paper. General Magic,
of the 35th IEEE Symposium on Foun-

http://www.genmagic.com/
dations of Computer Science, pages 436-

technology/ techwhitepaper.htm1,
453, November 1994.

1998.

[NL97] G. C. Necula and P. Lee. Safe, Untrusted
[WLAG93] R. Wahbe, S. Lucco, T . Anderson, and

Agents using Proof-Carrying Code. In
S. Graham. Efficient Software-Based

Lecutre Notes in Computer Science Spe-
Fault Isolation. In Proceedings of the

cia1 Issue on Mobile Agents, October

1997.
Fourteenth ACM Symposium on Oper-

ating System Principles, pages 203-216,

[OLW97] J . K. Ousterhout, J . Y. Levy, and December 1993.

B. B. Welch. The Safe-Tcl Security

Model. Sun Microsystems Laboratories,
[Yee97] B. Yee. A Sanctuary for Mobile Agents.

http://www.scriptics.com/ people/
Technical Report CS97-537, Computer

john. ous te rhout / saf eTcl . ps, March
Science Department, University of Cali-

1997.
fornia in San Diego, April 1997.

[SESS96] M. I. Seltzer, Y. Endo, C. Small, and

K. A. Smith. Dealing With Disaster: Sur-

viving Misbehaved Kernel Extensions. In

Proceedings of the 2nd ACM Symposium

on Operating Systems Design and Imple-

mentation, pages 213-227, October 1996.

	Mobile Code Security Techniques
	Recommended Citation

	Mobile Code Security Techniques
	Abstract
	Comments

	tmp.1182524708.pdf.tGy2y

