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Abstract
We demonstrate how the multitude of sensors on a smart-

phone can be used to construct a reliable hardware fin-

gerprint of the phone. Such a fingerprint can be used

to de-anonymize mobile devices as they connect to web

sites, and as a second factor in identifying legitimate

users to a remote server. We present two implementa-

tions: one based on analyzing the frequency response

of the speakerphone-microphone system, and another

based on analyzing device-specific accelerometer cali-

bration errors. Our accelerometer-based fingerprint is es-

pecially interesting because the accelerometer is accessi-

ble via JavaScript running in a mobile web browser with-

out requesting any permissions or notifying the user. We

present the results of the most extensive sensor finger-

printing experiment done to date, which measured sensor

properties from over 10,000 mobile devices. We show

that the entropy from sensor fingerprinting is sufficient to

uniquely identify a device among thousands of devices,

with low probability of collision.

1 Introduction

Many Internet services need reliable identifiers to iden-

tify repeat visitors. The simplest identifier, a Web cookie,

works well, but is unreliable in case users clear cook-

ies, block 3rd party cookies, or use private browsing

mode. This lead to the development of stronger identi-

fiers such as supercookies. The Panopticlick project [18]

showed that desktop browsers are sufficiently different

to be identified. However, the project noted that mobile

browsers, especially on iOS, are too similar for this ap-

proach to work.

The need for robust identifiers is even stronger on mo-

bile devices. First, as above, Web sites wish to iden-

tify repeat visitors. Second, cloud-based services who

develop mobile applications often need a robust phone

identifier. Consider the following scenario: a user in-

stalls a cloud-based app and the app installs an identifier

on the device. Later the user resets the device to its fac-

tory settings thereby deleting the app and its stored iden-

tifier. The user then re-installs the app and connects to

the cloud service. At this point the service cannot tell

whether it has already seen the device before. This sim-

ple trick may allow a misbehaving user whose account

was blocked to reconnect to the service using a different

identity.

More generally, online device identification is a topic

of much interest to advertising networks and organiza-

tions providing security services. The need to identify

remote peers is always pitted against concerns that iden-

tifying information may be misused. Rapidly evolving

mobile technologies pose new challenges to preserving

user privacy and one of our goals in this paper is to ex-

plore these challenges, and inform the design of future

mobile device platforms.

To obtain a robust identifier for mobile devices many

app developers have turned to a hardware ID that sur-

vives a device reset to factory settings. A recent study

shows that 8% of Android apps use the International

Mobile Equipment Identity (IMEI) as a hardware device

ID [19]. This type of practice is frowned upon to the

point that Apple disallows apps who read the iOS Uni-

versal Device ID (UDID) on their app store [25].

Our contribution. We show that the multitude of sen-

sors on a modern smartphone can be used to build a ro-

bust device ID, or fingerprint, that is independent of the

software state and survives a hard reset. Our results show

a unique device fingerprint can be computed without ac-

cessing traditional hardware identifiers such as the IMEI

or UDID. Consequently, simply disallowing app access

to the device UDID is an ineffective privacy policy.

We experiment with fingerprinting using two sensors:

• The speakerphone-microphone system: the fin-

gerprinting system uses the speakers to emit a

sequence of sounds at different frequencies and



records the resulting signals using the microphone.

The fingerprint is computed by looking at amplitude

and frequency distortions in the recorded signals.

• The accelerometer: the accelerometer measures

forces in each of the three dimensions. Impreci-

sions in accelerometer calibration result in a device-

specific scaling and translation of the measured val-

ues. By repeatedly querying the accelerometer we

estimate these calibration errors by solving an opti-

mization problem and using the resulting six values

(two for each dimension) as a fingerprint.

By collecting sensor measurements from over 10,000

mobile devices we show that the resulting fingerprints are

robust and survive a hard device reset. Moreover there is

sufficient entropy in the fingerprint to reliably identify

the device among thousands of devices.

Recently, [16] proposed a method to fingerprint an ac-

celerometer while it is vibrating (e.g. during an incom-

ing call or message). This method depends on the sur-

face on which the phone lays and the case in which it is

enclosed. In contrast, our method is oblivious to these

factors. Ref. [12] and [14] proposed methods to finger-

print loudspeakers. Our method differs by allowing to

fingerprint the combination of loudspeaker and micro-

phone thus yielding more fingerprint entropy.

2 Threat Model

Device identification may be used for both malicious and

benevolent purposes. Here we focus on the offensive po-

tential of sensor fingerprinting.

A malicious website may wish to track its users with-

out resorting to any browser storage such as cookies, and

without triggering any permissions warnings. Each de-

vice that comes into contact with the website is finger-

printed and classified as one of the already known de-

vices or as a new one—if its fingerprint differs suffi-

ciently from those in the database. The malicious web-

site is assumed to be accessed by the user for a long

enough time interval, during which the user may possi-

bly leave the device unattended or unused. The user does

not suspect that fingerprinting is taking place and does

nothing aimed specifically at disrupting the process.

3 Background

There are a few standard methods for mobile device iden-

tification that can be used by a native (but not browser-

based) application. These methods use information ex-

posed by the operating system, however all of them are

either applicable to only some versions of an OS or the

identifying information reported by the OS can be eas-

ily changed by the owner of the device thereby evading

identification. We now list some of these standard iden-

tification methods in the context of the two most popular

mobile operating systems: Android and iOS. For each

method we detail its most important features and restric-

tions. The following is primarily based on [7].

3.1 Android

Device ID: The method getDeviceId of the Telephony-

Manager class returns the unique ID for a phone, for ex-

ample, the IMEI for GSM phones and the MEID or ESN

for CDMA phones [6]. However, no such ID exists for

mobile device which do not have telephony capabilities.

MAC address: One can retrieve the MAC address of

one of the device’s network interfaces (e.g. WiFi and

Bluetooth). However, the owner of a device is able to

change the MAC address of the device. For example, see

the “MAC Address Ghost” application [20].

Serial number: The field SERIAL of the Build class

contains a hardware serial number, if one is available on

the device [3]. This field is only available on version 2.3

and later.

ANDROID ID: The constant ANDROID ID of the

Settings.Secure class is a 64-bit number that is randomly

generated on the device’s first boot and remains constant

for the lifetime of the device [5]. However, the value may

change if a factory reset is performed.

3.2 iOS

UDID: The Unique Device Identifier (UDID) is the pri-

mary method for the identification of an iOS device. It

is retrieved using the uniqueIdentifier property of the

UIDevice class. However, since iOS 5 it has been depre-

cated [24].

identifierForVendor: This is a property of the UIDe-

vice which is only available in iOS 6 and later. It is an

alphanumeric string that uniquely identifies a device to

the applications vendor, i.e., different application ven-

dors will retrieve different identifiers [24]. However, the

value of this identifier is deleted once the user uninstalls

the last application from a particular vendor. If he later

reinstalls an application from that vendor, the a new iden-

tifier value will be generated.

advertisingIdentifier: This is a property of the ASI-

dentifierManager class which is only available in iOS 6

and later. It is an alphanumeric string unique to each de-

vice and is intended to be use by advertisers [23]. How-

ever, the value of this identifier is reset once the device is

erased by the user.

MAC address: As in Android, a MAC address may

be forged by the owner of the device.
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4 Use of Sensors for Identification

The key observation behind this work is that different

hardware instances of a particular sensor are quite dif-

ferent, mainly due to imperfections in the manufacturing

and assembly process. These variations introduce biases

into the sampled data read from the sensor that are unique

to the specific sensor. Moreover, these variations are per-

sistent throughout the life of the sensor. By measuring

the imperfections we can consistently identify devices

carrying these sensors.

We start by defining different types of sensor biases,

and then follow with an overview of commonly encoun-

tered sensor types.

4.1 Common Bias Types

Linear bias: For many sensor types the value of their

measurements can be approximated as a linear function

of the true value they measure, i.e. vm = vtS+O. Here

vm and vt are the measured and true values, while S and

O are the sensitivity and offset of the sensor (in other

words S and O are the calibration parameters specific to

the sensor). Ideally, the parameter values should be S = 1

and O = 0. Approximate linear bias can be found in ac-

celerometers [17], gyroscopes [9], magnetometers [30],

and camera pixels [22]. We note that in most sensors a

linear bias is only an approximation of the actual bias.

Some sensors also manifest random and quantization

noises, while other sensors exhibit cross-dimensional ef-

fects, where the measured value in one dimension affects

the measurements in the other dimensions. Another ex-

ample of a linear bias is clock drift. The absolute differ-

ence between a clock’s time and the true time increases

linearly as time goes by. Here the clock’s sensitivity is

also referred to as the clock skew.

Tolerance: For some sensors their measurements can

not be modeled as a simple linear function of the true

value. In such cases the measurements will be within a

predetermined range relative to the true value. For ex-

ample, the output gain of a microphone for a specific

frequency may vary with ±2db within the actual input

power.

Timing: In addition to the bias of the actual measure-

ments a sensor may exhibit variance in the time it takes

to produce measurements. Sensor data is often gathered

when the hardware triggers an interrupt, signaling that

there are new readings available. The timing of this in-

terrupt may vary across devices, and then it can be used

as part of an identification scheme. Interrupt timing is

relatively difficult to access from application code, but

still it may be a viable component in a larger fingerprint-

ing scheme.

4.2 Common Sensor Types

Our goal is carrying out a comprehensive survey of sen-

sors that are commonly available on mobile devices, de-

signing specific identification techniques wherever pos-

sible.

Sensor Imperfection Comment

Audio tolerance gain Section 5

Accelerometer linear bias Section 6

Gyroscope linear bias no baseline

Magnetometer linear bias variability,

hysteresis

Ambient light linear bias no baseline,

sporadic data

GPS clock skew not observable

Touch screen misalignment no baseline

Camera pattern noise see [28]

Table 1: Common mobile device sensors along with a

description of their imperfection. Non-covered sensors

show the reason why use for identification is difficult.

Table 1 lists the different sensors we have looked at.

While in theory most sensors have some sort of mea-

surable bias, in practice the defect may not be readily

exposed under “normal” conditions, consistent with the

threat model that we have outlined, or no baseline mea-

surement is available to calculate the bias.

In this paper we describe two successful attempts

for sensor fingerprinting: audio (microphone/speaker) in

Section 5 and accelerometer in Section 6. In Appendix C

we sketch some of the difficulties that hindered identifi-

cation using other sensors listed in Table 1.

5 Device Identification via the Microphone

The main specification of a microphone and a loud-

speaker is the frequency response graph. A microphone’s

frequency response is its normalized output gain over a

given frequency range. Conversely, a loudspeaker’s fre-

quency response is its normalized output audio intensity

over a given frequency range. Ideally for both devices,

the frequency response should be the same for all fre-

quencies in the range. However, a typical microphone

or loudspeaker has a response curve that varies across

different frequencies. These variations are dependent on

the design of the audio device. Figure 1 depicts a typical

frequency response curve for a microphone.

Due to manufacturing inconsistencies the frequency

responses of each instance of a microphone or a loud-

speaker are not identical even if they are of the same

model. A device’s response for each frequency has a tol-
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Figure 1: A typical frequency response curve for a mi-

crophone. Note that for some frequencies the audio is

exaggerated (larger than 0 dB) while for others it is at-

tenuated (smaller than 0 dB).

erance relative to its response specified by the manufac-

turer. A typical tolerance for commodity microphone and

loudspeakers is ±2db. This frequency response variance

gives rise to our first fingerprinting scheme.

5.1 Fingerprinting Scheme

When it comes to fingerprinting, the sound domain is

unique because mobile devices have the ability to both

transmit (via the speaker) and receive (via the micro-

phone). This in turn allows us to build a completely self-

contained fingerprinting scheme, dependent only on the

device being in a relatively quiet environment (to mini-

mize signal noise). In our scheme a device’s audio finger-

print is the composed frequency response of the device’s

speaker and microphone. In a nutshell, we play using the

speaker an audio signal at a given intensity and we record

it using the microphone. We divide the recorded intensity

by the original intensity. We refer to this as the feedback

ratio. We measure the feedback ratio for several different

frequencies. Figure 2 illustrates this process.

Figure 2: Diagram of sound feedback analysis. Within

the confines of the device, the application emits sound

via the built-in speaker (1), the sound reaches the mi-

crophone in a distorted and attenuated form (2), and the

application records the microphone signal and analyzes

it (3).

The signal recorded by the microphone is processed

in the following way. We isolate the main frequency, as

well as its harmonics, by computing Fourier coefficients.

Specifically, for each played frequency fi, we record 1

second of samples (8000 integers at the typically sup-

ported sampling frequency) in the vector Ri, and calcu-

late the j-th harmonic system response (for j = 1,2, . . . )
as follows:

ri j =
√

C(i, j) ·Ri +S(i, j) ·Ri

Here C(i, j) and S(i, j) are vectors of 8000 samples of

the reference signal as a cosine and sine function at fre-

quency j fi.

Hz 220 330 440 550 660 880 1320

Table 2: Frequencies at which we measure the feedback

ratio for each device. The range and granularity of mea-

surements can be extended, resulting in more data about

each device. We have tried to stay below 2000Hz in or-

der to be able to measure at least the second harmonic

response at each frequency.

Figure 3: Comparison of the first harmonic feedback ra-

tio curves obtained for three devices, each placed in three

different locations (the same three locations used by all

devices). Each device’s curve is labeled with a distinct

marker type and color. Feedback ratios (y-axis) are cal-

culated at seven different frequencies (x-axis).

We repeat the playback, recording, and analysis at

each frequency (Table 2), obtaining 7 floating-point

numbers (ri j’s) for each harmonic. Our analysis focused

on the first two harmonics ( j = 1,2). Figure 3 shows

a comparison between the first harmonic measurements

obtained from three different devices when measured at

three different, fixed physical locations each. We note

that the feedback ratio for a device is similar but not iden-

tical across locations. For example, a device’s feedback

ratio is dependent on the acoustic properties of surface

on which the device lies and the acoustic properties of

the device’s surroundings. This poses a potential diffi-

culty for this fingerprinting scheme.
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5.2 Experiment: L2-Distance Classifica-

tion

Figure 4: Comparison of second-harmonic curves for all

devices. Each device is represented by three adjacent

curves that have the same color and fill pattern.

We used 16 identical Motorola Droid devices to as-

sess the feasibility of a fingerprinting scheme based on

sound feedback analysis. We selected three locations

(one on a wooden desk, one on a metal filing cabinet, and

one on a composite wood windowsill). Each smartphone

was placed at each location and measurements were

taken. The measurements were performed by an An-

droid application that we side-loaded onto each phone.

The application requires only the RECORD AUDIO and

MODIFY AUDIO SETTINGS permissions, and once

launched it adjusts the sound volume to a fixed, medium

level and then plays a three-second sound at each fre-

quency, recording the middle one second back on a sep-

arate Java thread. That one-second recording is used as

the vector R in subsequent analysis.

Figure 4 juxtaposes the processed data obtained from

all 16 devices. The similarity of the data from the same

device across locations is evident, as are the differences

between different devices.

Distance Metric

Test Location1 A B B’ B”

2 68.8% 100% 62.5% 56.3%

3 43.8% 75% 50% 37.5%

Table 3: Performance of simple L2 distance-based clas-

sification of data from locations 2 and 3 (location 1 data

were used for the learning step). When first harmonic

(Distance A), and second harmonic (Distance B) feed-

back are compared, second harmonic is almost always

more reliable and performs better than first harmonic.

Using the second harmonic’s first and second derivatives

only appears to have a negative overall impact.

In order to estimate the amount of information that can

be derived from this type of signal metric we designed a

simple algorithm which uses one location’s measurement

from each device to “learn” its fingerprint, and then tries

to match the data from the remaining two locations to the

device for which the learned fingerprint is the closest. If

a data set is matched to the device it originated from, we

count it as a correct detection (Table 3).

5.3 Experiment: Maximum-Likelihood

Classification

From the initial set of results it was clear that using the

response amplitude at the second harmonic frequency

gives the best results, however the classification accu-

racy clearly left something to be desired. We performed

a second experiment with the same batch of Droid de-

vices (excluding one which was faulty2).

Figure 5: Four overlaid frequency response curves at a

different location.

In the second experiment, we measured response am-

plitudes at 13 different frequencies, from 100Hz to

1300Hz at 100Hz increments. We measured the response

of each device at the same three locations we used in the

previous experiment, however we ran the measurement

four times at each location. Figure 5 illustrates why the

simple Euclidean distance-based classification approach

was not as precise as we wanted: at some frequencies,

on some surfaces, there is simply too much variation—

which results in a large penalty when calculating dis-

tances. Other frequencies offer much smaller tolerances

and can be used to identify the device more accurately.

Fortunately, the maximum-likelihood estimation method

is designed to deal with just this type of situation.

Our new scheme is based on the following simple

setup (all frequency response measurements are at the

second harmonic frequency—this will be implied for the

rest of this section): for each device we assume that its

response at a certain frequency is a normally distributed

random variable. Given enough samples, we can esti-

mate the mean and variance of the distribution. Later,

when we encounter a device, we can calculate the like-

lihood that it matches any of the known devices in our

database—and select the one that maximizes the likeli-
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hood. Formally, based on the training data from device

Dk, at each frequency fi we estimate the mean of the re-

sponse µ(k, i) as well as the variance σ2(k, i). Then we

select the device Dkmax
that was most likely to produce

this measurement:

kmax = argmax
k

13

∑
i=1

−
(vi −µ(k, i))2

σ2(k, i)
(1)

Equation 1 follows from the formula for the joint prob-

ability of normally distributed, independent variables af-

ter taking a logarithm (to turn the product into a sum) and

maximizing the resulting sum.

Frequency

Test Location Main 2nd Harmonic

1 100% 100%

2 100% 100%

3 100% 100%

1 93.3% 100%

2 100% 100%

3 (untrained3) 73.3% 80%

Table 4: Performance of MLE-based classification. The

first run provides training data from all three locations,

then tests at them. The second run omits Location 3 from

the training data, yielding worse device recognition rates

at the unknown location. The experiment involves 15

devices.

The results from using maximum-likelihood estima-

tion are shown in Table 4.

5.4 Improving Measurement Stealth

According to the method for microphone and loud-

speaker characterization described so far we played each

frequency separately. In order to achieve more stealth

and shorter sound playback times we examined another

method. We choose several frequencies that are not har-

monics one of the other, and play them simultaneously.

We compute the FFT of the recording and extract the sec-

ond and third harmonics of the chosen base frequencies.

We use the energies corresponding to those frequencies

to construct the feature vector corresponding to the de-

vice. We obtained feature vectors from 17 devices using

this method and tested K-NN classification performance

on this data using 10-fold cross validation, achieving cor-

rect identification percentage of approximately 95%.

6 Device ID Using the Accelerometer

An accelerometer measures the acceleration force that is

applied to a device along all three physical axes. Recall

that the sensor’s reading, vm, along the v axis is related to

the actual device acceleration, vt , at that axis as follows:

vm = vtSv +Ov [17]. Here Sv and Ov are the sensitiv-

ity and offset parameters of the accelerometer—note that

for a three dimensional sensor there are 6 such parame-

ters. We can use a well known acceleration baseline to

measure the accelerometer’s offset—Earth’s gravity (de-

noted by g)4. At rest the phone experiences an accelera-

tion with a true magnitude of exactly g. The orientation

of that acceleration depends on the relative orientation of

the phone to the Earth’s surface.

6.1 Fingerprinting Scheme

The accelerometer is convenient to fingerprint for sev-

eral fundamental reasons: the user often leaves the de-

vice still—for instance on a desk, or in a purse; as noted

above, when the device is not moving the magnitude of

the acceleration vector on the device equals g; finally,

acceleration can be measured by an Android application

that does not require any permissions [4], and what is

more, iOS as well as Android browsers expose this func-

tionality to websites without notifying the user.

In contrast to audio-based fingerprinting, there is no

good way to feed a signal into the accelerometer, namely

exert a known acceleration force; instead we take an

approach of performing background measurements and

waiting until there is enough data to estimate the ac-

celerometer calibration parameters. We perform a mea-

surement every time the phone is at a resting position, or

more precisely, the phone is at a constant velocity (no ac-

celeration). Note that in most reasonable cases it is very

unlikely that a phone will not be at rest for an extended

period of time. Detecting the phone is at rest is relatively

straightforward: the measured acceleration vector should

be static and its magnitude should roughly5 be equal to g.

6.1.1 Estimating Oz and Sz

Let’s assume that throughout our measurements the de-

vice will be lying flat and still on a table and thus the Z

axis will register practically all the acceleration due to

Earth’s gravity. If the sensitivity parameter Sz of the sen-

sor is known, then it is easy to estimate the offset from

a single measurement zm: Oz = zm −gSz. Unfortunately,

given an arbitrary device Sz is unknown and thus we need

two measurements—one with the device facing up (zm+ )

and one facing down (zm− ). Using these two numbers

one can calculate the two bias parameters for the Z axis6.

Sz = (zm+ − zm−)/2g

Oz = (zm+ + zm−)/2

We will see that this method yields very satisfactory

results in a variety of experimental settings even if the
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surface on which the phone lies is not perfectly level.

This method may be exercised without user cooperation

since it is quite plausible that the user will sometimes

leave their device facing up, and sometimes facing down

on a table or a desk. We note that by gathering more

data and applying more sophisticated processing, all six

accelerometer parameters can be estimated at the same

time, with no restrictions on device orientation during

measurement (Appendix B).

6.2 Using a Web Page to Profile the Ac-

celerometer

We started out by building an Android application to

track accelerometer readings, filter out any instability,

and carry out the simple calculations required to estab-

lish Sz and Oz for a given smartphone.

While the application did not require any permissions

to access the accelerometer (it is not considered to be a

sensitive module by the Android framework), it would

need the INTERNET permission to report its findings.

We therefore instead built a light-weight JavaScript im-

plementation that runs entirely in the mobile browser.

An implementation contained within a web page

has the advantage that the user doesn’t need to install

anything—assuming the user can be convinced to leave

the device facing up and then down for some time, a sin-

gle visit to a website can result in a fingerprint being cal-

culated.

To collect accelerometer data in JavaScript we im-

plement a function to handle window.ondevicemotion

events:

window.ondevicemotion = function(event) {

var x = event.accelerationIncludingGravity.x;

var y = event.accelerationIncludingGravity.y;

var z = event.accelerationIncludingGravity.z;

...

}

The first time when our function is called we clear all

state and set a text message that instructs the user on how

to proceed. Every accelerometer reading results in a new

call, where we gather data in batches that are relatively

uniform (to avoid noise) and point in a direction that we

need (either the positive or negative Z axis, that is, or-

thogonal to the device screen). When we gather enough

positive or negative Z data we instruct the user to flip the

device so that we can complete the gathering process.

Finally, when enough data is collected, we estimate Sz

and Oz for the device and post the result to our web site

for future analysis. We also generate a random number

and set a cookie with it in the user’s browser. The cookie

is also posted to our server to help us correlate different

submissions while assessing the error rate for our finger-

printing algorithm.

6.3 Experiment: Initial Evaluation

We carried out our first accelerometer profiling experi-

ment on a group of 17 iPhone and iPod Touch devices,

obtaining multiple measurements from each.

Figure 6: Scatter plot of data obtained by accessing the

accelerometer profiling web page from 17 iOS devices.

Figure 6 presents a scatter plot of the estimated ac-

celerometer parameters for all devices in the experiment.

There were only two pairs of devices whose measure-

ments were “too close”—one of the devices in each pair

uses triangular markers instead of the usual round ones.

In our lab, using the batch of identical Motorola Droid

devices from the audio experiments in Section 5 we

were able to double the amount of data available. Be-

cause the Droid devices were too old and did not support

JavaScript access to the accelerometer, we implemented

an Android application which gathers the necessary data

and processes it according to the same algorithm used

by the web-based implementation described earlier. The

application does not require any special permissions to

install, as accelerometer readings are not considered to

be significant for preserving user privacy.

The Droid data was also promising: from the 16 de-

vices under study, there was only one near-collision.

We combined the data obtained from the two initial ac-

celerometer experiments in order to have the largest pos-

sible set of devices and thus assess realistically how fea-

sible it is to identify handsets.

Our identification algorithm took two data samples

from every device (most iOS devices only had two data

points each anyway, due to constraints at the time of

gathering; Droids had four samples each and we experi-

mented with picking the first two, last two, and the first

and last—Figure 7). We used the first of these samples as

the device fingerprint, and the second one as a datapoint

to be mapped to the closest of the known fingerprints. We
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used the square of the Euclidean distance between these

points in the plane: (Oz2
−Oz1

)2 +MSz(Sz2
−Sz1

)2. Here

MSz is a scaling factor used to reflect the different scale

of Oz vs. Sz distances: while Oz typically ranges be-

tween −0.5 and 0.5 (Figure 6), Sz (being a multiplicative

parameter in our model) is much more narrowly spread

between 0.99 and 1.04. This suggests a scale of about

10 for the values and about 100 for the squares. Indeed,

the plot for the rate of correct identification as a function

of this scaling factor is shown in Figure 7 and confirms

this estimate, showing 100% recognition for MSz values

between about 200 and 1000.

Figure 7: Percent correctly identified devices as a func-

tion of MSz in the distance formula. The red, green, and

blue lines correspond to different ways of picking the

training and test samples for Droid devices—the optimal

values for MSz fall in the same range in all three cases.

6.4 Experiment: Large-Scale Accelerome-

ter Fingerprinting

Armed with insight from smaller-scale experiments in

accelerometer fingerprinting we set out to expand the

scope of the inquiry. Our goal was to gather data from a

large number of devices in order to prove that accelerom-

eters can be fingerprinted robustly in the context of a web

application

We built an experimental public website [2] and pub-

licized it in online as well as in printed media. Over the

course of two weeks we gathered more than 16,000 sub-

missions.

Website design. Our experiment website consists of a

data-gathering page, and a dynamically generated chart

page that the user can navigate to after submitting his or

her device’s readings. The chart page displays a scatter

plot of all data points that have been recorded so far, and

shows the current user’s submission in a distinct color

(Appendix A). Effectively, the coordinates of the user’s

device on the grid comprise the accelerometer’s Z-axis

fingerprint.

The user is encouraged to go back to the data-

gathering page, repeat the process, and see if the sec-

ond identifier displayed matches the first one. Our

data-gathering web page plants a cookie7 in the user’s

browser, which makes it possible to correlate data points

coming from the same device8.

The web site is implemented completely in JavaScript:

no native code or Flash. We found that this method works

reliably on a broad range of Android and iOS devices.

Figure 8: Different OS platforms as identified from the

User-Agent string in device data submissions. In this

chart multiple submissions from the same device are

counted as separate entries.

Data breakdown. We looked at several general prop-

erties of the data collected in order to ensure it made

sense and matches our expectations in terms of quality.

In Figure 8, we show the relative presence of different

platforms in our data set. As expected, Android and iOS

are the two dominant platforms, with a variety of others

present in negligible numbers.

Figure 9: Devices grouped by the number of their sub-

missions to our server. This chart reflects actual devices

(we have collapsed multiple submissions from the same

device into one entry for counting purposes).

Figure 9 slices the data by the number of submissions

we received from a devices. A large number of devices
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only ran the experiment once, another large group ran it

twice (as our web page suggests), with diminishing num-

bers submitting three, four, and more times.

Device fingerprinting results. Our large-scale ac-

celerometer fingerprinting experiment yielded enough

data to make a direct calculation feasible. In a pre-

processing scan, we create a list of all Oz and Sz dis-

tances between the two submissions of two-submission

devices. We find that the 95th percentile for Oz distance

is 0.045 (in other words, 95% of two-submission devices

had a smaller distance than that). For Sz this distance is

0.0037.

When we used these 95th percentile distances to di-

vide the Oz-Sz scatter plot into blocks of equal size—and

counted the data points in each block (Cxy)—we were

able to calculate overall entropy of the distribution as fol-

lows:

Pxy =
Cxy

∑x,y Cxy

(2)

Hdirect =−∑
x,y

Pxy log2 Pxy = 7.498 (3)

We verified that small variations of the grid origin had

minimal effects on the entropy estimate (specifically, we

saw less than 0.01 bit of entropy difference between the

smallest and largest estimated value, 7.493 vs. 7.502).

We consider this to be a confirmation that the result is

robust.

Note that this entropy measurement is based on the pa-

rameters of just a single axis (Z-axis). The identifier bits

from the accelerometer’s X and Y axes are not included

in this experiment. If the parameters of these axes can be

measured reliably then we would gain additional entropy,

allowing the identification of millions of devices.

For identification, we focused on two-submission de-

vices, and asked whether the second data point for such

devices is closest to the first data point from the same de-

vice, or to some other data point in the set. If the closest

data point is from the same device, we count this de-

vice as correctly recognized. Note that this is a rather re-

strictive protocol because we permit all of the data points

collected to impact the recognition, including data points

from one-submission devices which may or may not have

been carefully measured.

In this most restrictive setup, we managed to cor-

rectly identify 298 of the 3583 two-submission devices,

a success rate of 8.3%. When we only looked at two-

submission devices and further eliminated those whose

distance in either Oz or Sz was above the 95th percentile,

we were able to identify 543 devices, or 15.1%. While

these numbers may look weak, we have to recall that in

this identification procedure we are only using the ac-

celerometer, in only one of its dimensions.

Improving identification rate via the User-Agent

string. The User-Agent string identifies the type of de-

vice connecting to a web site. The User-Agent data, with

no other signals, permitted direct identification of 544

devices out of the set. The combination of User-Agent

and accelerometer inputs, however, increased the number

of correctly identifiable devices to 1900 devices or 53%.

Removing 95th percentile devices further increased the

correct recognition rate to 58.7%. This shows that the

accelerometer fingerprint can be quite effective at distin-

guishing devices with identical User-Agent strings.

6.5 Threat Mitigation

Device identification via sensor fingerprinting has benign

as well as malicious uses. In the context of privacy vi-

olation for example, it is worth considering the possi-

ble methods for mitigating this threat to mobile users.

For any particular sensor, the feasibility of fingerprinting

can be practically eliminated by calibrating the sensor at

the time of manufacturing. A different, software-only

approach can be to add a random value to the sensor

output at the OS level. This value can remain constant

during continuous use of the device, allowing software

such as mobile games to calibrate the sensor if needed.

During periods of long inactivity, the random value can

change—which would invalidate any device fingerprint

that may have been collected already.

We also believe that we have also made a good case

for re-evaluating the status of sensor data conferred by

browsers and mobile operating systems. Until now, sen-

sor streams such as accelerometer readings have not been

considered sensitive information—yet we have demon-

strated that they can be used to identify and track devices.

As smartphone operating systems and browser technolo-

gies mature further, we expect to see more uniform ac-

cess controls on device sensors.

7 Related Work

Sensor fingerprinting has received significant attention in

recent years, primarily in the context of de-anonymizing

photos by correlating them to images with a known

source. In [28], images taken by different cameras are

processed to derive a reference noise pattern that is spe-

cific for each sensor. Based on this pattern, additional

images are associated with their most likely source.

Noise extraction algorithms are a critical part of this ap-

proach, and [27] proposes some further enhancements.

The image capture pipeline is investigated in [11], where

different stages of the process are revealed to introduce

distinct artifacts. These artifacts can be used to design

more robust identification algorithms.
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Flash (solid state) storage has also been shown to

contain unique defects that can be fingerprinted. Both

coupling and timing effects are considered by [29], and

shown to yield feasible identification mechanisms. The

main difficulty of applying flash fingerprinting to the mo-

bile device domain is the consistent move towards using

eMMC-style flash chips [13], which hide much of the

raw data by building in complex wear-leveling logic.

There are some works that aim to fingerprint a device

via the web that go beyond the standard HTTP cookies.

Such works are based on software-related features rather

than hardware related. Ref. [18] showed that parame-

ters of system configuration such as screen resolution,

browser plugins and system fonts as well as the contents

of HTTP headers – User-Agent and Accept – allow to

fingerprint a device. Ref. [31] also showed that good de-

vice identification can also be achieved using the values

of User-Agent, IP address, cookies and login IDs. These

values can be achieved using standard logs of web traffic.

In the past several years it has been shown [8] that may

web sites identify a web client based on “super-cookies”.

These are identifier which are stored on the local host in

various persistent ways outside the control of a browser,

hence the browser can not impose that standard restric-

tion as of HTTP cookies.

Some works deal with remote hardware-based finger-

printing. The most well-known example is [26] which

showed how to measure a device’s clock skew using

ICMP and TCP traffic. The clock’s skew is shown as a

good device identifier. There is also a body of work that

propose remote fingerprinting methods based on wireless

traffic, for example, radiometric analysis of IEEE 802.11

transmitters [10], signal phase identification of bluetooth

transmitters [21], or timing analysis of 802.11 probe re-

quest frames [15].

There are a few recent works which independently

proposed methods to fingerprint accelerometers and

loudspeakers. In [16] is suggested to fingerprint a mo-

bile device using its accelerometer. The proposed finger-

printing method is based on accelerometer output while

the phone is vibrating (e.g. during an incoming call or

message). Then machine learning algorithms are used to

identify a phone based on general features extracted from

the accelerometer output, such as mean, std. dev., and

skewness. These features are indirectly based on the off-

set and sensitivity of the accelerometer. This method re-

quires about 30 seconds of accelerometer recording dur-

ing vibration, which may be hard to obtain if the phone

is not set to vibrating mode. Furthermore, the method

proposed in [16] is influenced by the surface on which

the phone lays and the case in which it is enclosed, while

our method is oblivious to these since we fingerprinting

the accelerometer while it is at rest.

Ref. [12] and [14] propose to fingerprint loudspeakers.

The schemes proposed in these works focus solely on

fingerprinting the loudspeakers; in contrast, our method

allows to fingerprinting the loudspeaker and microphone

combined, thus potentially allowing for more fingerprint

entropy. Moreover, our use of the device’s microphone

removes the need for an external microphone during the

fingerprinting process and allows for a more practical at-

tack scenario. Finally, our scheme relies on short syn-

thesized sounds that can be generated at the appropri-

ate timing. Ref. [14] relies on recording ring-tones and

therefore the attacker has to wait for an incoming call (or

other event) to trigger the sound.

8 Conclusions and future work

We presented a new approach to mobile device identifi-

cation which allows for devices to be recognized without

relying on soft identifiers (which may be lost after a de-

vice reset). Our fingerprinting method exploits sensor

calibration variations in the speaker-microphone system

and in the accelerometer. Accelerometer-based identifi-

cation is particularly noteworthy because it can be per-

formed by untrusted web code running within a mobile

browser. We hope that our results illustrate the poten-

tial risk of granting untrusted code access to seemingly

benign hardware.

This work raises several interesting open problems.

What other types of mobile hardware can be leveraged

for device fingerprinting? Can this be done using im-

perfections in the baseband processor? In other sen-

sors? How much entropy can be extracted overall and,

based on additional data from a larger set of identical de-

vices, can we obtain a high-confidence estimate of the

distributions of the measured calibration parameters? Is

there sufficient entropy in sensor-based fingerprinting to

generate a hardware-based cryptographic key? We hope

these questions can be answered by future work.

Notes

1Location 1 data was used as the training set in this case.
2The device we excluded was not misclassified in the first experi-

ment, so its exclusion did not contribute to the improved results.
3The results are similar (symmetric) if another location is omitted

from the training data instead.
4Earth’s gravity indeed varies a little depending on location, how-

ever even these small variations can be predicted.
5Note that due to the accelerometer defects we are measuring, it

will most likely not be exactly equal to g.
6For further details see [1].
7Containing a large random number—a unique ID.
8Unless the browser application exited and deleted the cookie; we

will ignore this type of scenario here: its presence will strictly degrade

our results, so the analysis we report here is conservative.
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A Availability

Mobile devices with compatible web browsers (for ex-

ample most iOS devices and many Android 4.0+ de-

vices) can be pointed at http://sensor-id.com/ to

have their Sz and Oz sensor parameters evaluated. Please

follow the instructions and prompts provided. After the

website measures your accelerometer parameters, you

will be presented with a chart such as the one in Fig-

ure 10.

The compiled Android application for measuring fre-

quency response ratios can be downloaded from http:

//sensor-id.com/audio/sensor-id-mic.apk. In

order to run this APK file, the user needs to enable “non-

market applications” in the Settings application, and then

proceed to install either via USB (e.g. via using the adb

install command) or through another supported mech-

anism such as a removable SD card. When you run the

app, make sure the phone is lying flat on a surface—

interference from cables or other objects under the phone

is often significant. When fingerprinting is complete, the

application appends the frequency responses at the seven

frequencies, as well as at their second, third, and fourth

Figure 10: Scatter plot of all data gathered, displayed to

the user after measurements have been submitted to the

server. The green dot depicts the user’s device finger-

print. Oz measurements map to the X coordinate, and Sz

measurements to the Y coordinate.

harmonics, to the file /sdcard/mic and writes out the

raw recorded samples to /sdcard/mic dump (there are

8000 samples at each of the seven frequencies, for a total

of 56000 integers, one per line).

B Estimating All Six Bias Parameters of

the Accelerometer

Using the single-axis (Z only) calibration method one

could theoretically estimate the sensor parameters in the

X and Y dimensions, however it is very unlikely that a

user will position the device on its narrow sides. An al-

ternative approach for estimating the bias parameters for

all three dimensions is to gather accelerometer measure-

ments at 6 different and arbitrary resting positions. Note

that in this approach although we need to gather mea-

surements for more resting positions we do not assume

anything about the device’s orientation at those positions.

We know that the true acceleration along the v dimension

is given by vt =
vm−Ov

Sv
. Therefore we have for each mea-

surement m the following equation:

(

xm −Ox

Sx

)2

+

(

ym −Oy

Sy

)2

+

(

zm −Oz

Sz

)2

= g2

In principle, six such equations (for six different rest-

ing positions) would have allowed us to calculate the six

unknown bias parameters. However, due to quantiza-

tion errors and other random noises the above equation

should be turned into an inequality of the following form:
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(

xm −Ox

Sx

)2

+

(

ym −Oy

Sy

)2

+

(

zm −Oz

Sz

)2

−g2
≤ ε

where ε is some unknown measurement error. To find

the accelerometer deviation parameters in presence of

noise we collect multiple measurements x
(i)
m ,y

(i)
m ,z

(i)
m (as

many as it is practical to have) and solve the following

optimization problem

Minimize ∑i ε2
i

subject to

(

x
(i)
m −Ox

Sx

)2

+

(

y
(i)
m −Oy

Sy

)2

+

(

z
(i)
m −Oz

Sz

)2

−g2 = εi

where i is the measurement index.

This is not a convex problem in general (depending

on the measurements) and therefore we chose to use a

numerical gradient descent method to find the parameters

Ox, Oy, Oz, Sx, Sy, Sz that minimize the error. Assuming

we have a smart guess for the initial point and given the

constraints on the reasonable parameter values we expect

that solutions for different sample sets will all converge

to the same local minima. We take O3×1 = 0 and S3×1 =
1 as the initial point for the algorithm since these are the

ideal values from which the device can deviate by a small

fraction.

We apply this algorithm to multiple sets of measure-

ments for every device, and obtain labeled samples in a

6-dimensional space. To identify a device given a new set

of measurements we repeat the algorithm and obtain an

unlabeled sample. We then use nearest neighbor match-

ing (KNN) to associate the sample with a labeled clus-

ter. Cross-validation of KNN classification over this data

yielded a correct classification percentage of 81.3%.

B.1 Experiment: Lab Droids in 3D

We evaluated the algorithm first for 5 devices and then

for 16, performing both unsupervised clustering and su-

pervised classification. K-means clustering for the setup

of five devices resulted in a perfect identification of sam-

ples obtained from the same device. With 16 devices we

obtained good clustering, however we did observe some

errors. Supervised classification with 16 devices yields a

correct classification percentage in 81.25% of the cases,

indicating that this method could be a significant contri-

bution to the overall identification process in combina-

tion with the other methods.

C Difficulties in Identification Using Some

Sensors

In this section we briefly discuss the difficulties we had

in using certain sensors listed in Table 1 for device fin-

gerprinting.

Gyroscope: Measuring the offset and sensitivity of the

gyroscope would require subjecting the device to con-

stant angular velocity rotation at different speeds—an ex-

periment that is difficult to carry out even in a lab.

Magnetometer: We carried out some magnetometer

experiments which convinced us that although compass

readings are a possible source of identification data, the

peculiarities of the sensor make practical use next to im-

possible. Consider for example Figure 11: while sensi-

tivity and offset are evident from the geometry of mag-

netic field measurements in multiple directions, there are

also clear memory effects which can disrupt the esti-

mates. In addition, the variability of the magnetic field

can be sometimes significant (e.g. near metallic objects),

and sometimes subtle, making corrections difficult and

error-prone.

Figure 11: Compass (magnetometer) readings taken by

placing two different devices (in blue and orange) at the

same location on a flat surface, in a variety of orienta-

tions. The oval shapes are created due to the varying ori-

entations of the device (with a stable Z component—note

that the same device sometimes produces a smaller oval,

consistent with a varying Z value across runs, even at

the same location). Offset is evident from the offset cen-

ters of the ovals, and sensitivity is reflected in the ovals’

shapes. Different runs even at the same physical loca-

tion may produce different results, which demonstrates

memory effects that are difficult to correct for.

Light: Light sensors only provide erratic measure-

ments which are subject to noise due to partial obstruc-
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tion of the sensor; thus, light measurements are difficult

to put in a context that allows for estimation of the im-

perfections.

GPS: A GPS receiver triangulates the location of a

phone by calculating its distance to at least 3 GPS satel-

lites. The distances are calculated by measuring the time

a signal travels from a satellite to the GPS receiver. The

travel time is measured using an inaccurate clock built

into the GPS receiver. Previous work [26] has shown

that a clock’s skew can identify the clock. However,

modern GPS receivers utilize a 4th satellite measurement

which allows to take this bias into account. Therefore,

the clock’s bias does not affect the calculated location.

Touch screen: The touch screen sensor is mounted

over the phone’s display. Inaccurate assembly process

may cause the touch screen to be misaligned with the dis-

play. This may cause the user to erroneously tap on loca-

tions adjacent to the intended target. This misalignment

may serve for identification. However, since it is usually

very small and mostly goes unnoticed by the user, it is

difficult to measure it. One possible direction to measure

it would be, for example, to record the exact locations of

the user’s taps on the keyboard display. Averaging the

tap locations for each key and comparing it against the

actual key’s location at the keyboard display may allow

one to calculate the misalignment. Nonetheless, we ex-

pect this method to be highly dependent on the user as

much as the touch screen misalignment.

Camera: There are a few works that deal with cam-

era identification using the pixels’ bias. The output gain

of each pixel is a linear function of the actual intensity

of light hitting that pixel. This linear bias is commonly

called pattern noise; [28] proposes a method to determine

a camera’s reference pattern noise using a 300 pictures

taken by that camera. This serves as a unique fingerprint

for the camera. It is shown that this enables to associate

with good probability a new picture with the camera that

took it. The study was done using 9 cameras. How-

ever, no effort was done to assess the expected number

of cameras that can be distinguished using this method,

and what is more, most of the cameras differ in either

model or manufacturer which tends to make identifica-

tion easier (some evidence is presented however that the

results can carry over to identical cameras as well).
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