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Abstract—This paper presents a low cost mobile application 
(app) integrated on an Internet of Things (IoT) ecosystem, which 
uses varied sensor information collected by mobile devices to 
track and assist on the logistics of urban goods distribution 
processes. The proposed approach is leveraged by the trend of 
decreasing costs for mobile data communication in urban 
environments. Taking into account basic sensor data available in 
mobile devices (e.g., GPS, accelerometer and magnetometer), it is 
possible to track the users’ movements and adopted routes, 
identify transit times and driving styles, identify the quality of 
roads, and track the process of loading/unloading of urban goods. 
This data can also be analyzed through a data mining process to 
identify patterns, present driving advice and perform a resource 
optimization process. 

Keywords—Mobile device sensing; urban logistics; goods 
distribution; geographic information system; mobile application. 

I. INTRODUCTION 

According to Reeves [1], the emerging area of ubiquitous 
computing presents some evident possibilities that appear 
attractive to various stakeholders in public and private sectors, 
which will shape the society. It includes enabling technologies 
available nowadays and in the near future, which can be 
potentially embedded everywhere, leading to a diversity of 
different services and applications. 

Sensors play an important role in this evolution, and they 
are also a crucial component of the IoT paradigm and of 
intelligent monitoring and control systems. Fig. 1 describes our 
approach, which is based on mobile device sensor data 
acquisition and subsequent transmission to a central server. 
This data, which has mainly a continuous range (see the 
example at Fig. 3), is transformed into discrete classes. 
Afterwards, with appropriate manipulation, knowledge can be 
extracted. Sensors available in mobile devices allow seamless 
data collection, and since users always carry the devices with 
them, this information can be associated with mobility patterns 
[2]. 

Business and logistics processes are quickly adopting 
mobile applications (apps) to access real-time information, 
mainly to the optimization of routes and consequently to 
improve the obtained results. In today’s global market, logistics 
is a complex operation. It demands detailed coordination and 
approaches to support its processes with smart Information and 
Communications Technology (ICT) solutions that optimize the 
distribution of both incoming and outgoing goods within the 
business, in the distribution centers and on the road. 

IoT has great potential for measurement and control 
logistics operations. The benefits extend across the entire 
logistics value chain, including internal logistics, warehousing 
operations, transportation, and last-mile delivery. They have 
impact on areas such as operational efficiency, safety and 
security, track and trace, customer experience, and new 
business models. IoT allows real-time awareness of the 
distribution process, providing detailed shipment tracking 
information to end-consumers, ongoing optimization and 
efficient usage of the available resources. These approaches are 
enabled through the rise of mobile computing, consumerization 
of ICT, 5G networks, and big data (BD) analytics, as well as an 
increasing demand for IoT-based solutions from consumers. 
Once combined, these factors are enabling logistics providers 
to adopt IoT at an accelerating rate. This approach can be very 
helpful in urban logistics, with the creation of associated 
services for last mile optimization and operational follow-up. 
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Fig.1. Approach for mobile device sensor data processing. 



Cheap track of goods can be performed, for example, by:  
• Low cost Bluetooth Low Energy (BLE) beacons placed 

inside the goods package, where the signal is captured by 
mobile devices and interpreted based on previous defined 
information. 

• QR codes outside of the packages, which may be scanned 
by a mobile device app. 

With this process we track the goods and trigger alerts that 
can be directed to the recipient’s phone via cellular networks.  

Companies looking to leverage IoT in their operations 
should not just consider implementing a single use case within 
warehousing, transportation, or last-mile delivery. The key to 
success lies in understanding the convergence of these use 
cases with each other. Successful implementation of IoT in 
logistics will require strong collaboration between partners 
within the supply chain, and the willingness to invest. 

II. SENSORS AND DATA COLLECTION 

Nowadays, most mobile devices integrate the following 
categories of sensors: 
• Motion, location and orientation sensors – These sensors 

are used to measure the acceleration, rotation or orientation 
along up to three orthogonal axes, or to provide the 
position of the user. This category includes: 
1) Accelerometers, which measure the combined 
acceleration due to gravity and body movement along its 
axes; 2) Gyroscopes, which measure rotational motion 
along its axes; 3) Magnetometers, which detects the 
components of the Earth’s magnetic field along its axes; 
and 4) Global Navigation Satellite System (GNSS) 
receivers, such as Global Positioning System (GPS), which 
use information received from satellites to infer the 
device’s position. 

• Environmental sensors – These sensors are used to 
measure various environmental parameters, such as 
ambient temperature, light, pressure and humidity. This 
category includes thermometers, photodetectors and 
barometers. 

The raw data acquired from the sensors is processed by 
specific algorithms in order to extract relevant information 
(e.g., [3, 4, 5]). The main idea and associated processes are 
illustrated in Fig. 1, where mobile sensor devices can be 
managed by a proper Software Development Kit (SDK) to 
extract data.  

The first process of the proposed methodology, identified 
as Process 1: Data Collection in Fig. 2, is responsible for the 
collection of massive data (big data). This process varies from 
case to case. 

Mobile sensors like accelerometer, GPS and magnetometer 
are easily accessed through standards functions, such as the 
ones provided by the Android SDK [11], which includes an 
emulator of a runtime environment for testing and debugging, 
as well as classes and interfaces of the Android Sensor 
Framework in Java language. The sensor framework is part of 
the Android hardware package. After the sensor data 
acquisition, proper data manipulation can be performed to 
create knowledge. There may be privacy concerns associated 

with collecting this data, but since our proposal is targeted to 
professional activity monitoring this topic is not addressed in 
detail in this paper. Nonetheless privacy concerns may remain 
in terms of drivers’ behavior, but that specific data can be 
removed from monitoring if privacy is a concern.  

This collected data can be transformed into information that 
allows passive tracking the users’ mobility activity. Therefore, 
we propose in this paper the development of a low cost mobile 
app that could assist on the distribution of urban goods in a city 
environment where there is a high granularity in the delivery 
process due the nature of the final client [6]. Passive tracking 
of user activities using mobile devices [7] has been assessed in 
a diversity of studies applied to activity recognition [8] and 
transportation mode detection [9], among others [10]. Through 
the proposed approach, our intention is to establish a common 
methodology to handle this collected data into a diversity of 
Knowledge Discovery (KD) systems, in order to facilitate the 
development of dedicated Intelligent Transportation System 
(ITS) applications. 

III. DATA ANALITICS SERVER 

After data collection (process 1), the information is 
transmitted to a central data analytics server, where we apply a 
data transformation (process 2) composed by data 
discretization and transformation into pre-defined class. After 
that, it is possible to apply data mining algorithms (e.g., Naïve 
Bayes, decision trees, inference along others) towards the 
desirable knowledge to be used by logistics apps. 

Process 2 was described in detail in our previous work [2, 
12]. In a first stage, we employ an outliers’ identification and 
removal approach [12]. Then, we transform the continuous 
collected sensor data into predefined discrete classes. Fig. 3 
illustrates some of the 24 predefined classes (C1 to C24). 
Classes C1 to C4 are based on accelerometer data on the Z-
axis: C1 for events where |Δα| ≤ 0.1 ms-2, C2 for events where 
|Δα| ϵ (0.1, 0.5] ms-2, C3 for events where |Δα| ϵ (0.5, 2.0] ms-2 
and C4 for events where |Δα| > 2 ms-2.This data can be used to 
identify, together with the GPS coordinates, the position of 
potholes and speed bumps. Classes C5 to C8 are based on 
accelerometer data on the X-axis. Fig. 3 (b) shows data from an 
aggressive driver, with aggressive left and right turns. C5 for 
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Fig. 2. Overview of the proposed system based on sensor data aquistion and
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right turn with |Δα| ≤ 1 ms-2 and C6 for left turn with 
|Δα| ≤ 1 ms-2, C7 for aggressive right turn with |Δα| > 1 ms-2 
and C8 for aggressive left turn with |Δα| > 1 ms-2. For the Y 
direction (Fig. 3 (c)), we divide these data events into twelve 
classes. C9 concerns the cases when the speed is zero and C10 
when the speed is different from zero, which means inertial 
movement (|Δα| = 0 ms-2). Other events are used to identify 
moderate or aggressive acceleration and braking events: C11 
for moderate acceleration (|Δα| ≤ 1 ms-2) and C12 for moderate 
braking (|Δα| ≤ 1 ms-2), C13 for excessive acceleration 
(|Δα| > 1 ms-2) and C14 for excessive breaking (|Δα| > 1 ms-2). 
Speed values are taken from:  

Vy[k+1] = Vy[k]+ t.ay[k] , (1)

where k is the elapsed time between samples and ay is the 
measurement of acceleration in the Y-axis. The speed data is 
transformed into classes C9, C10, and C15 to C20: C15 for Vt  
ϵ (0,10] km/h, C16 for Vt  ϵ (10,30] km/h, C17 for Vt ϵ 
(30,60] km/h, C18 for Vt  ϵ (60,90] km/h, C19 for Vt ϵ 
(90,120] km/h and C20 with Vt > 120 km/h. Class C21, for 
Vt < 0 km/h, is used for parking operation identification. GPS 
data (class C24) is used to identify the route path, because we 
associate GPS data to route graph data available in information 
layers of maps, for details see [2]. The date is identified in class 
C22 and the time, in a day time period, in class C23, separated 
into three sub-classes: weekends and holidays, rush hours, and 
normal working day periods. 

The algorithms referred in Fig. 2 use predefined classes and 
sub-classes to perform KD based on a data mining (DM) 
approach. Examples of this KD are driving style, road 
conditions, traffic, and load/unload of goods, which are 
implement based on a Naïve Bayes algorithm. 

IV. MOBILE APP 

The developed mobile app allows to configure the sensor 
polling time and the type of sensors to use. One important 
aspect is the automatic calibration of the direction of the 
mobile device through the use of the magnetometer and 
gyroscope [13]. This process has always an error due to the 
change of magnetic field based on the user position. We also 
developed a scan tag mode, to identify goods and follow all the 
delivery process. This mode, together with the mobile device 
sensor information, allows the tracking of the urban goods and 
the delivery truck during all the phases of the distribution 
process. For example, using the mobile device motion sensors, 
we are able to identify user movements associated with picking 
and delivery of goods, such as up/down movements, use of 
stairs, etc. 

This mobile app also uses our previous work on route 
optimizer algorithms and data representation on maps [14]. 
Fig. 4 highlights the main features available in the mobile app, 
including:  
• Knowledge extracted from sensor data: Goods movements’ 

follow-up process, activity statistics (number of deliveries, 
average delivery time, distance performed, among others), 
characterization of driving style, traffic information and 
road classification. 

• Payment interface, which is not covered in this work due 
to space restrictions. 

• Optimization process, taking into account the available 
mobile device sensor data, including the optimization of 
performed routes based on short distance algorithms [14] 
and the identification of the delivery resources/processes 
that can be shared (see section V.D). 
Other knowledge that can be extracted from the mobile 

device sensor data includes the information of when the deliver 
processes occurs, routes used, delivery operation time, road 
condition and driving style. It is important to compare routes 
and times to identify similarities in order to suggest 
collaboration processes among different operators.  

We also store information about distance per delivery 
process performed in a defined period. For example, we have 
the following distance data for a specific week (Week 33) from 
an application associated to a deliver vehicle: Operator A: 
246 km; Operator B: 123 km; and Operator C: 81 km. Fig. 5 
shows the daily routes performed by an operator in a given day, 
where the route, distance and average speed are identified. We 
are aware that if the user turns off the data acquisition, or if the 
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mobile device runs out of power (although the mobile device 
can be powered by the truck), mobility data will be lost. 

A. Traffic Information 

Based on the speed data and the location information 
provided by GPS, it is possible to identify traffic situations as 
conditions that occur on road networks as the number of 
vehicles increases, and are characterized by slower speeds and 
longer trip times. For this we check number of events on 
Classes C16 to C20 (speed classes) against the information 
about speed limit on that road. For details, see [15].  

B. Road Classification Application 

Accelerometer vertical measurements (Z-axis), identified as 
classes C1 to C4 (Fig 3(a)), can provide important information 
about road conditions. C1 events are small vibrations and have 
no meaning, C2 represents rough streets with bad construction 
quality (bumpy roads), C3 and C4 represents depressions (up-
speed bumpers or down potholes) and GPS shows position.  
Most of time, drivers can avoid potholes, which is reflected on 
turn left-right operations, but sometimes they cannot be 
avoided. 

Road classification is based on events presented on classes 
C1 to C4. The main idea is to give zero points to events on 
class C1, one point to events on class C2, two points to C3 and 
three points to class C4. So we created a parameter, Road 
Quality (RQ), defined by equation (2), where # means number 
of events on that class: 

RQ = (#C2+#C3x2+#C4x3) / (#C1+#C2+#C3+#C4) . (2)

If RQ ≤ 0.1 we have a very good road, for RQ ϵ (0.1, 0.3] 
we have a good road, for RQ ϵ (0.3, 0.6] we have a bad road 
and for RQ > 0.6 we have a very bad road. From the collected 
data we had 11 events classified as good road, 11 as very good 
road and 24 as bad road.  

C. Driving Style Characterization 

Examples of approaches in this category which use mobile 
devices include works carried out to determine driving 
behavior [16], driving style [17], and drunken behavior [18], 
and to evaluate driving parameters [19]. The behavior of a 
driver is essential in the delivery process and we can monitor 
this behavior taking into account speed, avoidance of road 
potholes, excessive breaking and acceleration events, such as in 
Fig. 3 (c), when the acceleration difference of two consecutive 
events is more than ±1 ms-2, as well as aggressive change of 
left/right lane, such as in Fig. 3 (b), when the acceleration 

difference of two consecutive events is more than ±1 ms-2. We 
applied a probabilistic approach using the number of events of 
change of line to left or to right, identified as turn events (TE), 
where # means number of events of class: 

TE = #C5+#C6+#C7+#C8 . (3)

Aggressive behavior in changing lane (CL) is measured 
with the following ratio: 

CL = (#C7 + #C8)/TE . (4)

Then, we look at excessive acceleration ratio: 

Eac = #C13 / (#C13+ #C11) , (5)

and excessive breaking ratio: 

Ebr = #C14 / (#C14+ #C12) . (6)

Combining (4), (5) and (6) we have: 

Ds = CL+ Eac + Ebr (7)

The Ds score based on a predefined scale allows us to 
classify the driving style. The number of driving style classes 
can be configurable, but, as a first approach, we divide in four 
cases:  

1) Soft driving identified as Ds1 for Ds < 0.1;  
2) Usual driving, identified as Ds2 for DS ϵ (0.1, 0.3];  
3) Aggressive, identified as Ds3 for DS ϵ (0.3, 0.7];  
4) Very aggressive, identified as Ds4 for DS є (0.7, 1.0]. 

D. Resouce Sharing Approach 

The sharing economy is an upcoming reality, associated to 
economic and social activity involving online transactions and 
collaboration activity towards a common goal. These processes 
are supported via community-based online services, with 
several success examples, such as Uber [20], and these 
processes were expanded to a diversity of activities, such as in 
the case of Airbnb [21], among others. Since we possess 
centrally stored information regarding all routes and times, it is 
possible in some cases to identify a goods delivery operator 
that performs some routes of even find some exchange points 
that can act as consolidation center. An example of this could 
use some stores or kiosks to store goods temporally in order to 
facilitate the sharing process. To achieve this goal, we created 
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Fig. 5. Driving routes for an operator in a day period. 



matching functions that identify carrier routes and times. First 
we look for route matching in a process carried out by the 
identification of consecutive road nodes in common, using a 
window time defined by the maximum time allowed by the 
distribution process, as exemplified in Fig. 6. We use same 
matching function developed for carpooling [22]. This is a 
heuristics process performed from the end node of the trip to 
the beginning with the possibility of changing goods from on 
transportation carrier to another one using a kiosk in the city 
(for details see [23]). An example is showed at Fig. 6, where, 
with the improved approach, operator X only has to perform 
the route from node A to E. The transported goods are placed 
at an identified kiosk at E and operator Z picks these goods and 
transports them to node H. Therefore, from nodes E to H the 
process was performed by only one operator (Z). As result, we 
have eliminated the intervention of operator X for the distance 
from node E to H. These synergies make sense in an urban 
environment, where most of deliveries have small granularity. 

E. Goods Picking and Delivery Process 

The accelerometer data on X and Y axes and the vehicle 
speed can be used to detect a parking operation based on two 
identified parking types used as training: longitudinal and 
perpendicular, which are identified in Fig. 7 and Fig. 8, 
respectively. 

Fig. 7 starts with a stop operation (Vt = 0, C9 class event) 
where we take the GPS coordinates. Then we detect a negative 
acceleration in Y direction with C21 events (negative speed) 
and a change in direction in X, situation identified as a C7 
event followed by a C8 event, or the opposite way. Then, at (5) 
in the X axis we detect movement to the opposite side and the 
GPS position is less 2 to 3 meters (not easy to detect because 
GPS error associated). Then, at (6) we have again Vt = 0 (C9 
event). 

Fig. 8 depicts a perpendicular parking. Several operations 
can be recognized, such as parking forward at once, 
characterized by small Vt and change on X direction, or park 
backwards, characterized by Vt small and negative and change 
in X direction. If the process is not performed at once, we have 
Vt positive and negative with changes in X direction. If the 
mobile device is with the user, we can also see vertical 
accelerometer measurements corresponding to body 
movements towards picking up the goods and can recognize 
walking and stair climbing movements. This process requires 
several training examples to work without a big number of 
false positives. 

V. RESULTS AND DISCUSSION 

The data collection process in the context of the proposed 
mobile device sensing system occurred between June 1st 2016 
and Dec 31st 2016. The obtained results were based on daily 
trips of members of the academic community and all data was 
stored in a Structured Query Language (SQL) database. Driver 
population consisted of 20 different persons, with an average 
age of 39 years and 10 years of driving experience (on 
average), and 95% of the driver’s population were male. From 
this data, we used 541 different registered trips with around 
1400 hours.  

We defined two classes of braking: Br and EBr (excessive 
braking), when the intensity of braking is above a certain 
value. We highlight a few major findings: EBr events per 
100 km occur more frequently than excessive acceleration 
(EAc), but the number of Ac events tends to be higher than Br 
events per 100 km. For example, the number of acceleration 
events in class C11 registers values from 50 to 3400, where 
15% of these events are in the range of 50 to 510. We can 
perform a normalization measurement to differentiate short to 
long trips Ac events, on average, range from 1100 to 1900 
events per 100 km. EBr appears, on average, for all drivers, in 
the range of 100 to 130 events per 100 km, with a maximum 
of 233 per 100 km. Br events, on average, range from 250 to 
1250 events per 100 km, with a maximum of 3300 per 
100 km.  

It was possible to identify roads with bad conditions, with 
several potholes identified and georeferenced. Regarding 
driving style, we characterized the driver population, but 
further research is needed to improve characterization process. 
Parking operation needs several heuristics to cover all 
possibilities of parking strategies. In this period we detected 
252 parking events, where 79 where false positives (31%) and 
18 were not detected (7%).  
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operation in a parking perpendicular to the street. 



VI. CONCLUSIONS 

Tracking user activity and associated mobility is available 
at low costs through the use of mobile device sensor 
information. The data generated are huge and have high impact 
in the study of user mobility habits. In this research we show 
different applications of this big data tracking using a common 
mining approach for knowledge discovery (KD), which can be 
used for specific applications, based on predefined classes. The 
proposed work methodology provides a bridge between field 
experts in data collection and data mining (DM) engineers. We 
also developed an IoT system based on an Android mobile 
application to extract sensor data and transmit it to a central 
server, where knowledge is extracted and can be used to 
characterize the goods delivery operation in a city environment. 
The proposed system can also be applied in rural areas.  
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