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Abstract

In this paper, we assess the past, present, and future of mo-

bile CPU design. We study how mobile CPU designs trends

have impacted the end-user, hardware design, and the holistic

mobile device. We analyze the evolution of ten cutting-edge

mobile CPU designs released over the past seven years. Specif-

ically, we report measured performance, power, energy and

user satisfaction trends across mobile CPU generations.

A key contribution of our work is that we contextualize the

mobile CPU’s evolution in terms of user satisfaction, which

has largely been absent from prior mobile hardware studies.

To bridge the gap between mobile CPU design and user sat-

isfaction, we construct and conduct a novel crowdsourcing

study that spans over 25,000 survey participants using the

Amazon Mechanical Turk service. Our methodology allows

us to identify what mobile CPU design techniques provide the

most benefit to the end-user’s quality of user experience.

Our results quantitatively demonstrate that CPUs play a

crucial role in modern mobile system-on-chips (SoCs). Over

the last seven years, both single- and multicore performance

improvements have contributed to end-user satisfaction by

reducing user-critical application response latencies. Mo-

bile CPUs aggressively adopted many power-hungry desktop-

oriented design techniques to reach these performance levels.

Unlike other smartphone components (e.g. display and radio)

whose peak power consumption has decreased over time, the

mobile CPU’s peak power consumption has steadily increased.

As the limits of technology scaling restrict the ability of

desktop-like scaling to continue for mobile CPUs, specialized

accelerators appear to be a promising alternative that can help

sustain the power, performance, and energy improvements that

mobile computing necessitates. Such a paradigm shift will

redefine the role of the CPU within future SoCs, which merit

several design considerations based on our findings.

1. Introduction

Mobile hardware design is driven by ambitious user require-

ments. Users demand that each generation compute faster, last

longer, and fit more components into increasingly thin form

factors. The fast pace at which new application use cases,

wireless technologies, and sensor capabilities emerge implies

that mobile system-on-chip (SoC) designs must quickly adopt

and adapt to the rapidly changing conditions, or perish.

At the forefront of this hardware innovation is the mobile

CPU. Mobile CPUs are being introduced at an unprecedented
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Fig. 1: Breakdown of yearly ARM Cortex-A CPU design market

share. Mobile CPU core designs have rapid design iteration

and innovation. At least one new core design is released each

year and newer designs overshadow the older ones.

rate to keep pace with end-user demands. Fig. 1, based on

data mined from over 1700 Android smartphone specifica-

tions, conveys the fast pace at which mobile CPU designs

have evolved. Considering the ARM-based Cortex-A series

alone, the most dominant mobile CPU design in smartphones

and tablets to date [1], at least one new CPU core design has

been released each year for the last six years – each signifi-

cantly more advanced than the last. In comparison, x86-based

desktop CPU designs did not exhibit as dramatic changes.

Intel-based desktop processors only exhibited four significant

core design changes throughout the same time span.

The rapid design innovation, pervasiveness in society, and

power-constrained nature of mobile hardware necessitate the

need to understand the implications of their current design

trends on future designs. Mobile CPUs have evolved from em-

bedded processors to desktop-like single-chip multiprocessors

to provide application responsiveness to end-users. However,

mobile CPUs, like any embedded processor, operate under a

stricter set of power, thermal and energy constraints than their

desktop counterparts. Therefore, there is a need to understand

the effectiveness of these designs trends, both in terms of the

end-users’ satisfaction and hardware efficiency.

In this paper, we take the first steps towards understanding

the mobile hardware evolution by studying the mobile CPU

in conjunction with end-user experience. We measure and

quantify the performance, power, energy, and user satisfac-

tion trends across mobile CPU designs released between 2009

and 2015. Our study spans across ten mobile CPUs, repre-

senting the evolution of the seven consecutive generations of
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Table 1: Representative set of Android smartphones and their evolution over the past six years.

Year 2009 2010 2011 2012 2013 2014 2015

Manufacturer Motorola Samsung

Name Droid Galaxy S Nexus Galaxy S 3 Galaxy S 4 Galaxy S 5 Galaxy S 6

Label D S N S3S S3Q S4S S4Q S5S S5Q S6

SoC

Texas Samsung Texas Samsung Qualcomm Samsung Qualcomm Samsung Qualcomm Samsung

Instruments Exynos 3110 Instruments Exynos 4412 Snapdragon Exynos 5410 Snapdragon Exynos 5422 Snapdragon Exynos 7420

OMAP 3430 OMAP 4460 MSM8960 APQ8064T 8930AB

Process 64 nm 45 nm 32 nm 28 nm LP 28 nm 28 nm LP 28 nm HKMG 28 nm HPm 14 nm LPE

CPU ARM A8 ARM A8 ARM A9 ARM A9 Krait ARM A15 + A7 Krait 300 ARM A15 + A7 Krait 400 ARM A57 + A53

Cores 1 1 2 4 2 4 + 4 4 4 + 4 4 4 + 4

Frequency 600 MHz 1 GHz 1.2 GHz 1.4 GHz 1.5 GHz 1.6 GHz + 1.2 GHz 1.9 GHz 2.1 GHz + 1.5 GHz 2.5 GHz 2.1 GHz + 1.5 GHz

L0 $ (I/D) - - - - 4 KB / 4 KB - 4 KB / 4 KB - 4 KB / 4 KB -

L1 $ (I/D) 32 KB/ 32 KB 16 KB / 16 KB 32 KB / 32 KB 16 KB / 16 KB 32 KB / 32 KB 16 KB / 16 KB 48 KB / 32 KB

L2 $ 256 KB 512 KB 1 MB 2 MB 2 MB + 512 KB 2 MB 2 MB + 512 KB 2 MB 2 MB + 512 KB

RAM 256 MB LPDDR 512 MB LPDDR2 1 GB LPDDR3 2 GB LPDDR3 3 GB LPDDR4

OS Version 2.2.3 2.2.1 4.2.0 4.0.4 4.1.2 4.2.2 4.4.2 5.02

cutting-edge mobile CPU technology. These mobile CPUs

represent eight different microarchitectures, six different pro-

cess nodes and also include recent trends towards asymmetric

multiprocessing and core customization.

Despite almost a decade of existence, mobile CPU design

trends and their impact on end-user experience are not well-

understood in both industry and academicia. Current mobile

CPU architecture research exclusively focuses on the interac-

tions between the hardware and software, largely ignoring the

end-user. To extend the conventional research scope to include

the end-user, we construct and conduct a novel crowdsourcing-

based user study that spans over 25,000 participants using

Amazon’s Mechanical Turk service. Our methodology allows

us to quantitatively determine the relationship between end

user satisfaction and mobile CPU design evolution. The sur-

vey participants evaluate a wide variety of applications that

exhibit different types of user interaction and computational

characteristics common to current (e.g. Angry Birds), and

likely future (e.g. augmented reality), mobile applications.

Our quantitative analysis exposes how mobile CPU design

trends have impacted the end-user, hardware design, and the

holistic mobile device. To the best of our knowledge, our study

is the first of its kind to rigorously evaluate mobile CPU design

trends. Furthermore, our work can serve as an example for

future, more holistic studies that consider the rest of the SoC

and mobile device. Each of our mobile CPU observations is

quantitatively reinforced – valuable in and of itself – regardless

of whether it aligns with conventional wisdom or is surprising:

• Desktop-like Scaling: Mobile CPUs have adopted many of

the high-performance mechanisms found in desktop CPUs.

User satisfaction is latency-sensitive, which emphasizes the

need for single-threaded performance improvements. How-

ever, the “low hanging fruit” (i.e. low-power) performance-

oriented techniques are already being used in mobile CPUs.

Future hardware and software will need to understand how

to identify and efficiently mitigate user-critical bottlenecks.

• Multicore CPUs: Even though multicore CPUs are often

under-utilized in mobile applications [31, 32], they serve

important roles to deliver end-user satisfaction. User crit-

ical application functionalities are often multithreaded to

leverage multicores speedups and background processes

can interfere with user-facing application processes when

there are not enough cores available.

• CPU Criticality: Mobile applications are developed in

general-purpose programming languages that primarily tar-

get the mobile CPU. Even for applications that utilize other

SoC components, such as the GPU and image decoder,

end-user satisfaction still depends on CPU performance.

Therefore, mobile CPU design remains relevant as hard-

ware acceleration and heterogeneous execution catch on.

• Power Wall: In contrast to other smartphone components,

such as the display and radio, mobile CPU power consump-

tion has risen excessively over time. Single-core power

consumption has hit a power wall, and multicore power con-

sumption can significantly surpass SoC-level TDPs without

even considering the rest of the SoC. SoC and mobile de-

vice designers must pay closer attention to CPU power

consumption and consider synergistic, cross-layer power

optimizations that fairly allocate power budgets across the

mobile CPU and other smartphone components.

The remainder of the paper is organized as follows. Sec. 2

analyzes recent mobile CPU design trends. Sec. 3 presents our

crowdsourced user study analysis. Sec. 4 and Sec. 5 discuss

the implications of our findings, focusing on CPU scaling

design methodologies and specializaton, respectively. Prior

work is discussed in Sec. 6, and we conclude in Sec. 7.

2. Mobile CPU Evolution

Today’s desktop and server CPUs are the result of gen-

erational microarchitectural enhancements, clock frequency

increases, memory hierarchy growth and multicore scaling.

Mobile CPUs are no exception, having embraced these archi-

tectural design features at an unprecedented pace in pursuit of

performance. Through measurement, we quantify their impact

on performance, power and energy across seven mobile CPU

generations, released from 2009 to 2015. Our study focuses

on peak performance because it drives design innovation. We

study mobile CPUs that incorporate the cutting-edge mobile

CPU technologies introduced each year (Sec. 2.1).

Our measured results allow us to make several key obser-
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Fig. 2: More aggressive mobile CPU design techniques have

provided significant performance improvements over time.
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Fig. 3: Microarchitectural innovations alone have enabled sub-

stantial performance improvements across the mobile CPUs.

vations about the current state of mobile CPU design. Mo-

bile CPU designs provided substantial performance improve-

ments generation-after-generation by rapidly adopting desktop

level design techniques at an unprecedented pace (Sec. 2.2).

However, these improvements have come at the expense of

increasingly higher power consumption. Moreover, while

energy-efficiency improved rapidly during the early years,

improvements have diminished in recent years (Sec. 2.3).

2.1. Mobile CPU Generations

An important aspect of conducting any generational study

is selecting the right “samples” to study. Our work focuses

on ten ARM-based mobile CPUs released between 2009 and

2015. We use “CPU” to refer to the all of the processing

subsystems that support general purpose compute (i.e. core

and memory). Both the core and memory subsystems have

dramatically improved over time, so we study their holistic

evolution across the mobile device generations.

The mobile CPUs we study, shown in Table 1, capture the

rapid mobile CPU design innovation exhibited over the last

seven years. Each mobile CPU is found within a top-selling

smartphone that encompasses the cutting-edge technology

available for that particular year, tracking the mobile CPU

adoption trends in Fig. 1. Other mobile devices also use these

CPU designs. For example, both the Samsung Galaxy Tab 12.6

tablet and Samsung Galaxy S5 (S5S), and the Google Glass

and Samsung Galaxy Nexus (N), utilize the same system-on-

chip (SoC) families. Throughout the rest of the paper, we refer

to each smartphone model by its label abbreviation. The ten

mobile CPUs span seven different microarchitectures, five ma-
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Fig. 4: Mobile CPU core power consumption appears to satu-

rate around 1.5 W, suggesting later designs hit a “power wall”.
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Fig. 5: Energy efficiency gains have begun to slow as power

consumption increases outweight performance gains.

jor process technology nodes, different cache configurations

and memory technologies, and also multicore designs.

For completeness, we also consider different design method-

ologies between the various CPU manufacturers. We study

two CPUs vendor designs for each year from 2012 to 2014.

Samsung uses stock ARM A7 and A15 microarchitectures in

a heterogeneous multicore configuration whereas Qualcomm

creates its own custom microarchitecture (Krait) and homoge-

nous multicore CPU for the ARM instruction set architecture.

The Krait, used in the S3Q, S4Q, and S5Q, provide an exam-

ple for a “custom” ARM-based processor design. The core

design is similar to the A15 with a triple-issue out-of-order

pipelines but with a more tightly-integrated cache design and

a shorter pipeline depth. Nonetheless, each Krait design can

operate at higher clock rates than the stock design.

2.2. Mobile CPU Performance Trends

We use industry standard CPU-intensive benchmarking ap-

plications to isolate the peak single-core performance of each

CPU. These benchmarks are well-established in both indus-

try and research. We address interactive mobile applications

(Sec. 3) and various power management mechanisms (Sec. 4)

later in the paper. All of the benchmarks are compiled stati-

cally with gcc 4.5.2 to be robust to the devices’ different

OS kernel versions. However, it was too old to support the

S6’s ARMv8-a architecture so we use gcc 4.8.3 instead.

We represent embedded benchmarking with EEMBC’s

Coremark benchmark, which is well-established within the

embedded market segment. The benchmark has been used

in prior research to evaluate mobile CPUs [26], as well as in

industry white papers [2]. More recently, Geekbench [3]

3



has emerged as a popular mobile benchmarking suite and

Sunspider [4] is the de facto JavaScript/Web benchmark-

ing suite to date. We also include SPEC CPU 2006 bench-

marks [5]. Various industry partners, spanning different com-

panies acknowledge the use of SPEC CPU to evaluate mo-

bile CPU designs [36, 46, 49]. We use a subset of the bench-

mark (gcc, libquantum, omnetpp, hmmer, and bzip2

- input_program). Memory limits force us to use the

train inputs, facing similar issues as [26]. In addition, com-

piler and workload memory footprint issues limit other CPU

2006 benchmarks and workloads from being run on the earlier

systems. A data point will be absent for these rare cases.

ARCH OBSERVATION: #1: Mobile CPUs have achieved a

10X performance improvement in a seven-year time span by

rapidly adopting design techniques used in desktop CPUs.

Fig. 2 shows the single-core speedup for CoreMark,

SPEC, Sunspider, Geekbench and Stream workloads.

The data is presented relative to D, the oldest phone in our

study, and smartphones become more recent in the rightward

direction along the x-axis. The solid lines represents the stock

ARM IP line (e.g. Samsung and TI) and the dashed lines

denote the custom ARM IP (e.g. Qualcomm). The S6, the

newest device, achieves a 10X average speedup over D for

CoreMark and the SPEC workloads. On average, perfor-

mance approves 32% generation-to-generation.

Frequency scaling has fostered significant performance im-

provements across mobile CPU generations. As Table 1 shows,

clock frequency increased by over 4X (500 MHz per year). In

2009, the D operated at 600 MHz, whereas the S5Q reached a

top clock frequency of 2.5 GHz in 2014 – near PC speeds.

Performance improvements cannot be contributed to fre-

quency scaling alone. Fig. 3 shows the performance of the

seven stock CPU designs normalized by their corresponding

clock frequency. Microarchitecture-level and the memory

hierarchy improvements were able to provide an almost 3X

speedup from D to the S6, without considering frequency.

The oldest phones we study, the D and S, use the A8

(2008). Unlike its predecessor, the single-issue ARM11, the

A8 has a dual-issue in-order superscalar design [6] to exploit

instruction-level parallelism. The transition for in-order to out-

of-order pipeline designs facilitated significant performance

improvements. The A9 (2010), used in the N and S3, utilizes a

dual-issue out-of-order pipeline [6]. Even more aggressive, the

A15 (2013), utilized in the S4S and S5S, increases the depth

and issue width of its out-of-order pipeline beyond the A9 [7].

The A57 (2014), used in the S6, incorporates a new 64-bit

instruction set architecture (ISA) into an A15-like design [8].

On-chip and off-chip memory hierarchy enhancements also

facilitated performance improvements. The most recent S6

incorporates a larger 48 KB L1 instruction cache to address

the growing instruction footprints of mobile applications [44]

while the L1 data cache size remains fixed at 32 KB. Beyond

the D, mobile CPUs incorporated a shared L2 cache, which

also double in size from 512 KB at the S to 1 MB at the S3S

to 2 MB at the S3Q for the remainder of the CPUs. Off-chip

DRAM also evolved to support the CPUs. From LPDDR to

LPDDR4, data rates doubled from one generation to the next,

starting at 400 MHz and reaching 3.2 GHz.

2.3. Mobile CPU Power and Energy Trends

Performance improvements have come at the expense of

power and energy consumption. Smartphones do not provide

(or openly disclose) mechanisms to directly measure CPU

power consumption. Instead, we use differential power mea-

surement techniques practiced in prior work [26] to extract dy-

namic power consumption. Battery-level power measurements

are collected from each device using the Monsoon Power Me-

ter [9], which has a sampling rate of five kilosamples per sec-

ond and performs self-calibration. We use differential power

measurements (Pactive �Pidle) to isolate the CPU’s dynamic

power consumption and remove static power consumption

from the idle and unused components (e.g. display, radio,

GPU). We disable the radio and other components unrelated

to our study before each power measurement experiment.

ARCH OBSERVATION: #2: The mobile CPU’s single-core

thermal design point (TDP) has saturated at around 1.5 W,

similar to the 100 W power ceiling common to desktop CPUs.

Fig. 4 shows the power consumption trend across mobile

CPU generations. Initially, power consumption mostly re-

duced as performance improved from the D’s in-order A8

design to the S3S’s out-of-order A9 design. The power con-

sumption for all of the workloads reduced from 0.8 W to 0.5 W

(38%). However, S4S begins a trend where complex coupled

with higher clock frequencies increases have caused the aver-

age power consumption to hover around 1.5 W. We observe

this trend for the five most recent smartphone generations.

At its peak, the S5S’s power consumption almost reaches

2 W during SPEC’s execution. Somewhat similar behavior is

observed during experiments in the most recently released S6.

Stream exemplifies the different design strategies for the

stock and custom ARM cores. Fig. 2 and Fig. 4 demonstrate

that the custom Krait cores pursue performance improvements

that are more power-efficient than the stock cores. The S5S

scores 10% higher than the S5Q in performance but does so

with almost 50% higher power consumption because of its

more aggressive pipeline and memory hierarchy subsystem.

Process technology has played a large role in curbing power

consumption. When the A9 shrank from 45 nm in N to 32 nm

in S3S, power consumption dropped by 44%. The S3S was

fabricated using the high-k metal gate (HKMG) technology,

which utilizes a new gate-level dielectric to minimize static

leakage. The remaining CPUs also use processing nodes with

HKMG technology (or one of the LP and HPm variants).

HMKG is a prime example of “good [and rare] fortune” in

processor evolution [45]. Process innovations do not occur

frequently, so we do not see large improvements (or dips) in

4
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CPU power consumption in the following generations.

ARCH OBSERVATION: #3: Mobile CPU energy efficiency

improvement plateaued as the performance benefits do not

sufficiently make up for the additional power consumption.

Fig. 5 shows CPU energy consumption across the six gener-

ations normalized to D. We observed rapid energy efficiency

improvements between D and S3S. Simultaneous performance

improvements and power reductions reduced single-core en-

ergy use by as much as 80%. For the next two mobile CPU

generations (S4S and S4Q), energy efficiency worsens as

these mobile CPUs are unable to sustain performance im-

provements without sacrificing power efficiency. The S5S

and S5Q almost double the S3S’s energy consumption. Qual-

comm’s custom core designs consume less power than their

Samsung-manufactured counterparts, but also typically lag

in performance. The Qualcomm core’s power-efficiency out-

weighs Samsung’s performance advantage to provide better

energy-efficiency. Finally, the S6 achieves substantial per-

formance improvements beyond the S5S and S5Q without

further increasing power consumption. Thus, it is capable of

achieving energy efficiency almost on par with the S3S.

3. Bridging CPU Design and User Satisfaction

Mobile CPU designs have evolved tremendously over time

to satisfy end-users. Unfortunately, the performance enhance-

ments have come at the expense of excessively high power

consumption. The goal of this section is to quantitatively cap-

ture the relationship between these power-hungry mobile CPU

advancements and end-user satisfaction. Specifically, we:

1. separate the contributions of single- and multicore perfor-

mance advancements on achieving end-user satisfaction

2. quantify the degree to which mobile CPUs provide end-user

satisfaction and whether future improvements are needed

3. determine the mobile CPU’s role and impact on end-user

satisfaction amongst accelerators in a system-on-chip.

A rigorous methodology for quantifying end-user satisfac-

tion does not currently exist in computer systems research, so

we construct and conduct a new methodology for our study

(Sec. 3.1). We leverage the notion of crowdsourcing to conduct

a user study spanning 25,478 participants, whom we solicited

through the Amazon’s Mechanical Turk service [10]. Our

large-scale user study allows us to comprehensively assess

mobile users’ sensitivities to different CPU architecture and

performance configurations with high statistical confidence.

We study a broad range of interactive mobile applications

that span different application domains and also exhibit differ-

ent computational characteristics. Our results demonstrate the

role mobile CPU improvements played in improving end-user

satisfaction. We show how mobile CPU design trends have

enabled more advanced mobile applications and made them

satisfactory to end-users over time. Almost all of the applica-

tions we study can achieve user satisfaction, but they require

different amounts of single- and multicore performance. Our

data allows us to determine quantitatively the degree to which

mobile CPU enhancements have been worthwhile in the midst

of high power consumption (Sec. 3.2). The applications that

do not provide satisfactory experiences suggest that mobile

CPUs designs will need to evolve further despite power limits.

3.1. Mechanical Turk-Based User Study Methodology

Our crowdsourced study consists of participants ranking

their satisfaction while we replay representative application

use cases under various CPU performance configurations, i.e.,

core counts and clock frequency. Our study showcases a new

approach to conducting architectural-user studies at scale.

Mechanical Turk Amazon offers Mechanical Turk

(MTurk) [10], which is an Internet marketplace for Human

Intelligence Tasks (HITs). Requesters post tasks with a price

and solicit “workers” to perform the tasks.

Mechanical Turk is a popular mechanism for conducting

crowdsourced experiments. It has been used successfully in

other research areas, such as for computer vision training

data [27] and answering psychological questionnaires [27].

We solicited 25,478 users for our study. We got high user

engagement by posting $0.10 HITs for workers. Each config-

uration within an application is scored by at least 50 partic-

ipants to provide statistical confidence in our results. Fig. 6

summarizes our MTurk-based experimental workflow.

Applications We study a broad range of popular Android

applications, shown in Table 2. Our application selection

criteria decompose applications beyond typical application

domain categories into user- and hardware-level metrics.

Our user-oriented application selection criteria include var-

ious user behaviors (e.g. waiting for a webpage to load,
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Table 2: Application descriptions, use cases and observed computational diversity.

Application Description User-level Metrics Computational Metrics (TLP)

Name Description Installs Duration Events 1 2 3 4 Avg

Angry Birds Navigate to and play first level 0.5-1E9 0:41 6 21% 8% 2% 0% 1.43

C
u

rr
en

t-
G

en CNN (Chrome) Navigate to and scroll through CNN.com 1-5E8 0:36 12 16% 11% 7% 2% 1.90

Epic Citadel Navigate through environment 0.5-1E6 0:44 15 25% 22% 5% 0% 1.67

Facebook Log-in and visit ESPN brand page 0.5-1E9 0:57 23 16% 8% 3% 1% 1.67

Gladiator Sword-fight opponent in first level 1-5E6 0:36 31 31% 8% 2% 0% 1.34

Photoshop Express Apply various filters and effects to image 1-5E7 0:48 15 13% 9% 6% 15% 2.52

Youtube Navigate to and watch video 1-5E7 0:46 13 16% 10% 5% 1% 1.73

Ambiant Occlusion Brute force ray primitive intersection 1-5E3 0:21 4 7% 3% 2% 46% 3.46

N
ex

t-
G

en Face Detection Face detection on video 1-5E3 0:21 3 17% 4% 2% 47% 3.09

Gaussian Blur Guassian Blur on video 1-5E3 0:21 3 51% 4% 2% 4% 1.37

Julia Visualization of Julia Set dynamics 1-5E3 0:17 4 11% 4% 2% 24% 2.93

Particles Particle simulation in a spatial grid 1-5E3 0:21 4 17% 14% 14% 7% 2.21

watching a video, etc.). To convey the variety of interactive-

ness across applications, we present the number of interactive

events (e.g. tap, swipe, etc.) used to exercise each application

use case in the “User Events” column.

The application use cases also exhibit diverse computational

characteristics. We measure each application’s thread-level

parallelism (TLP) with the systrace Android utility to identify

the amount of parallelism hardware can exploit [30].

We also incorporate applications from emerging applica-

tion domains, such as augmented reality and physics sim-

ulation. These forward looking applications are are part of

CompuBench [11], an industry-strength benchmark suite, used

by various mobile device manufacturers [38]

Record User Interaction For each application, we record

a user manually performing a representative use case. The

Android getevent utility captures raw touchscreen driver

events that capture user input and timing seen throughout the

user interaction. To ensure reproducibility of these interactive

“use cases” during later replay stages, we use the RERAN [33],

which is a low-overhead, deterministic touchscreen event in-

jection tool for the Android platform.

We record each application on the S5Q operating at its peak

performance (i.e., all four CPU cores at 2.4 GHz).1 We deem

this the baseline user interaction trace because it maximizes

application responsiveness on the device, which in turn maxi-

mizes the likelihood of achieving end-user satisfaction [42].

Parameterized Replay To study the impact of mobile

CPU evolution on user satisfaction, we replay the interactive

use cases while we sweep S5Q single- and multicore perfor-

mance configurations. The device’s power management facili-

ties (e.g., DVFS) are disabled to ensure the clock frequency

and the number of enabled cores remains fixed throughout

each replay session. By parameterizing single- and multicore

performance across the S5Q, from the latest CPU genera-

tion, we can simulate the CPU performance configurations

found across the earlier mobile CPU generations we study.

We conduct a rigorous performance analysis to find the S5Q

1The S6’s release date overlapped with our ongoing crowdsourcing exper-

iments. But since its availability, we have rerun experiments on the S6 when

it is necessary to reinforce a general conclusion we draw (e.g., as in Sec. 2).

performance configurations that correspond to the peak per-

formance of the earlier mobile CPU generations. Sec. 3.2

provides additional details and validation of this method.

Publish Replay During each replay session, we record

a video clip using screenrecord to include in our survey.

We host the recorded video clips of the different processor

performance configurations on youtube.com.

Crowdsourced User Survey We conducted our user study

through surveys on surveymonkey.com. Each user satis-

faction survey consists of a single, randomly selected video

clip and multiple choice question that asks the user to rate their

satisfaction of the video. We ask, "how satisfied are you with

the smartphone’s performance (i.e., application responsiveness

and fluidness)?" We provide five simple answer choices com-

mon to many satisfaction surveys: (1) Very Dissatisfied, (2)

Dissatisfied, (3) Neutral, (4) Satisfied, and (5) Very Satisfied.

Due Diligence and Validation We took several steps to

validate our crowdsourcing user methodology. Before posting

our survey, we watched all of the videos to make sure there

were not any errors during the recording phase. Also, we also

evaluated the videos across a small group of users in-house

which proved to be consistent with the trends we observe

across our Mechanical Turk participants.

Overall, we observed that our participants had good inten-

tions for our survey. Studies that have scrutinized crowdsourc-

ing have quantitatively shown this to be true as well [39]. As a

part of our results, we collected the response time for each user.

Users remained in the survey long enough to have watched

their assigned video. Only a negligible few (< 1%) abandoned

the video or survey, and as such they do not affect our results.

Fig. 7: S5Q CPU mapping. Fig. 8: Mapping error.
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(a) Angry Birds. (b) YouTube. (c) Gladiator. (d) CNN (Chrome).

(e) Epic Citadel. (f) Facebook. (g) Photoshop Express. (h) Particles.

(i) Gaussian. (j) Julia. (k) Face Detection. (l) Ambiant Occlusion.

Fig. 9: User satisfaction across single- and multi-core parameter sweep on S5Q. Rating system: (1) Very Dissatisfactory (2) Dissatisfactory (3)

Neutral (4) Satisfactory (5) Very Satisfactory. Results: Only tiles whose satisfaction score differ by more than 0.52 should be compared.

3.2. User Satisfaction and Architecture Implications

We present the results of our crowdsourced user study for

the workloads in Fig. 9. Each heatmap corresponds to an

application in Table 2. The heatmap cells represent the user

satisfaction score for a particular (single-core, multicore) per-

formance configuration that increases along the x- and y-axis,

respectively. The intensity of a tile corresponds to the average

satisfaction score. The darker the tile, the more satisfactory the

application use case was with that performance configuration.

To form sound conclusions between adjacent tiles, we de-

termined the confidence interval for each configuration. On

average, the 95% confidence interval for each configuration

extends 0.26 from the reported average score centered in the

tile. Thus, only tiles whose satisfaction score differ by more

than 0.52 should be compared. For example, in Fig. 9a it is rea-

sonable to conclude that that user satisfaction improves from

(729.6 MHz, one core) to (1036.8 MHz, one core). However,

the same conclusion cannot be reached by comparing (1036.8

MHz, one core) to (1958.4 MHz, one core).
To allow intuitive comparison between different mobile

CPU generations, we map the performance of earlier smart-

phones to S5Q. Specifically, the peak single-core performance

of each earlier phone is mapped to an S5Q DVFS frequency

that provides the cloest performance. Multicore performance

is approximated with CPU core count. Fig. 7 shows the map-

ping. Using S3S as an example of reading the mapping, its

location indicates that its peak single-core performance is clos-

est to 1497.6 MHz on S5Q, and it has 4 cores. Fig. 8 shows

that the mapping error is less than 10% for each phone.

USER OBSERVATION: #1: User satisfaction is latency-

sensitive, and as such gigahertz clock frequencies and out-

of-order pipelines provide the single-threaded performance

improvements needed to achieve high end-user satisfaction.

Early mobile CPU designs struggled to provide sufficient

single-threaded performance. None of the tiles corresponding

to the single-core in-order A8 CPUs found within the D and

S were “satisfactory” to survey participants. In interactive

gaming, such as Angry Birds (Fig. 9a) and Gladiator (Fig. 9c),

and webpage loading (Fig. 9d), users expect faster response

times. The transition to the out-of-order A9, used in N and

S3S, makes these applications satisfactory. Although CNN

(Chrome) and YouTube (Fig. 9b) each has a thread-level

parallelism (TLP) [30] close to two (Table 2), a single core A9
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achieves satisfactory user experience for them.

More aggressive out-of-order core designs were needed to

meet the response latencies end-users expect for other appli-

cations. For example, Epic Citadel (Fig. 9e) uses the

computationally intensive Unreal Game Engine [12]. Single-

core performance on par with an S4S A15 core can provide a

satisfactory experience to participants.

USER OBSERVATION: #2: Multicore mobile CPUs con-

tribute to end-user satisfaction improvements because they

support emerging multithreaded mobile applications more ef-

fectively than a single high-frequency core, tolerate worst-case

application activity bursts more gracefully and improve appli-

cation performance by mitigating shared resource contention.

The proliferation of multicore mobile CPUs have helped

achieve user satisfaction improvements for several reasons.

First, some applications rely on multicore capabilities by de-

sign. Multimedia applications, such as Photoshop, leverage

data-level parallelism within signal processing algorithms to

enable multithreading. Photoshop (Fig. 9g), has a TLP of

at least three for 48% of its non-idle runtime. As a result, it

requires multiple cores to deliver a satisfactory experience. It

first becomes satisfactory at four cores with the performance

of an N core. Similarly, Particles (Fig. 9h), whose average

TLP is 2.21, requires at least three S3S cores.

Second, multicore CPUs can alleviate worst-case applica-

tion interaction bursts that threaten otherwise high user satis-

faction. For example, Facebook (Fig. 9f) requires at least

two cores to provide end-users satisfactory responsiveness

while logging into the application. Login is a bursty and mul-

titasking application process. The application must process

network requests to retrieve application content and then ren-

der it on screen. While substantial computational resources

may not be needed for steady-state application usage sce-

narios, application launches, and logins are well-established

application use cases that can impact user satisfaction [58].

To provide the same level of user satisfaction, the S5Q would

have to run at peak single core frequency, but even then the

result is only marginally satisfactory to users.

Third, multicore CPUs mitigate the contention between

application and background threads that can affect user experi-

ence. Gladiator has the least TLP of all applications (1.34).

Its performance relies heavily on the CPU’s single-thread ex-

ecution capabilities. On the S5Q, the application needs to

run at nearly 1.5 GHz when one core is enabled. However,

similar high user satisfaction can be achieved by cutting the

frequency by half and running at 729.6 MhZ using two cores.

Background tasks that interfere with the main thread’s exe-

cution are readily offloaded by the kernel to the second core,

allowing the first core to operate undisturbed.

USER OBSERVATION: #3: Single- and multicore mobile

CPU performance improvements are still needed to achieve

end-user satisfaction for emerging application domains that

rely on high-performance parallel programming frameworks.

With the proliferation of multicore processors in recent

years, there has been growing interest in supporting computa-

tionally challenging applications efficiently through the use of

parallelism. Many parallel programming frameworks, such as

Mare [13], RenderScript [14], and OpenCL [15], are emerging

to support general-purpose computation on mobile platforms.

We evaluate several forward-looking applications from

emerging application domains, such as perceptual comput-

ing, augmented reality, and advanced image processing. These

applications are built using the RenderScript framework and

targeted specifically at mobile multicore CPUs. The appli-

cations are much more computationally intensive than the

mainstream applications. Most of them spend a significant

amount of non-idle execution time on all four cores. Their

average TLP is 2.41. User events in these applications is low

because they do not require heavy interactivity to use.

We find that these next-generation applications require

single- and multicore improvements beyond what today’s mo-

bile CPUs provide. For instance, Gaussian Blur has high

single-threaded performance requirements. It spends the ma-

jority of its non-idle execution time executing within a thread.

With an average TLP of 1.37, Gaussian Blur does not see

a dramatic satisfaction improvement as more cores are added

at peak frequency (Fig. 9i). Julia (Fig. 9j) with average

TLP of 2.93 and 14% of execution time with a TLP of four,

sees satisfaction increase from unsatisfactory to neutral as it

maximizes resource utilization. However, enough end-user

satisfaction (> 4.0) has still not been achieved.

To validate that our participants are capable of recognizing

satisfactory performance for these applications, we conducted

the survey a second time based on a desktop system. Our par-

ticipants noticed a dramatic user experience improvement and

declared them as satisfactory, which implies satisfaction is in

fact attainable for these workloads for our survey participants.

Furthermore, we ran the crowdsourcing experiments a third

time to confirm single- and multicore performance improve-

ments beyond the S6 are needed in future mobile CPUs. Re-

call that we use the S5 for our experiments. The S6 was

unavailable at the time of our experiments. Despite the perfor-

mance enhancements in the S6, we observed similar results

as we did with the S5Q. User experience was unsatisfactory.

USER OBSERVATION: #4: Even for applications that uti-

lize other SoC components, such as the GPU and image en-

coder/decoder heavily, mobile CPU performance capability

remains critical for achieving high end-user satisfaction.

Mobile applications typically rely on a variety of on-chip

SoC accelerators to provide rich end-user experiences, and

this trend will likely continue into the future. Therefore, there

is a need to understand the extent to which the mobile CPU

impacts user satisfaction. All mobile applications exercise the

mobile GPU to some degree, making it the most heavily uti-
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lized SoC accelerator. We found that user satisfaction was not

sensitive to performance differences across the S5Q’s Adreno

330 GPU for almost all of the applications we studied. Fig. 10

shows user satisfaction as we sweep the S5Q’s Adreno 330

GPU frequency while the CPU operates with all four cores

at peak frequency. Besides Gladiator, user satisfaction

does not significantly change as GPU frequency increases

from 200 MHz to 578 MHz. Gladiator is the most aggres-

sive interactive use case we study, with 31 user events in a

36 second timespan, spawning a significant number of screen

updates. Thus, user satisfaction increases with frequency by

nearly fourfold from the lowest to highest GPU frequency.

GPU computations invoked by the other current-generation ap-

plications are infrequent and underwhelming compared to the

CPU-based computation. The forward-looking applications

are too compute bound and CPU-stifled to stress the GPU.

Applications also rely on fixed-function acceleration. Mul-

timedia applications, such as YouTube and NetFlix, rely on

specialized hardware accelerators to to avhieve high frame

rates. For instance, YouTube by default uses the VP9/WebM

video coding format, used in the S5Q. However, the CPU re-

mains on the critical execution path even though computations

are offloaded to these accelerators. Fig. 9b shows that if the

single-core CPU performance drops below 1.5 GHz, user sat-

isfaction plummets from 4.17 to 2.98. The is because mobile

CPU has to manage the device drivers to use these accelerators

while also orchestrating other computations [57].

4. The Limits of Desktop-like CPU Scaling

In the previous section, we demonstrated that the CPU

plays an important role in mobile devices. User-critical appli-

cation functionalities execute on the CPU, and its performance

greatly impacts end-user satisfaction. The CPU will play a key

role in the next generation of mobile computing applications,

which will require performance improvments to be sustained

across future mobile CPU generations. However, mobile de-

vices are both thermal- and energy-constrained, yet mobile

CPUs power consumption continues to increase without ade-

quate cooling and battery advancements (Sec. 4.1).

Our measurements quantitatively demonstrate that mobile

CPU designs are approaching the “power wall”, similar to

what has been observed in desktop CPU design. By comparing

design trends of mobile and desktop CPUs, we attribute CPU

scaling methodologies (e.g. larger caches, higher frequencies,

more cores, etc.) that have been successful in desktop being

unsustainable in mobile CPUs due to the lack of power scaling

improvements in recent process technologies (Sec. 4.2). Our

measurements quantitatively reinforce recent works [28, 55],

that have that have also projected the demise of CPU scaling in

CPU design. These results suggest that mobile CPU designs

need to be optimized in fundamentally different ways than

past designs have been.

Fig. 10: Satisfaction score across mobile GPU performance scaling.

Only tiles whose score differ by more than 0.52 should be compared.

Most mainstream applications are largely unaffected by the GPU’s

performance, and instead they are more sensitive to the CPU (Fig. 9).

4.1. System-level Design Constraints

Mobile CPU designs are constrained to operate under strict

thermal design points and energy budgets. While both these

limits also apply to desktop and server CPUs, these limits are

much more severe for mobile CPUs. Understanding the sever-

ity of these limits gives us important insights on alternative

approaches for designing future mobile CPUs.

Thermal Mobile CPU performance is primarily limited

by thermal constraints. However, mobile CPU manufacturers

are creating mobile CPUs that can exceed their sustainable

thermal power budgets with the assumption that they will not

be utilized to their peak capabilities. Given the fact that mobile

applications have, and will continue to, exercise the CPU more

heavily and other smartphone components also contribute to

mobile device power consumption, thermal constraints will be

a major challenge to overcome into the foreseeable future.

Like any embedded processor, mobile CPUs operate under

a strict set of power constraints. The absence of active cooling

mechanisms forces CPUs to operate within a strict thermal

power budget. Most mobile devices budget anywhere between

2.5 W to 5 W for their components to consume [16] and the

SoC only gets a portion of it. Conventional wisdom is that

mobile CPUs are designed to operate within a power budget

of 1 W [17]. However, our data shows that recent generations

appear to target an even higher budget of 1.5 W (Fig. 4). The

latest five mobile CPUs that we studied reached about 1.5 W.

Mobile CPU power consumption can significantly exceed

the SoC TDP independent of the other processing subsystems

such as the GPU. Fig. 11a shows the manufacturer-estimated

peak power consumption for SoC components, which we re-

covered from the S5S and S6 system configuration files that

are available on the filesystem. Combining the power con-

sumption of the A7 and A15 quad-core CPU clusters from
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Fig. 11: (a) Manufacturer reported power budgets. (b) CPU measured peak power has increased significantly compared to the other key mobile

components. Multicore CPU power alone can exceed SoC-level TDP. (c) Battery capacity versus screen size (linear) relationship over time.

either phone more than doubles the device’s 3.5 W target

TDP. The performance-oriented A15 cluster can achieve al-

most twice the target TDP by itself. Because the peak CPU

power can significantly exceed the SoC TDP, the CPU is capa-

ble of self-inflicted thermal throttling. From our experience

benchmarking these phones, today’s modern mobile CPUs are

already susceptible to thermal-induced performance throttling.

Combining the CPU’s power requirements with other smart-

phone components’ power requirements shows the severity of

the problem from a holistic device-level perspective. Fig. 11b

shows that the measured peak sustainable power of the mobile

CPU has increased dramatically across the seven mobile de-

vice generations, and it is in fact worse than the manufacturer-

estimated power shown in Fig. 11a. Starting from 2011, a sin-

gle mobile core CPU is capable of consuming more power than

the display and radio, thus closely approaching the system-

level TDP limit. Including the display and radio implies the

system operates at close to peak TDP. Running multiple cores

only exacerbates the problem. On any of the last three mobile

CPU generations, the multicore CPU alone can exceed the

entire mobile device’s TDP without including the radio and

display units’ power consumption.

Energy-budget Limits Unlike desktop CPUs, mobile de-

vices are severely constrained by a battery-imposed energy

budget. Battery technology has not experienced Moore’s law-

like improvements because of fundamental physics limita-

tions [50]; the density of lithium-ion batteries has improved by

only about 10% a year [18]. Therefore, the battery capacity of

today’s mobile devices is determined by the battery’s volume,

which is largely dictated by the device’s screen size [19].

Fig. 11c compares the screen sizes and battery capacities of

over 600 smartphones from 2006 to 2014. There is an almost

linear correlation between the battery capacity and screen size.

In the near future, screen size scaling may still be able to be the

primary vehicle for increasing mobile device energy budgets.

However, smartphone form factors are reaching form factor

maturity. A recent study shows that about 98% of mobile users

prefer a screen that is under five inches [20], which is roughly

the size of Galaxy S4. Consequentially, we expect the total

device energy budget to stay severely constrained.

However, mobile CPU energy efficiency improvements have

plateaued, as we have demonstrated in Sec. 2.3. Given that

users expect each mobile device generation to incorporate new

sensors and other peripherals that also require energy from

the same battery, it is clear that the mobile CPU, as a major

energy consumer, needs to become more energy-efficient.

4.2. Limits of Desktop-like CPU Scaling

Over the past seven years, mobile CPUs incorporated over

20 years of desktop CPU design techniques to achieve perfor-

mance and energy-efficiency at the expense of higher power

consumption. Desktop CPUs have had decades to scale re-

sources, ultimately succumbing to the "power wall." Therefore,

desktop CPU trends provide us a reference point for how far

conventional mobile CPU design techniques can be pursued.

Fig. 12 showcases the relationship between mobile and

desktop CPUs across performance, clock frequencies, cache

sizes, and multicore scaling. We mined the SPEC CPU 2006

database for Intel Core processors released between 2006 and

2015 [5] to representative mobile trends. The mobile CPU

trends are based on the mobile CPUs we studied (Table 1).

Fig. 12a compares mobile CPU benchmark performance

against desktop CPUs. Mobile CPU application performance

trends have closely tracked desktop CPUs. The magnitudes

of the trends between mobile and desktop are different largely

due to the resource availabilities (i.e. transistors and area),

rather than microarchitectural resource design. Each line rep-

resents the trend for a SPEC CPU 2006 benchmark across

either the mobile or desktop CPUs. CPU generations (years)

are on the x-axis, and SPEC scores are logarithmic on the

y-axis. Even the performance of well-known outliers, such

as libquantum, show a similar trend despite its significant

memory level parallelism and locality characteristics [43].

Fig. 12b shows that mobile CPU frequencies are rapidly

rising and closing the gap between desktop and mobile clock

frequencies. Just as desktop CPU frequencies saturated as

designs reach 100 W TDPs, it is likely that mobile CPU clock

frequencies will saturate soon. Mobile CPUs have a power

envelope orders of magnitude smaller (i.e. 3.5 - 5 W).

Fig. 12c shows that even cache sizes are maturing. The L1

cache sizes for both mobile and desktop CPUs have stayed
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Fig. 12: Comparison of desktop and mobile CPUs. Mobile CPUs are increasing like desktop CPUs, but there is still a huge performance gap.

constant over time, but the L2 cache sizes that increased con-

siderably over time in both mobile and desktop systems have

reached a pinnacle point. Desktop CPU L2 cache sizes steadily

increase through 2009 and suddenly drop to 512 KB with the

introduction and growth of L3 caches. During the same pe-

riod, the mobile CPU L2 cache sizes grew beyond desktop L2

caches towards 2 MB. While both the domains rely on scaling

the last level cache for performance improvements, mobile

CPU power and area budgets can constrain future growth.

Fig. 12d shows that desktop CPUs have adopted more cores

over time with the hope that software parallelism will foster

performance improvements. However, parallelizing single-

threaded irregular programs is challenging, and parallel pro-

gramming frameworks have not seen widespread adoption yet.

Even if emerging parallel programming frameworks, such as

Mare [13], RenderScript [14], and OpenCL [15] do catch on

for mobile, power and energy constraints will likely to limit

their effectiveness to achieve high performance computing.

5. The Mobile CPU in the Era of Specialization

Conventional desktop-like single- and multi-core scaling

approaches to mobile CPU design are failing to keep pace

with what mobile technology demands. As transistor densities

exceed what a single-chip can fully power on at a given time

(i.e. the dark silicon problem [28, 55]), specialization has

become a promising technique to sustain the significant power,

performance, and energy improvements that future computer

systems necessitate. Today’s mobile SoCs already consist of

several specialized processing elements, and that number will

continue to increase over time. A recent study showed a 3.5X

increase in fixed-function accelerators across the six most

recent Apple SoCs [51], and the ITRS anticipates thousands

of different on-chip accelerators by 2022 [21].

The era of specialization will redefine the roles of how CPUs

are used in future mobile systems. This section discusses three

main roles that CPUs will play in future mobile systems and

their design implications. Specifically, for many applications,

the proliferation of specialized processing units will reduce

CPU’s compute responsibility while increasing its burden on

managing the overall system complexity. Meanwhile, the CPU

will continue to be a long-standing target for code portability

and backwards compatibility for other applications.

Irregularity Engine Computing domains with an abun-

dance of parallelism are the most promising candidates for

acceleration, leaving the hard-to-parallelize regions for the

CPU. For example, the heterogenous system architecture

(HSA) framework, seeking adoption for programming future

accelerator-rich SoCs, relies on a single-instruction multiple

thread (SIMT) programming model that implicitly assumes

that computations being accelerated are inherently parallel.

However, most programs cannot be entirely executed on ac-

celerators and will require some degree of CPU computation.

The CPU will become an “irregular code accelerator.”

The increasing amount of irregular code that future mobile

CPUs need to handle indicate that many conventional CPU per-

formance enhancement mechanisms will likely be less utilized

than they would have been in the absence of accelerators. For

example, a recent study on CPU-GPU computations [24], but

applicable to CPUs involved in most modern heterogeneous

computing paradigms, observed that instruction window size

and stride-based memory prefetchers were less effective in

CPU-GPU workloads than in conventional CPU workloads.

This is because the ILP and locality that these mechanisms

inherently rely on had been offloaded to the GPU. To extract

what ILP and locality remain, future CPUs would benefit

from better branch predictors, prefetching mechanisms, as pre-

scribed in [24], as well as better cache management policies

and other memory hierarchy optimizations.

System Orchestrator To date, operating system, runtime

framework, and device driver code executes solely on CPUs.

Under this paradigm, increasing the number of distinct process-

ing elements within the SoC increases the system complexity

that the CPU has to manage at runtime. Therefore, as more

CPU computations are offloaded to accelerators more of the

CPU’s execution time will be devoted to system orchestration

tasks, such as compute scheduling, resource configuration,

data movement, and system monitoring.

System management tasks are typically sporadic and unpre-

dictable, but lie on the program’s critical path. These character-

istics pose conflicting design requirements for future mobile

CPUs. Today’s mobile CPUs exploit prolonged periods of

idleness for power efficiency optimizations. However, most

of these optimizations come at the expense of responsiveness.

For example, disabling CPU subsystems, such as the LLCs,

can save power in idle CPUs, but subsequent CPU computa-

tions incur the performance penality to recover any state that
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was lost. A promising approach is to make CPUs aware of,

in order to adapt to, accelerators’ execution characteristics.

Such an idea has been demonstrated with CPU-GPU compu-

tations [40] for DVFS, but can be extended to include other

accelerators and be incorporated into prediction mechanisms

for other CPU subsystems, such as memory prefetching.

Legacy Code Target Despite trends towards more hard-

ware specialization in future mobile SoCs, many important

applications have, and will continue to be, developed to pri-

marily execute on the CPU. CPUs provide the most com-

mon and approachable mobile systems programming interface

amongst the other processing technologies that exist today.

The outstanding majority of developers write their programs in

general-purpose programming languages that target the CPU

and all SoCs posses at least one CPU subsystem. Therefore,

CPUs play a key role in providing backwards compatability

and code portability across mobile platforms.

Given the fact that CPUs will be responsible for executing

both highly irregular programs and more conventional, regular

programs, future CPUs should continue to embrace CPU-level

heterogeneity trends present in today’s CPUs. CPU-level het-

erogeneity provides a means for CPU designs optimized for

programs that exhibit these two fundamentally different exe-

cution characteristics. Current heterogeneous CPUs, such

as ARM’s big.LITTLE technology [22], provide different

CPUs core designs (i.e. out-of-order and in-order) to enable

power-performance trade-offs. Future mobile CPU designs

can extend this paradigm to optimize for well-established and

frequently executed CPU workloads, such as the Android soft-

ware stack [55] and Web browser [60].

6. Prior Work

Our study provides insight into how interactions between

user experience, mobile applications, architecture and mobile

device form factors shape and impact the mobile CPU design.

Trend-based CPU Studies Trend-based studies, specif-

ically using real systems, help identify impactful research

opportunities. Looking back on power and performance trends

help identify impending bottlenecks and issues that may other-

wise go unnoticed until it is too late. Recently, measurement-

based trend studies were used to discuss ISAs [26] and desktop

CPUs and managed languages [29]. Other trend-based stud-

ies use analytical models to identify the limits of clock [23],

multicore [28] and memory bandwidth [48] scaling.

User Experience Studies Conventional user experience

research consists of in-person user studies [47, 52–54, 56, 58,

59], where experiments are conducted in person, which limits

the reach and diversity across participants. The majority of

past user experience performance modeling research is geared

towards producing power- and energy-efficiency techniques.

Our crowdsourcing framework allows us to include several

orders of magnitude more participants spread across the world.

Our work also bridges the gap between CPU design trends and

user satisfaction by taking the feedback of over 25,000 users

by proposing and using a novel crowdsourcing approach.

CPU Evaluation Metrics There are no shortage of eval-

uation metrics for CPU designs. However, these metrics

largely ignore the end user. In particular, traditional hardware-

centric perspectives such as performance-per-Watt, EDP [34],

ED2P [41], ILP and TLP [25, 30, 32] only evaluate systems

from a hardware efficiency perspective. While insightful, these

metrics are not directly correlated with the end-to-end user-

satisfaction that is important in mobile systems.

We take a different approach of using measured user satis-

faction to explicitly bridge the gap between CPU performance

capabilities and end-user satisfaction. The crowdsourcing

based feedback allows us to quantitatively determine the extent

to which a given CPU configuration achieves user satisfaction.

Mobile Application Benchmarking Mobile application

benchmarking and characterization has recently become an

active research area. Similar to our user study, almost all

benchmarking efforts involve evaluating mainstream Android

applications on ARM-based mobile processors. These prior

studies are typically concerned with either architecture- [32]

or microarchitectural-level [35, 37, 44] in the context of power

and performance on a single architecture.

7. Conclusion

Over the past decade, mobile CPU designs have evolved

to provide satisfactory end-user experiences by aggressively

adopting desktop-like design techniques. However, as future

mobile software evolves to become more complex and de-

mands higher computational intensity, current mobile CPU

design techniques cannot deliver the expected performance

requirement under tight energy and thermal constraints. Our

paper conveys the need for future mobile hardware designers

to rethink mobile CPU design techniques and prepare for its

role in SoC throughout the era of specialization.
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