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ABSTRACT In order to effectively reduce the network transmission delay and improve the network

transmission quality, the concept of Content Delivery Network (CDN) is brought forth to provide necessary

technical support. In this paper, the edge cooperative caching (ECC) based on machine learning and greedy

algorithm is put forward. To start with, the neural collaborative filtering is used to design the content

popularity prediction algorithm to realize more accurate prediction of content popularity. Following that,

the greedy algorithm after optimization is used to obtain the content delivery strategy of various servers in the

cooperative cache domain. Finally, the ECC is adopted to achieve the optimization goal of minimal average

content transmission delay. Meanwhile, the simulation experiment is carried out to verify the performance

of the ECC. The experimental results suggest that the ECC can effectively improve the cache hit rate and the

content cache space utilization, and shorten the average content transmission delay.

INDEX TERMS Collaborative filtering, neural network, content distribution network, mobile edge caching,

proactive caching.

I. INTRODUCTION

With the explosive growth of data and the deepening inter-

connection of things of all forms, the data growth has

far overtaken the growth of network bandwidth. Therefore,

to simply maintain the original network computing method or

to constantly improve the bandwidth can neither meet current

users’ requirement of network computing capacity [1], [2].

At the same time, technological advances of the current era

have led to the emergence of many new applications, such

as intelligent manufacturing and driverless technology, all

of which are demanding about the data transmission and

processing efficiency.

Meanwhile, the rapid development of intelligent terminals

has brought about a sharp increase to the number of mobile

devices. The most obvious case in point is the popularization

of smartphones. In response to so many challenges, how

to efficiently lower the transmission delay and improve the

network transmission quality has become an issue of great

concern, and the construction and edge computing of Content

Delivery Network (CDN) have provided an effective solution

plan [3,4]. As a special network that is different from the

traditional network, CDN relies on edge servers distributed
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in different places to realize scheduling and load balanc-

ing of the content, thus ensuring efficient delivery of the

content. Generally, network traffic chiefly depends on some

files repeatedly downloaded from remote servers (such as

Weibo videos and news reports which are prevailing on the

network on a real-time basis), and the highly concentrated and

repeated requests will impose tremendous loading pressure

on the backhaul link of the network [5]. In order to cope with

the enormous growth of network traffic, this paper makes use

of the edge caching strategy, that is, to have the content with

a high degree of popularity, such as video files and image

files, cached in the nearer edge caching units, which usually

refer to edge caching small base stations, before the use of

network traffic reaches a peak. An advantage of the caching

approach is that many users can acquire the popular content

requested by them from the edge caching units rather than

from the cloud data centers, thus largely cutting the expenses

of the backhaul link and the use of network bandwidth. In this

way, not only can the user experience be improved, but also

the network space can be saved for other services so that the

network can provide more services [6].

II. NETWORK MODEL

The edge caching algorithm and the corresponding Con-

tent Delivery Network (CDN) [7] can be designed based on
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the future popularity prediction. Before the network traffic

reaches a peak, the popular content can be cached in the local

server in advance to effectively bring down the redundant

network transmissions and improve the network service per-

formance [8]. At the same time, due to the limited storage

of a server, the number of its users and content files cached

in the local server is also limited. Concerning this problem,

this paper designs an optimized model based on the edge

cooperative caching, with multiple edge servers forming a

cooperative caching unit. Every cooperative caching unit can

be connected to the cloud data center, and every server in the

cooperative cache domain is jointly responsible for users of

the same region (See Fig. 1.) and reasonably distributing the

content to every joint caching unit according to CDA. This

can not only effectively reduce the redundant cache but also

improve the cache space utilization rate of the cooperative

caching unit to maximize the service performance [9], [10].

FIGURE 1. Multiple cooperative cache domain scenarios based on small
base station cooperative caching system.

III. ALGORITHM ESTABLISHMENT

This paper assumes that M cache servers are deployed in a

cooperative cache domain to realize the function of cooper-

ative caching. The cooperative cache domain is named C =

{c1, c2, · · · cM }. Every server is deployed at sites of different

base stations for the convenient access of users in different

regions. Assume that the cloud data center provides S pieces

of different content, with the length of all content normalized

to be L and the content set to be O = {o1, o2, . . . , oS}.

Then, every requested content, oi, of users abides by the

rule of oi ∈ O, i = 1, 2, . . . , S. In order to better realize

the prediction algorithm, this paper assumes that, in a unit

time, the popularity of the content requested by users of a

fixed region is unchanged, and that users’ content request

also remains unchanged. Assume that the static popularity

is Pm,i (denoting the degree of popularity of the content, oi,

within the service domain of the server, cm). Following that,

this paper defines a content caching matrix, X = {xm,i|cm ∈

C, oi ∈ O}, (where oi has been cached to the server, cm; on

the contrary, xm,i = 0, meaning the content, oi, is cached to

the server, cm), so as to clarify whether the popular content is

cached in the cache domain and where the popular content is

cached.

The content caching matrix per unit time should be

updated. The superiority of this algorithm can be judged by

the expenses of the network transmission. In such a system,

there are multiple transmission expenses, including transmis-

sion expenses of sending the already cached content to users

via the edge server, transmission expenses between edge

cooperative cache servers, expenses for the server to have the

popular content cached in the cloud data center, and expenses

for users to directly acquire data expenses from the cloud

data content. Under the preconceived conditions, users can

request content from the server, cm, in the cooperative cache

server. This paper concentrates on the caching performance,

so the expenses for users to directly acquire content from

the cloud data center, and the expenses to send the content

from the requested server to users can be ignored. Therefore,

the final transmission expenses of this paper are decided by

the sum of the transmission expenses between the edge cache

servers and the transmission expenses of the remote cloud

data center and the local server.

This paper assumes the transmission delay of every edge

server to cache content in the cloud data center is Tm,0; Tm,n is

the unit transmission delay between any two adjacent cache

servers, cm and cn, (two servers which can transmit content

via the single-hop router); dm,n is the hop count of the router

between two servers, cm and cn. Therefore, the transmission

delay between two cache servers is Tm,n × dm,n. To cache

content from the remote cloud data center to the local server

will obviously incur a higher expense. Hence, it is obvious

that Tm,0 > Tm,n.

As to the transmission delay computing model, it is sup-

posed that there is a user requesting the content oi from one

edge cache server cm. Under the condition, there are three

types of transmission delays. First, the content oi has been

cached to the user-requested server, cm, which enables users

to directly acquire the content. Second, the content oi has

been cached to cn of the local cooperative caching unit, which

cannot be directly accessed by the user, so the server cn first

delivers content to the server cm and then delivers it for user

access. Third, the content oi is not in any local cooperative

caching unit, so the server cm should acquire the content from

the cloud data center and then delivers it to the user. The three

different types of transmission delays caused by user access

are presented in Fig. 2 below:

FIGURE 2. Three different types of transmission delays caused by user
access.

According to the above discussions, every transmission

type finally has the server cm entrusting the content to the
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user. Therefore, that cm transmits the content to the user’s

service terminal is the time delay of every transmission type.

Thus, the transmission delay is not included in the computing

of expenses to measure the performance. Assume that the

expenses incurred by the second type of transmission delay

is Y 1
m,i, and that the expenses incurred by the third type of

transmission delay is Y 2
m,i. Then, the following computing

formula (1) can be obtained:







Y 1
m,i = Tm,n · L · dm,k · (1− xm,i) · [1−

∏M
n=1
n 6=m

(1− xn,i)]

Y 2
m,i = Tm,0 · L ·

∏M
n=1 (1− xn,i)

(1)

In (1), dm,k = minn6=m{dm,n|xi,n = 1} denotes the hop

count from the nearest cn to cm when there is no content

cached in the edge server cm, thus necessitating content to be

acquired from the cooperative cache server. Where, the alge-

braic expression of Y 1
m,i is not zero when the cached content is

not in the local server, cm, but in the remaining cache servers.

Under the condition, Y 1
m,i exists; otherwise, it does not exist.

Similarly, the algebraic expression of Y 2
m,i is not zero when

the requested content is not cached in all servers. Then,

the time delay, Y 2
m,i, exists. In this way, the above two expense

computing formulas can be obtained. The objective of this

paper is to improve the above two transmission expenses.

Obviously, the cached content of a server has its upper limit.

This paper assumes the upper limit for the content to be

cached by an edge server is Um. Thus, a constraint condition

can be obtained, namely
∑S

i=1 xm,i · L ≤ Um.

Based on the above assumption, the optimized model can

be obtained:

Optimization objective:

min
∑M

m=1

∑S

i=1
pm,i · (Y

1
m,i + Y

2
m,i) (2)

Constraint:

∑S

i=1
xm,i · L ≤ Um, ∀cm ∈ C

dm,k = min
n 6=m
{dm,n|xi,n = 1}, ∀cm ∈ C

xm,i ∈ {0, 1}, ∀cm ∈ C, oi ∈ O (3)

IV. SOLUTION OF THE OPTIMIZATION PROBLEM

To solve the optimization problem, this paper should first

predict the future content popularity, Pm,i, and then adopt it as

the input to obtain the predicted content caching matrix, X =

{xm,i|cm ∈ C, oi ∈ O}. Following that, the average trans-

mission delay can be computed using the content caching

matrix predicted by this paper. This paper divides the above

process into two steps. Step 1 is to predict the future content

popularity considering the historical popularity. Step 2 is

to acquire the most suitable content for delivery according

to the predicted value of the future content popularity and

the goal of the optimized model. The flow chart is shown

in Fig. 3 below:

FIGURE 3. Flow chart of content delivery problem solving based on
cooperative caching.

A. CONTENT POPULARITY PREDICTION BASED ON

NEURAL COLLABORATIVE FILTERING

Content popularity refers to the degree of popularity of the

content in a fixed region, which is a very important parameter

to the establishment and design of the edge caching mecha-

nism. Generally, the content popularity obeys the Zipf distri-

bution, which is reflected as the ‘‘80/20 Principle’’, meaning

that 80% of the popularity concentrates in 20% of the content.

The popularity of a content file can be defined as the ratio of

its user access to user access of all files. As a fast-changing

data with a strong punctuality, content popularity is not easy

to predict in the real world. Therefore, this paper assumes that

the popularity within a cooperative cache domain remains

the same within a unit time, which is known as the static

popularity, Pm,i. According to the timeliness of popularity,

the historical data of the static popularity over two contin-

uously units of time are adopted as the training datasets to

build the prediction model, which can obtain the future static

popularity.

Of special note is that the popularity distribution of the total

files in a region can be assumed to obey the Zipf distribution.

However, due to differences of geographical positions of

every independent server, the users show different prefer-

ences for the popular content. As a result, the popularity dis-

tribution of every independent server is usually different and

might not obey the regional content popularity distribution.

Therefore, this paper, in predicting the popularity, should

consider and compute every server separately.

In the process of predicting the popularity, this papermakes

use of machine learning and the neural collaborative filter-

ing [11] to design the content popularity prediction strategy.

Specifically, the neural network-based neural collaborative

filtering (NCF) framework [11] is employed to predict the

probability of each user requesting one certain content. The

NCF model consists of two main components: a general-

ized matrix factorization (GMF) module with linear core,

and a multilayer perceptron (MLP) module with nonlinear

core [12]–[14]. By combining these two kinds of modules,

the model is able to achieve better accuracy performance in
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predicting the user’s preference for the contents. the NCF

model is trained based on history request of users.

In more details, the user-content interaction is modelled by

a multi-layer neural network. The output of each layer is the

input of the next layer. The bottom level of input consists of

two feature vectors that describe the user and the content,

respectively. Above the input layer is the embedding layer,

which is a fully connected layer and maps the sparse feature

representation to a low-dimensional space vector. Then the

results of the embedding layer are fed back to the multi-layer

neural network, which is called a neural collaborative filtering

layer. Anther the NCF layer, the potential feature vectors

of the user and content are mapped into predictive scores.

As long as the predictive score is obtained, the popularity of

each content, i.e., Pm,i, can be calculated by summating the

corresponding score over all the users served by the cache

server m.

The specific algorithm is shown in literature [11]. In that

literature in order to make the convergence model more

flexible, the GMF and MLP are allowed to learn separately

using their respective embedding layers and the last hidden

layers of the two models are connected. This new model

is named NeuMF in this paper. The specific method is as

follows:

In (4), pGu ,p
M
u represent the embedded layer output of user

characteristics in the GMF and MLP, respectively, qGi , q
M
i

represent the embedding layer outputs of the content features

in the GMF and MLP, respectively.

φGMF = pGu ⊗ q
G
i

φMLP

= aL

(

wTL

(

aL−1

(

wTL−1

(

. . . a2

(

wT2

[

pMu
qMi

])

+b2

)

+bL−1

))

+ bL

)

ŷui = σ

(

hT
[

φGMF
φMLP

])

(4)

B. PRE-TRAINING

Since the objective function of NeuMF model is non-

convexity, gradient based optimization of network parameters

can only find local optimal solutions. Studies in [15] have

shown that the initialization process has an important impact

on the convergence and performance of the deep learning

model. Therefore, the initialization parameter can be set near

the global optimal solution instead of using the random ini-

tialization method. So, the global optimal solution can be

directly found by the gradient-based optimization method.

Because the NeuMF model consists of GMF and MLP mod-

els, the GMF and MLP models are used for pre-training.

First, the model parameters of GMF and MLP are randomly

initialized and trained to converge. Then the corresponding

portions of the NeuMF parameters are initialized using above

model parameters. The only adjustment is in the output layer.

The weights of the two models are combined

h←

[

αhGMF

(1− α)hMLP

]

(5)

where hGMF , hMLP represent the parameter results obtained

by pre-training the GMF and MLP models, respectively, and

α is a hyperparameter used to weigh the impact of two pre-

training models on the final result. For the pre-training of

GMF and MLP, the adaptive moment estimation (Adam)

is used, which adapts the learning rate of each parameter

by performing small updates on frequent parameters and

large updates on infrequent parameters. The Adam method

converges faster on both models than the normal SGD and

reduces the burden of adjusting the learning rate during train-

ing. After entering the pre-trained parameters into NeuMF,

SGD instead of Adam is used to optimize the model. Because

Adam needs to save the momentum information to prop-

erly update the parameters. Since NeuMF is initialized with

pre-trained model parameters and no momentum informa-

tion, it is not appropriate to further optimize NeuMF with a

momentum-based approach.

C. PROACTIVE CACHING STRATEGY

In this section, the problem of backhaul link offloading in

microcellular networks (SCNS) is addressed, where proactive

caching plays a critical role. In this paper, the SBS deploys

high-capacity caching devices, but the network has limited

backhaul link capacity. On the basis of the aforementioned

analysis, a proactive caching process is proposed to store

contents according to the predicted popularity until the stor-

age capacity is reached. The SBS stores a more accurate and

popularity prediction result matrix. Each row of the matrix

represents a user, and each column represents a content.

If the user has requested a certain content, the interaction

history between the user and the content is filled. However,

the popularity matrix is highly sparse and partially unknown

in practice. Therefore, the deep learning and collaborative

filtering (CF) method is used and a distributed proactive

caching process is proposed, using correlation of user - con-

tent to infer the probability of the user requests the content.

For the contents which the user has never interacted with,

the probability of interaction is predicted by collaborative

filtering algorithm.

The mobile edge computing will make a judgment on the

load of backhaul link. If the backhaul link is idle, the SBSwill

send a request in turn, and cache the top contents in the cache

order table in advance to achieve the purpose of reducing the

backhaul link load during peak hours.

First, users in the dataset are randomly divided into groups.

Each group represents mobile users in the coverage of one

SBS. According to the above popularity prediction results,

all contents are sorted according to the future requested prob-

ability, and the cache order table of each SBS is obtained.

Note that the users in the mobile edge network has mobility,

the order will be rearranged when the users in the coverage

of the SBS changes. There are M BSs and N users in total.
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TABLE 1. Proactive caching algorithm.

The backhaul bandwidth is set to be Cb. The user requests for

contents come from test set, including F content files. The

size of each content is set as L. The transmission rate is set as

b. If the content delivery latency is below a certain threshold,

then the user’s request is satisfied.

On the contrary, if a user request has been queued for

longer than the threshold time during peak hours, it is con-

sidered lost and no longer transmitted.

D. CONTENT CACHING DELIVERY ALGORITHM BASED ON

GREEDY ALGORITHM

After obtaining the predicted content popularity, this paper

makes use of greedy algorithm to process the predicted pop-

ularity, with the minimum average transmission delay as

the optimization goal for content distribution within every

server. The greedy algorithm is an algorithm which seems to

be the optimal for the time being, so its solution is a local

optimal solution in some sense. According to differences of

the chosen data type and the greedy model, the performance

finally obtained by the greedy algorithm is different.

Define the average transmission delay of the content oi
cached in any server:

Hm,i =

M
∑

l∈C
l 6=m

Pl,i · dl,m · Tl,m · L (6)

According to the idea of the Most Popular Content (MPC),

the content with the highest popularity and the more con-

centrated popularity trend should be cached. Therefore, this

paper ranks the content popularity according to the content

popularity of various servers, and calculates the greedy algo-

rithm of the content whose popularity ranks in a descending

order. Based on the calculation results, which content to be

delivered to which server is decided. When every content is

computed, this paper accounts for the average transmission

delay, Hm,i, which might be brought by the internal storage

of every server, chooses the content caching plan with the

least transmission expense according to the idea of the greedy

algorithm, and judges whether the current server has any

caching space unoccupied. If there is, set its xm,i to be 1m,

and reduce the caching space of the sever by L. If the server

has no caching space unoccupied, then choose the server

with the second minimal delay. The following content can be

handled according to the above logic until the cache space is

fully occupied.

The above greedy algorithm might obtain a local opti-

mal solution; thus, the global optimal solution might not be

obtained. For example, in the above algorithm, the content

cache proceeds from the upper to the lower in sequence.

This means that every content can occupy the position of one

unit of length in the practical cooperative cache domain only,

and that one popular content will be cached in the server of

the cooperative cache domain only. But in fact, the chances

are high that a popular content occupies a high degree of

popularity in different servers. When the server’s caching

space is large, the above greedy algorithm might result in

redundant caching of some content with a low degree of

popularity in some servers. Consequently, the content with a

higher popularity in the server is left not cached, and only

the local optimum is obtained. In the practical sense, the

minimum average transmission delay is not obtained. Instead,

the caching space is wasted for the caching of the content that

is not so popular.

Concerning the limitation of the computing result stated

above, this paper improves the optimum solving to obtain

the global optimum. According to the improved algorithm,

every server is independently computed with the predicted

content popularity as the basis and find out the files with

a high popularity but not cached and the files with a low

popularity but cached. The two kinds of files are compared

to judge whether they can substitute each other.

Define A = {A1,A2,A3, . . . ,AS}, which indicates the

caching of all data in the cooperative cache domain. Where,

Ai denotes the collection of all servers which have cached the

content oi.

Gm(i, l) = 1Hm(i)−1hm(l) (7)

where,

1Hm(i) =

M
∑

s=1
s/∈Ai

Ps,i ·ds,n ·L ·Ts,n −

M
∑

z=1
z/∈Ai
z/∈m

Pz,i ·dz,n ·L ·Tz,n (8)

1h(l) =

M
∑

s=1

Ps,i · L · Ts,0 −

M
∑

z=1
z6=Al

Pz,i · L · Tz,n · dz,n (9)

In (8), 1Hm(i) denotes the altered delay value in the aver-

age transmission delay of the content oi after the files with a

high popularity on the server cm are replaced. In (9), 1hm(l)

denotes the altered delay in the average transmission delay
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of the content ol after the files with a low popularity on the

server cm are replaced. When Gm(i, l) > 0, the replacement

can effectively improve the global optimization of the average

transmission delay. Every server is repeatedly optimized in

this way. It is not until the revenue function Gm(i, l) ≤ 0 that

the optimization comes to an end and the final cooperative

caching content delivery plan is obtained.

V. SIMULATION AND RESULT ANALYSIS

In this section, the performance of the content caching deliv-

ery algorithm – Edge Cooperative Caching – based on the

small base station’s cooperative caching is assessed. In order

to verify the effectiveness of the performance optimization

degree, this paper chooses three algorithms introduced by

Literature [16], including ‘‘Least Frequently Used’’ (LFU),

‘‘Least Recently Used’’ (LRU) and ‘‘Random Replacement’’

(RR), to compare with Edge Cooperative Caching (ECC) and

verify the performance of ECC from the perspective of three

major indexes, namely the content hit rate, average transmis-

sion delay and content cache space utilization, respectively.

A. PARAMETER SETTINGS OF COOPERATIVE CACHING

SYSTEM

In the simulation experiment, the parameters of the sim-

ulation experiment are defined as below according to the

content data requirements in the cooperative cache domain

of the cooperative caching system. Assume that there are

four randomly-distributed small base stations (BS) in the

cooperative cache domain, which are jointly responsible for

all user access in the domain, and one thousand pieces of

content with different degrees of popularity in line with Zipf

distribution are issued in the region. The skewness coefficient

of the Zipf distribution is set to be 0.6, and represents the

concentration of their popularity. The value of very content

is normalized to be L (L=1), and the unit time, 1t , of the

static content popularity is set to be 1h. In other words,

the popularity remains the same within every unit time, 1t .

At the same time, the time interval is divided by every second

of one hour. The user access obeys the Poisson distribution

of the parameter, λ = 5 (indicating that there are five users

visiting the cooperative cache domain visiting every second

on average). In the simulation process of LFU, LRU and

RR, every server conducts independent algorithm computing

and content caching according to their user access. When

there is user access, the requested content can be obtained

from other cooperative cache servers visited by users. Thus,

a cooperative caching system is constituted. In the simulation

experiment, this paper mainly compares the strengths and

weaknesses of three performance indexes of various algo-

rithms under the condition that various algorithms change in

the server caching space of the cooperative cache domain.

B. SIMULATION EXPERIMENTAL RESULTS OF VARIOUS

ALGORITHMS AND RESULT ANALYSIS

In the cooperative caching model, when the server’s

caching space changes, three performance indexes, including

the content cache hit rate (HR), average transmission delay

(ADL) and content cache utilization (CSU), of the edge coop-

erative caching algorithm are measured.

As shown in Fig. 4, as the content caching space enlarges,

the cache hit rate of the four algorithms increases to different

degrees. Due to randomness of RR, and the irrelevance of RR

algorithm characteristics to popularity, the content cache hit

rate of RR increases slower than that of other algorithms. It is

apt to say that RR achieves performance at the sacrifice of

the caching space. As the caching space changes, the content

cache hit rate of LRU is improved by around three folds as

the caching space changes. Comparatively, the content cache

hit rate of LFU and ECC is improved by around 170% and

120%, respectively. Comparatively, the content cache hit rate

improvement of LRU is more significant. As to the reason

behind, LRU can easily cause cache pollution because of the

emergent or periodical access. Comparatively, the counter

caching of LFU can better resolve the cache pollution resulted

from accidental access. ECC, compared with the remain-

ing algorithms, is steadier. When the server’s cache space

reaches 1,000, the content cache hit rate is around 70%,which

improves by 12% and 28% compared with LFU and LRU,

respectively, and by nearly one-fold compared with RR.

FIGURE 4. Performance comparison of content cache hit rate of different
algorithms.

As one observes in Fig. 5, the final average transmission

delay of the four cache algorithms all decreases as the content

cache space increases. This is because, as the cache space

of the cooperative cache server increases, the cooperative

cache server can have more popular content cached therein.

In this way, when the user is visiting the popular content, there

is more popular content that can be directly acquired from

the local cooperative cache domain, which can significantly

reduce the transmission delay brought about by user access.

The average transmission delay performance and the content

cache hit rate performance of the four algorithms are the

same. Compared with other algorithms, the reduction range
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FIGURE 5. Comparison of average transmission delay performance of
different algorithms.

of RR’s average transmission delay is smaller than that of

the rest, thus suggesting a poorer average transmission delay

performance. Likewise, the average transmission delay per-

formance of LFU is also superior to that of LRU. As to ECC,

its performance in reducing the average transmission delay

is outstanding, whose average transmission delay variation

is 53% along with the changes of the cache space, which is

superior to that of LRU and LFU by 47% and 48%, respec-

tively. To sum up, in terms of average transmission delay

performance, ECC outperforms LFU by 19%, LRU by 30%

and RR by 51%. Thus, it can be seen that ECC based on

the base station cooperative cache outperforms a series of

commonly-seen cache elimination algorithms in pursuing the

minimum of the average transmission delay.

Fig. 6 shows the strengths and weaknesses of the four

algorithms in terms of the content cache space utilization.

FIGURE 6. Performance comparison of content cache space utilization of
different algorithms.

It can be seen that the performance of RR is different from that

above, whose content cache space utilization is just behind

that of ECC. This is because RR is free from the influence

of popularity, which caches and stores the content randomly.

Under the condition of excessive concentration of popularity,

RR can perhaps perform favorably when the cache space is

certain. At the same time, Fig. 6 is found with an interesting

phenomenon, that is, the quantity of valid content cached by

LFU in the cache space is around 12% smaller than the quan-

tity of effective content cached by LRU in the cache space.

The content cache hit rate and the average transmission delay

of LFU and LRUmight easily lead to the conclusion that LFU

outperforms LRU in terms of content cache space utilization,

but this is not the actual simulation outcome. According

to the comparison of various commonly-seen algorithms in

Literature [17], LFU can well predict the popular content

during user access to content with a concentrated popularity.

As to LRU, some periodical or accident content access can

easily cause cache pollution, waste of the cache space and

inaccurate grasp of the popular content. The cause of the

situation in Fig. 6 is because the concentrated cache capacity

of the highly popular files is superior to that of LRU in

various servers. Under the assumption that the 1,000 pieces of

content with a relatively concentrated popularity and in line

with the Zipf distribution are distributed, the factors influenc-

ing the average content transmission delay of a cooperative

cache server domain are not limited to how much content

is cached in the cooperative server but also include whether

every server has cached the content with a high concen-

tration of popularity [18]–[20]. In light of the assumption

made above, chances are high that a content with a relatively

high popularity in an integrated cooperative domain might

enjoy a high popularity. Under the condition, the user access

transmission delay is usually decided by files with a high

degree of popularity. Therefore, this paper allows reduction

of the average transmission delay through improvement of

the repeated cache rate of the same popular content. This can

help explain the abnormal performance of LFU and LRU in

content cache utilization, and can further substantiate that,

after the initial content caching matrix is obtained using the

greedy algorithm, the content cache replacement algorithm

should also be employed to further optimize the average

content transmission from the global perspective.

VI. CONCLUSION

The rapid growth of network traffic and data types in the big

data era has posed a tremendous challenge to the traditional

network transmission model. Edge cache emerges as a favor-

able solution to the above problem. The cooperative operation

between the edge cache server and the cloud data center can

create a preferential user experience, effectively improve the

service quality, reduce the redundant network traffic and opti-

mize the network performance. This paper proposes the edge

cooperative caching (ECC) algorithm based on the small base

station cooperative caching. Experimental results suggest that

the cooperative use of the popularity prediction algorithm,

VOLUME 8, 2020 18481



Y. Chen et al.: Mobile Edge Cache Strategy Based on Neural CF

greedy algorithm, and content cache replacement algorithm

based on the neural collaborative filtering can help ECC

outperform the other three algorithms in that the former can

improve the content cache hit rate, reduce the average content

transmission delay, and accommodate to the content cache

space utilization and effective cache of popular content by

various servers.
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