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Abstract 

This paper presents a survey of existing techniques 

for achieving mobile code security, as well as a rep- 

resentative sampling of systems which use them. In 

particular, the problem domain is divided into two 

portions: protecting hosts from malicious code; and 

protecting mobile code from malicious hosts. The 

discussion of the malicious code problem includes a 

more in-depth study of the Java security model, as 

well as touching upon several other systems. The 

malicious host problem, however, is much more diffi- 

cult t o  solve, so our discussion is mostly restricted to 

ongoing research in that area. 

1 Introduction 

The recent explosion of the Internet, and in par- 

ticular, the World Wide Web, offers an astounding 

amount of interconnected computing resources. How- 

ever, for most users, their use of Internet resources is 

primarily limited by bandwidth. In particular, espe- 

cially in home computers, there are many CPU cycles 

to spare in comparison to the rate at  which data can 

be retrieved. 

This suggests that rather than attempting to move 

data across a network, we might be best served by 

trying to move applications, which may very well be 

more compact than the data they operate upon or 

produce. The usual term for this is mobile c o d e  

code which is written on one computer is transmit- 

ted in some form to a second computer, where it is 

executed. The two main forms of mobile code that 

we will discuss here are applets and agents.  

Applets consist of mobile code which is fetched 

to be executed in a local environment. This tech- 

nique was popularized by web browsers with embed- 

ded Java [GJS96] virtual machines. In particular, it 

allowed web publishers to reasonably serve interest- 

ing "active" content such as animations or games, 

rather than just static Hypertext Markup Language 

(HTML) [BLC95] pages or bandwidth-dependent in- 

teractive Con~mon Gateway Interface (CGI) [CGI98] 

content. Here, the user which hosts the executing 

applet can be viewed as the consumer. 

Agents, on the other hand, are mobile programs 

which are sent out into the network to perform some 

task for their owner. One of the earliest mobile agent 

systems was Telescript [TV96], produced by General 

Magic. Intelligent agents might be able t o  perform 

web searches or shop for bargain airline tickets. The 

idea is that various business would host agent execu- 

tion environments, and consumers would produce the 

mobile code and send it out into the network. 

In either the applet case or the agent case, we have 

mobile code which is produced by one party and run 

in an environment controlled by another party. Natu- 

rally, this raises some very important questions about 

the security of mobile code. In the applet case, the 

consumer would like to execute useful applets while 

protecting his system from malicious ones. In the 

agent case, however, the consumer would like to be 

able to protect his agents from malicious servers. In 

this paper, we will refer to these two viewpoints as 

the malicious  code problem and the malicious  h o s t  

problem, respectively. 

The remainder of this paper explores the security 

issues involved with mobile code and surveys existing 

techniques for addressing them. We will begin with a 

discussion of the malicious code problem in Section 2, 

as that is the more well-understood viewpoint of mo- 

bile code security. We will then proceed with the ma- 

licious host problem in Section 3, studying the cur- 

rent approaches to address this set of concerns. This 



paper is not an overview of mobile code systems; we 

restrict ourselves to the security issues involved and 

the techniques for solving them. A good overview of 

mobile code programming languages may be found 

in [Tho97], and an introduction to the mobile agent 

paradigm may be found in [Kna96]. 

2 Malicious Code 

The security issues involved with running untrusted 

code are fairly clear. Consider the most straightfor- 

ward method of allowing applets: a user downloads 

an applet in an appropriate binary executable format 

and simply runs it. Since this would imply that the 

applet would run with the permissions of the code 

consumer, the user's system would be quite vulner- 

able. The applet might be able to randomly write 

to memory, possibly crashing the machine'. Even 

worse, the applet would be able t o  read, modify, or 

even delete the user's private files. 

A first attempt might be to  require a step of au- 

thentication before running an applet. Then the user 

could be sure only to  run code which came from 

specific trusted sources. This approach however, is 

unsatisfying in a t  least two ways. Firstly, not only 

this would require some sort of public key infrastruc- 

ture to  scale well, but it might severely limit which 

applets a user can run-even an "untrusted" server 

might provide useful and benign code. Secondly, and 

more importantly, though, even code from "trusted" 

sources might contain bugs which could have ma- 

licious (though unintentional) consequences on the 

user's system. 

This would suggest that an ideal solution to the 

malicious code problem would be one which caught 

and prevented unsafe actions, whether intentional or 

not. Then not only could the user feel confident 

about downloading applets from untrusted sources, 

but would also have some measure of protection from 

buggy software. Three different techniques for solv- 

ing this problem include safe interpreters, fault iso- 

lation, and code verification. The next three subsec- 

tions will address each of these techniques in turn. 

2.1 Safe Interpreters 

As mentioned above, running straight binaries 
presents some serious security and safety problems. 

'Operating systems without address spaces are distressingly 

common in the home computing environment! 

Master Safe 
Interpreter i Interpreter ! 

-.................. 

padded cell 

hidden command 

Figure 1: Safe-Tcl architecture [OLW97] 

A very common approach to addressing this issue is 

to forgo compiled executables and instead to  inter- 

pret the mobile code instead. In this way, the inter- 

preter has fine-grained control over the applet, and 

can examine each instruction or statement and decide 

whether to execute it or not. Now the safety of the 

system is reduced to the correctness of the security 

policy implemented by the interpreter; a careful code 

review could provide some measure of confidence to 

this effect. By contrast, determining whether an ar- 

bitrary applet program is "safe" is not decidable, and 

requiring the user to  review all incoming mobile code 

is certainly not scalable. 

Safe-Tcl. One safe interpreter system which illus- 

trates some common security and safety techniques is 

the Safe-Tcl system [OLW97]. The major construct 

in use is the padded cell, depicted in Figure 1. Each 

applet is isolated in a safe interpreter where it can- 

not interact directly with the rest of the application. 

In turn, the execution environment of the safe inter- 

preter is controlled by a (trusted) master interpreter. 

This is facilitated by the Tcl language, in which in- 
terpreters are first-class values and are highly config- 

urable. In particular, any "unsafe" functions can be 

hidden from the namespace of the padded cell, thus 
preventing the applet from invoking them. 



Of course, if function hiding is used too liberally, 

it can render an applet not only harmless but also 

useless! There are certainly cases where the mobile 

code might need to access disk (e.g., for temporary 

storage), create a window on the display, or perform 

some network communication. The Safe-Tcl system 

uses aliases to  allow controlled use of unsafe func- 

tions. An alias is simply an upcall to the master in- 

terpreter which serves to  guard some system resource 

and decide whether to  grant or deny the request. The 

padded cell approach, through proper use of function 

hiding and aliasing in the construction of the safe 

interpreters, thus allows multiple applets to be run- 

ning concurrently, each having its own security policy. 

Clearly, Safe-Tcl is quite flexible. 

However, care must be taken regarding allowing 

applets to communicate. In their paper describing 

the system, Ousterhout et al. point out that the 

composition of two sets of safe commands is not nec- 

essarily safe itself; i.e., applets can collude to acquire 

more access than they might individually have been 

granted2. Despite the complexity of the cooperating 

applet problem, the padded cell approach does sim- 

plify the setting of security policies for single applets. 

Figure 2 shows how this simplification is accom- 

plished; namely, all interaction between trusted and 

untrusted components of the system occurs through 

well-defined interfaces (the aliases), so security efforts 

may be focused there. 

Extensions to Safe-Tcl. As we just mentioned, 

Safe-Tcl provides an environment which takes care 

of the safety issues of applets and allows flexibility in 

the policy for addressing the security issues. Here we 

mention two projects which use Safe-Tcl and apply 

their own security policies to solve the malicious code 

problem. 

The first is the Upper Atmospheric Research Col- 

laboratory (UARC) [JRP96], a system designed to al- 

low scientists to collaborate remotely. In UARC, the 

applications (e.g., test data viewers) are downloaded 

from a central authority and then executed, allowing 

simple centralized administration. The main appli- 

cation is called the browser, and serves the same role 

as the master interpreter in the Safe-Tcl architecture; 

interpreters for different types of applets (including 

Safe-Tcl itself, Java-enabled Netscape, or Java's ap- 

 or example, an applet granted network access exclusively 
to hosts inside a firewall might cooperate with an applet al- 

lowed only to communicate with hosts outside the firewall, thus 

effectively bypassing the firewall itself. 

padded cell 

0 trusted @ alias untrusted 

Figure 2: Code interactions in Safe-Tcl [OLW97] 

pletviewer [GM96]) are then run as subsidiary safe 

interpreters. The browser abstracts system resources 

into objects and associates with them access control 

lists. Access is controlled by using cryptographic au- 

thentication to classify the local user, the applet's 

source machine, and the applet's author. Config- 

urable policies then perform intersections of the var- 

ious principal's rights to grant the least common ac- 

cess. 

A different approach is used by the 

D'agents [BKR98] system (formerly known as 

Agent Tcl [Gra96]). Here, the applets are agents 
are written in Tcl, Java, or Scheme and run in 

interpreters modified to allow process migration. 

Resource control is based on an economic system 

where each agent carries electronic cash and must 

pay resource managers for access to  resources. 

Special processes serve as "banks" which validate 

transactions and issue the electronic cash. There are 

additionally "arbiter" processes which are used to 

discourage cheating on transactions (i.e., receiving 

service and then not paying for it, or accepting 
payment and then not rendering the service pur- 

chased). Here, each party gives some small amount 

of "collateral" electronic cash which is forfeited if 

the other party cries foul, thus discouraging cheating 

or false accusation. Specifically, these resource 

managers serve as the master interpreter sides of the 
aliases in Safe-Tcl. In general, this market-based 
approach allows the servers to control resource usage 

by varying their pricing structures and by having the 

banks limit the outflow of currency to  the agents. 



Unfortunately, neither of these systems represents 

a completely general solution to setting security pol- 

icy for downloaded applets. In the UARC system, for 

example, usefully empowered applets are restricted 

to the "official" UARC software-other software is 

(probably rightfully so) extremely limited in the ac- 

cess control it is granted. Of course, the UARC 

system is a very specialized application for atmo- 

spheric scientists, and although the general archi- 

tecture could easily be instantiated in other collab- 

orative environments, it is not meant to be a one- 

size-fits-all application. The D'agents work, on the 

other hand, seems a little more general; it would be 

straightforward for a server to set prices on CPU cy- 

cles, memory, and disk space based on its current 

load. One large difficulty seems to be setting a price 

on read or write access to local files-clearly some 

useful applets might need this service. It would seem 

that some sort of authentication would be necessary 

so that a price could reasonable set for trusted agents 

or a sale refused to untrusted ones. The paper by 

Bredin et al. does not address this issue; their focus 

rather seems to be simply allowing machine owners 

to "rent" their spare computational resources. 

Telescr.ipt/Odyssey. General Magic was one of 

the first companies to offer a commercial mo- 

bile agents system. Their original system, Tele- 

script [TV96], in light of the overwhelming success 

of the Java applet platform, has since been reim- 

plemented in Java as is now being marketed as the 

Odyssey [Whig81 system. Nevertheless, much of the 

original Telescript paradigm has been preserved. 

In Telescript, the notion of security has been in- 

cluded in the design of the object-oriented source lan- 

guage. The class hierarchy includes certain semantic 

limitations: a class can be sealed and thereafter may 

not be extended or subtyped; also, a class can be 

abstract and thereby not able to be instantiated. In 

addition, there are operators to turn pointers into 

protected references; an object may not be modified 

by accessing it through a protected reference. This 

gives a sort of read-only capability-based feel to the 

system. 

However, one of the main features of the Telescript 

language is that the security policy for a system may 

be specified directly in the language. Specifically, 

each agent (called a process) carries with it a permit 

which lists its rights. The permit includes limitations 

on total lifetime, total memory usage, and CPU pri- 

ority, but a hosting site may always choose to grant 

a more restricted set of rights than does the permit. 

Other rights expressed by the permit include the abil- 

ity to spawn new processes, the ability to travel to 

another site, and the abilities to either grant or deny 

rights to other processes. 

In his survey of agent programming lan- 

guages [Tho97], Thorn points out some weak aspects 

of the Telescript system: 

The Telescript system includes a number of 

features to restrict the actions of agents, but 

they seem to suffer from a lack of systematic 

design. It  is not clear how to be convinced of 

the consistency of the implemented security 

restrictions. 

One pitfall of having permissions built into the lan- 

guage is that a programming error may lead to a pro- 

cess with a permit that is too permissive. As Thorn 

puts it: "[Telescript processes] can be hard or im- 

possible to control once launched." Thus, unlike the 

Safe-Tcl approach, where there is a clear distinction 

between trusted and untrusted code (recall Figure 2),  

in Telescript we may have a jumble of agents execut- 

ing on a given host, all with differing access rights 

and perhaps interacting in unexpected ways. 

Java. Java [GJS96] is perhaps the most well-known 

applet system in existence. Unfortunately, it is 

known not only for its security system, but also for 

the vulnerabilities of that system [Sun98]. We begin 

by summarizing nitzinger and Mueller's overview of 

Java security [FM96]. 

The sources of Java applets are compiled down into 

bytecode instructions on the Java Virtual Machine 

(JVM). An implementation of the JVM is then em- 

bedded in an application, e.g., a web browser, which 

allows the applet to be interpreted. A local security 

manager class is loaded a t  start-up. All access to 

unsafe operations must be approved by the security 

manager. The default restrictions for an applet in- 

clude: no local disk access; all stand-alone windows 

created by the applet are clearly labeled "untrusted" ; 

and no network connections to computers other than 

the server from which the applet was downloaded. 

When the bytecodes for the applet arrive at the 

browser, they are run through a static verifier. The 

verification process confirms that the bytecodes ad- 

here to the Java language specification (i.e., no 

forging of pointers, class loaders, or security man- 

agers). In addition, the verifier checks for violations 



of namespace restrictions, stack over- or under-flows, Trust Manager JVM as well as to runtimes produced 

and illegal type casts. by JavaSoft [Go196]. 

Once the bytecodes pass the verification stage, a Finally, in [WBDF97], Wallach et al. specify three 

class loader is invoked which dynamically links them techniques for extending Java's security architecture. 

into the namespace. In particular, the class loader Two of these ways, the addition of capabilities and 

keeps separate namespaces for local (trusted) classes hiding classes a la Safe-Tcl, have already been dis- 

and for downloaded (untrusted) classes; this prevents cussed here, so we will simply touch upon the last 

applets from spoofing an existing trusted class. Con- technique, extended stack introspection. The idea is 

trol is then passed to the bytecode interpreter, and to require each class to be digitally signed by some 

the applet is executed. principal, which could be a person, the JVM itself, 

The ubiquity of Java applets suggests that this se- or even another class. When an access request is 

curity model is not overly restrictive-useful work made for a resource, the established identity is used 

can be done this way. However, flaws in JVM imple- to access a permissions matrix. Any rights which are 

mentations of this model, particularly in class loaders granted are then encoded in the execution stack: sub- 

and security managers, can be exploited to circum- sequently called classes then inherit the rights, but 

vent the security measures employed. Another short- when the calling class returns, the rights are popped 

coming of this original model is that all applets are off the stack, thus preventing a calling class from 

given the same set of access rights-there is only one obtaining the callee's rights. Wallach et al. note 

security manager per browser. that the Netscape Communicator 4.0 implements ex- 

An extension of the Java system meant to alleviate tended stack introspection. 

this problem is the use of Java Archive (JAR) files. 

These files are digitally signed by their producers; Other interpreted systems. The OCaml [Ler95] 
public key cryptography can then be used to guaran- programming language implementation has also been 
tee the origin of the bytecodes, and differing security used to implement a web browser, MMM. Like Java, 

managers may be used based upon the level of trust applets consist of bytecode files which are dynam- 

placed in the applet's author. JAR files, however, are ically linked and interpreted. However, the security 

not in as widespread use as the basic JVM system. model is quite different from that of the JVM. In par- 

ticular, the bytecodes are not subjected to the same 

Java extensions. Electric Communities' Trust rigorous verification process. Instead, a crytographic 
Manager [Corn] is a security framework which allows checksum of the interfaces of the downloaded mod- 

the specification of the level of trust placed in vari- ules is used; the OCaml language is strongly and stat- 

ous principals, and permits rights to be delegated to ically typed, and so a reliance is made on a certified 

classes from trusted sources while still retaining the compiler to achieve safety for the system. Security is 

ability to revoke them. They have modified Sun's achieved using familiar techniques: much as the Java 

JVM to allow certificate-based policy decisions that class loader maintains a Separte namespace for local 

allow for the more granular security control hinted at and remote classes, the CICaml system permits local 

by JAR files. The changes extend the set of restric- module thinning which results in allowing imported 

tions which can be placed on a downloaded applet, modules to only see a (safe) subset of the locally ex- 

including control over whether other classes can be ported modules' intc3rf~ces3. 

imported or downloaded and control over the pack- Finally, PLAN (Programming Language for Active 

age membership of any downloaded applets. Packets) [HKM+98] is a language meant to replace 

In [HI97], Hagimont and Ismail proposed an ex- network packet headers. Agents here are subject to 

tension to Java and the JVM which adds software special requirements specific to their execution envi- 

capabilities [Lev84] for This would allow ronment (i. e., on network routers). Authentication of 

mutually-suspicious Java-based mobile agents to con- every packet would be extravagantly costly, and tight 

trol the degree of privilege sharing involved in a co- ~0ntr01 of router resources is very important. The 

operative exchange, Their system relies on an in- language thus has limited expressibility-there is no 
frastructure which will allow agents to mutually au- direct recursion nor general looping constructs. HOW- 
thenticate and will permit the granting of an agent's ever, the language is sufficiently expressive to write - - - 
initial permissions when it arrives on a server. Ca- 373is is essentially similar to the function hiding capabili- 

pabilities have been added to Electric Communities' ties of safe-TC~. 



programs which run exponentially long in their size, 

so the system still needs CPU timers and allocation 

checks. Future work in further language restrictions 

may permit the removal of these watchdog overheads. 

2.2 Fault Isolation 

As the reader may perhaps infer from the relative 

length of the previous subsection, interpreted systems 

are by far the most common platforms for solving the 

malicious code problem. However, interpreters suf- 

fer a serious performance overhead when contrasted 

with compiled machine code. Users whose Java ap- 

plets run achingly slow may wistfully yearn for the 

ability to safely execute regular binaries. Fortu- 

nately, it is possible to move towards this goal using 

a fairly straightforward method known as sandbox- 

ing [WLAG93]. 

Here, the untrusted code is loaded into its own part 

of the address space known as a fault domain4. The 

code is then instrumented to be sure that each load, 

store, or jump instruction is to an address in the fault 

domain. This is accomplished in one of two ways: 

1. insert a conditional check of the address and 

raise an exception if it is invalid, or 

2. simply overwrite the upper bits of the address to 

correspond to those of the fault domain, 

where the tradeoff is that the former alternative is 

more useful for debugging but the latter incurs less 

overhead. 

These techniques provide safety at  a much lower 

cost5 than interpreters. However, we are still sub- 

ject to security concerns, for which the system shares 

techniques with the safe interpreters of the previ- 

ous subsection. Additional instrumentation is done 

to cause system calls to be turned into calls to ar- 

bitration code, similar to the aliasing technique of 

Safe-Tcl. One major drawback of the sandboxing 

approach is that the downloaded code is no longer 

platform-independent, which was one of the major 

design goals for the Java system [FM96]. 

One additionally relevant technique of software 

fault isolation can be found in the VINO operating 

system [SESS96]. Although VINO does not support 

mobile code per se, it does support dynamic kernel 

4Also known as a sandbox. The idea is that the untrusted 
code will only be allowed to "play in its own sandbox." 

5Wahbe et al. found overheads as low as 10.30% over unin- 

strumented code. 

extensions and attempts to address the problem of 

a misbehaving piece of dynamic code. Although the 

concern here is more one of buggy code, the results 

would apply to an applet which attempted to hog the 

resources on its hosting machine. 

The kernel extensions (called grafts) are run in a 

sandboxed address space to prevent them from read- 

ing or writing inappropriate data or from executing 

bad instructions. In addition, the grafts are run 

in the context of a lightweight transaction system. 

This allows the system to simply kill a graft which 

is interfering with other processes while still leaving 

the kernel data structures in a consistent state. Al- 

though less important in the applet domain, coop- 

eration among various pieces of mobile code is a key 

aspect of many mobile agent systems. This technique 

would allow a malicious agent to be terminated, even 

if it held a resource like a lock, without leaving shared 

data in an inconsistent state. 

2.3 Code Verification 

Although software fault isolation certainly provides 

mobile code safety with higher performance than in- 

terpretation, we are still subject to the overheads of 

the code instrumentation, as well as the overheads of 

the indirected calls which access resources. A tech- 

nique called proof-carrying code (PCC) [NL97] can be 

used to address some of these issues. 

Here, the mobile code host decides upon a security 

policy for an applet. This policy is then codified in 

the Edinburgh Logical Fkamework (LF) [HHP93] and 

published. Now, a burden is placed on the applet au- 

thor not only to compile the applet t o  machine code, 

but also to generate a proof that the code conforms 

to the conditions specified in the security policy. 

Now the code consumer need only verify that the 

proof supplied is valid and demonstrates that the bi- 

nary satisfies the security conditions6, and then sim- 

ply load and execute the code. 

One key question which affects the usefulness of 

this approach is that of what program properties are 

expressible and provable in the LF logic used to pub- 

lish the security policy and encode the proof. PCC 

has succesfully been applied to minimum and maxi- 

mum CPU cycle bounds, memory usage and safety, 

network bandwidth consumption, and type safety. In 

addition, there is a PCC compiler available for a safe 

'Proof verification is usually far less computationally inten- 

sive than proof generation, which may not even be decidable! 



subset of C, allowing automatic generation of the 

safety proofs. 
PCC is a very promising approach. The mobile 

code host can now avoid not only the instruction 

overhead of sandboxing, but also some of the policy- 

checking overhead implicit in using the Safe-Tcl alias 

approach for achieving system security. It does, how- 

ever, have some drawbacks. Like the basic sandbox- 

ing technique, PCC sacrifices platform-independence 

for performance. In addition, porting is not necessar- 

ily straightforward: the LF-encoded security policy 

and the safety proof must necessarily be closely tied 

to the operating system and hardware of the machine 

in question. Nevertheless, the benefits seem to out- 
weight these disadvantages: PCC is being spun off 

into a commercial venture, Cedilla Systems [Lee98]. 

3 Malicious Hosts 

and will conclude with a theoretical method to pre- 

serve secrecy. 

3.1 Detecting Tampering 

As mentioned earlier, we cannot use technical means 

to protect our agents from harm. If mobile agent sys- 

tems existed in a vacuum, it would not seem possible 

to obtain a satisfactory attempt to solve the mali- 

cious host problem, but fortunately, they do not. If 

we can provably identify a malicious host, then the 

threat of off-line legal, societal, or physical7 action 

would serve to discourage the operators of malicious 

hosts. Furthermore, it may be that an agent's owner 

could get some measure of recompense or revenge for 

the loss of his agent. 

The techniques presented in this subsection all rely 
- - 

upon a public key infrastructure to permit the mu- 

tual authentication of users, hosts, and/or agents. In 

particular, since we are interested in proving that a 
Now that we have extensively explored the malicious host was in fact malicious, the use of digital signs- 

code problem, let us turn to the converse point of tures will be of primary importance, 

view: the malicious host problem. This problem 

presents itself primarily in the context of mobile agent 

programming, where a consumer may have a vested Execution tracing- Vigna [Vig971 suggests one 

interest in the correct execution of his agent. F~~ ex- method to allow tamper detection which involves pro- 

ample, a shopping agent might carry electronic cash, ducing an execution trace of an agent's Program. 

and it would be undesirable if a host could dupe the Firstly, the agent's code is divided into two types 

agent into paying a high price for some good, or even of instructions: those which depend only upon the 

worse, to simply "mug" the agent and steal its money. agent's internal state, and those whose results de- 

The malicious host problem is daunting indeed; pend upon interaction with the evaluation environ- 

the host certainly needs access to an agent,s code ment. For the former type of instruction, we require 

and state in order to execute it, so how can sensi- the server to record in the trace only the new values 

tive data be kept secret, or how can we guarantee of any variables in the agent. For the latter type, 

an honest execution of the agent,s algorithm? chess however, in addition to recording the new values, the 

et al. [CGH+95] observe that there are limits to the Server must sign them. 

protection that can be achieved for mobile agents. Once the execution has finished, the server corn- 

Firstly, if any portion of an agent's code or state is to putes a cryptographic hash of the entire trace and 

be kept private, it must be encrypted. Secondly, we returns it to  the agent's owner; the hash is in some 

cannot prevent denial-of-service attacks which ran- Sense a receipt of the agent's execution. NOW, should 

domly modify the agent's code or which simply ter- the agent's owner suspect foul play, he can denland 

minate the agent without the assistance of special- to be shown the trace. The host must then produce 

purpose trusted hardware. the trace, for which the hash value can be verified, 

Therefore, solutions to the malicious host problem and then the trace can be examined to determine if 

should focus on two themes: the host either: 

1. being able to prove that tampering occurred, and 1. incorrectly executed an internal-only instruc- 

tion, or 
2. preventing leakage of secret information. 

The following subsections outline some current re- 2. "lied" to the agent during one of its interactions 

search into this very difficult problem. We will begin 
with the environment. 

with two techniques for the detection of tampering, 7e.g . ,  socks and doorknobs. 



However, there are practical problems with this ap- to the owner who gets some confidence that y was 

proach. Firstly, this does not alert the agent's owner correct. The main drawback seems to be the burden 

to any foul play; it merely allows it to be provably placed upon the server. Firstly, the construction of 

identified if the owner's suspicious are raised. Sec- the holographic proof y' is an NP-complete problem, 

ondly, it places a very high burden on the servers which would seem to make it impractical, particularly 

(especially the honest ones), as they must store all if the trace y is already too large to simply transmit 

of their execution traces in case someone demands back to the owner. 

them. 

Authenticating Partial Results. Yee pee971 

presents two ways to detect tampering by malicious 

hosts. The first method involves the use of partial re- 

sult authentication codes (PRACs). An agent is sent 

out with a set of secret keys kl , ..., k,. At server i, the 

agent uses key ki to  sign the result of its execution 

there, thereby producing a PRAC, and then erases 

ki from its state before moving to the next server. 

This means that a malicious server cannot forge the 

partial results from previous hops; at worst, it could 

merely remove them from the agent. 

The PRACs should now allow the agent's owner 

(who also possesses kl, ..., k,) to automatically cryp- 

tographically verify each partial result contained in 

a returning agent. The property that these messages 

guarantee is perfect forward integrity: 

If a mobile agent visits a sequence of servers 

S = sl, ..., s,, and the first malicious 

server is s,, the none of the partial re- 

sults generated a t  servers si, i < c, can be 

forged. [Yee97] 

However, if the tampering occurs simply through 

dishonest interactions with the running agent, this 

scheme will not automatically detect it. Again, we 

must rely upon the suspicions of the agent's owner to 

cause the PRACs to be examined-the PRACs will 

all be cryptographically valid, although one or more 

may not be semantically valid. 

Yee presents a speculative approach to detecting 

this semantic tampering based on computationally 

sound proofs [Mic94]. For a program x,  let y be an 

execution trace for x. Now, the host could send y 

back to the owner to be verified, but execution traces 

could be quite large so their transn~ission may be too 

costly in terms of bandwidth. Instead, the host can 

encode y as a holographic proof y' that y was the re- 

sult of running x. This proof y' has the property 
that the owner needs only examine a few bits of y' 

to  be convinced of its correctness. The server then 

uses a tree hashing scheme to hash the proof down 

to a small root value, which is then transmitted back 

3.2 Preserving Secrecy. 

Sander and Tschudin [ST971 present a theoretical re- 

sult aimed at allowing an agent to preserve some se- 

crecy from the malicious host. The motivation is 

that there are some situations in which simple de- 

tection after-the-fact is insufficient or unsatisfactory. 

Two examples are when the cost of legal action is 

greater than the financial loss caused by tampering 

and when an agent sent to digitally sign something 

on its owner's behalf has a private key compromised. 

Essentially, the problem we would like to solve is 

the following: our agent's program computes some 

function f ,  and the host is willing to compute f (x) 

for the agent, but the agent wants the host to learn 

nothing substantive about f .  The protocol presented 

works in the following way, where E is some encryp- 

tion function: 

1. The owner of the agent encrypts f .  

2. The owner creates a program P(E( f ) )  which im- 

plements E ( f )  and puts it in the agent. 

3. The agent goes to  the remote host, where it com- 

putes P ( E (  f )) (x), and returns home. 

4. The owner decrypts P (E( f ) ) (x )  and obtains 

f (x). 

The basic idea is to convert the basic algorithm into 

a garbled algorithm whose results can only be made 

sense of by the owner of the agent. 

Sander and Tschudin consider representing the 

function f as a polynomial and then showing that 

certain classes of homomorphic encryption schemes 

would enable the protocol interaction above. How- 

ever, there is some question whether a computation- 

ally feasible homomorphic encryption function exists: 

the above protocol would allow an efficient symmetric 

encryption algorithm with a hardwired secret key to 

be itself encrypted and sent to a second party. This 

second party would then be able to use this func- 

tion to  encrypt data without discovering the secret 



key, thus effectively providing a public key encryp- 

tion system. Since there is no known efficient public 

key algorithm, this suggests that the encrypted algo- 

rithm must itself be inefficient (i.e. applying E to  a 

function results in nontrivial "code bloat."). 

4 Conclusions 

The malicious code problem is by far the more well- 

understood half of mobile code security concerns. 

The wide-ranging popularity of applet-enabled web 

browsers alone testifies to the fact that reasonable so- 

lutions to this problem exist. Nonetheless, research is 

actively ongoing to continue analyzing and automat- 

ing security policies and attempting to remove run- 

time overhead for enforcement. 

The malicious host problem, however, seems to be 

far less tractable. There are not yet any computa- 

tionally feasible methods to detect tampering, and 

even some of the techniques for proving that tam- 

pering occurred place a large burden on servers. In 

addition, it is not clear that it is possible to reason- 
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