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Mobile Edge Cloud Network Design Optimization
Alberto Ceselli, Marco Premoli, and Stefano Secci, Senior Member, IEEE

Abstract—Major interest is currently given to the integration of
clusters of virtualization servers, also referred to as ‘cloudlets’ or
‘edge clouds’, into the access network to allow higher perfor-
mance and reliability in the access to mobile edge computing
services. We tackle the edge cloud network design problem for
mobile access networks. The model is such that virtual machines
are associated with mobile users and are allocated to cloudlets.
Designing an edge cloud network implies first determining
where to install cloudlet facilities among the available sites,
then assigning sets of access points such as base-stations to
cloudlets, while supporting virtual machine orchestration and
taking into account partial user mobility information, as well
as the satisfaction of service-level agreements. We present link-
path formulations supported by heuristics to compute solutions in
reasonable time. We qualify the advantage in considering mobility
for both users and virtual machines as up to 20% less users not
satisfied in their SLA with little increase of opened facilities. We
compare two VM mobility modes, bulk and live migration, as a
function of mobile cloud service requirements, determining that
a high preference should be given to live migration, while bulk
migrations seems to be a feasible alternative on delay-stringent
tiny-disk services such as augmented reality support, and only
with further relaxation on network constraints.

Index Terms—Mobile Edge Computing, Cloud networking.

I. INTRODUCTION

MOBILE devices are ubiquitous in people’s everyday

life, with a remarkable growth of mobile data traffic

over recent years [2]. As mobile applications become increas-

ingly resource-hungry, the gap between required resources

and those available in mobile devices widens. To bridge this

gap, cloud computing can be used to expand mobile devices

resources. To deal with high latency of distant cloud center, the

concept of cloudlet was introduced in [3] where it is defined

as a trusted, resource-rich computer or cluster of computers

well-connected to the Internet and available for use by nearby

mobile devices. A cloudlet represents a container for virtual

machines (VMs): connected users are associated with VMs

supporting low-latency application offloading use-cases.

Cloudlet concept is expected to be supported by 3-tier

hierarchical network provisioning as presented in [4] and [5].

In this hierarchy the cloudlet is the primal resource for the

augmentation of the mobile device capabilities, while a remote

cloud is used as last available resource, or for delay-tolerant

resource-intensive applications. Telecommunication vendors

and providers show an increasing interest in such deployments,

also referred to as ‘mobile edge computing’ (MEC) solutions

in industrial fora and standardization bodies (e.g. [6], [7]).
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Within this framework, in this paper we focus on the poten-

tial medium-term planning of an edge cloud network in mobile

access networks, which is, to the best of our knowledge,

an untreated problem in the literature. This consists in the

placement of all virtualization infrastructure resources, from

the access points to the cloudlets, together with the assignment

of users to cloudlets. We investigate two design cases: (i) with

a network in a static state and (ii) with the network state

variations in terms of load and service level, caused by user

mobility. In this latter case we include orchestration of virtual

resources, in particular VM orchestration across cloudlets, in

order to re-balance the system. Our contribution is as follows:

• We provide a link-path mixed integer linear programming

formulation including a polynomial number of variables

to represent location and design decisions, and an expo-

nential number of them to encode routing ones.

• Since adaptations of heuristics from the literature are un-

able to produce accurate results, we exploit mathematical

programming techniques, combining column generation

[8], iterative rounding, local search, very large scale

neighborhood and problem reduction to achieve high

quality solutions in reasonable time.

• We bring novel and original insights on the planning

of cloudlets for mobile access networks. By performing

extensive simulations on real 4G cellular network data-

sets from the Île-de-France Orange network, we show the

trade-off that can be achieved by means of the two design

cases and the impact of user mobility on the cloudlet

network: as few as 13 to 26 cloudlets can be planned

for 180 thousands of users while requiring tight delay

guarantees. We show that there is a sensible gain in the

number of users with respected SLA, up to 20%, by

including user and VM mobility in the network planning.

We do also qualify the eligibility of two different VM

mobility strategies, namely VM bulk and live migrations,

for two reference mobile cloud services differing in the

level of required latency and memory characteristics:

augmented-reality and remote desktop.

• We report empirical distributions of the dataset features

in order to allow the reproducibility of our results.

In [1] we provide a preliminary modeling of the mobile

edge cloud network design problem. In this paper we re-

fine the model and we provide a new heuristic including

a dynamic decomposition logic. Furthermore, we present a

more detailed set of results, carrying out a substantially

deeper analysis of policies and practices. The paper is orga-

nized as follows. Sect. II presents the background. Sect. III

presents cloudlet network models and related mathematical

formulations. Sect. V presents the dataset. Sect. VI reports

experimental results and Sect. VII contains brief conclusions.
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Fig. 1: Example of a simplified mobile edge cloud network.

II. BACKGROUND

Benefits of cloudlet usage on users’ QoE are presented

in [9]–[11] where authors compare performances of different

types of applications on different layers of the 3-tier hier-

archy. In [9] authors show that application placement can

significantly impact performance and user experience moving

applications closer to the users. Authors of [10] question, by

quantitative experimental results, benefits from consolidating

computing resources in large data centers when strict latency

constraints are required. Considering multi-hop WiFi net-

works, in [11] authors show that the cloudlet-based approach

always outperforms the cloud-based one when no more than

two wireless hops are used to transfer data, and that up to a

maximum of four hops the cloudlet-based approach is the best

one for most of the instances. There is no binding dependence

on the nature of the wireless link: even if the seminal idea

was to use cloudlet via WiFi, the virtualization architecture is

independent of it. A further survey on researches on cloudlet

based mobile computing is available in [12].

Hardware technologies for the implementation of cloudlets

already exist, thanks to fabrics called ‘micro data centers’

or ‘modular data center’ [13]–[15]. A standardization effort

is sustained by the European Telecommunications Standard-

ization Institute (ETSI) that in [6], [7] provides technical re-

quirements for a deployment of a mobile edge cloud network,

together with use-cases examples such as augmented reality,

Internet-of-Things (IoT) and data caching among others. In

this work we primarily address application VMs rather than

virtual network functions.

A. VM mobility technologies

In Section III.D we deal with the dynamic state of the

network, whose variations generate imbalances and users’

SLA violations. To re-balance the system, we include VM

mobility from cloudlet to cloudlet in the model, considering

three VM mobility technologies at the state of the art:

• VM bulk migration [16]: consists in migrating the whole

VM stack including disk and memory, stopping the VM

for a long period to transfer it.

• VM live migration [17]–[19]: stops the VM only for a

small amount of time required to transfer the most re-

cently used memory, not requiring an entire one-shot disk

transfer, but a permanent disk storage synchronization

among source and destination locations.

• VM replication [20]: consists in a permanent synchro-

nization of both disk storage and memory among source

and destination locations, not requiring the point transfer

neither of the disk nor of the most recently used memory.

We assume VM orchestrations to be performed in a Cloud

Stack platform in a centralized way. Given that the main pur-

pose of our model is the medium-term planning of the mobile

edge cloud network, the inclusion of VM orchestration has

the aim of providing a correct dimensioning of the network.

Hence an actual implementation of such a system is out of

scope of this work, but examples are already present (e.g. in

OpenStack platform [21], [22]).

B. Mobile Edge Cloud Network Topology

Accordingly to the ETSI [6], [7], the distribution of comput-

ing resources into mobile access network should be carefully

designed to take into account infrastructure properties. Mo-

bile access networks could be any form of wireless access

network disposing of a backhauling wireline infrastructure

through which cloudlets can be interconnected. Following the

guidelines in [23]–[26], a broadband access and back-hauling

network, such as a cellular network, can be modeled as a

two-level hierarchical network: access points on the field are

connected to aggregation nodes, which are then connected to

core nodes, as depicted in Fig. 1 (for simplicity, we refer in

the following to access points as APs). The APs could be WiFi

only, cellular only, or a mix of these common mobile access

technologies. Cloudlets can reasonably be placed at either

field, aggregation or core level, with connections between an

AP and its cloudlet potentially crossing twice each level.

Various physical interconnection network topologies be-

tween APs, aggregation nodes and core nodes are commonly

adopted: tree, ring or mesh topologies, as well as intermediate

hybrid topologies. Moreover, with the emergence of 4G, there

is a trend to further mesh back-hauling nodes. A variety of net-

work protocol architectures are typically adopted, from circuit-

switched networks to carrier-grade packet-switched networks.

The common denominator of such architectures is the ability

to create a virtual topology of links directly interconnecting

pairs of nodes at a same level with a guaranteed tunnel

capacity. Nowadays, with the convergence towards packet-

switching carrier-grade solutions at the expense of legacy

circuit-switched approaches, bit-rates for pseudo-cables links

is set to giga-Ethernet granularities (typically 1 or 10 Gbps).

In this framework, we believe it is appropriate to model

the mobile edge cloud network as a superposition of stars

of virtual links for the interconnection of aggregation nodes

to APs and for the interconnection of core nodes to ag-

gregation nodes, even if nodes can have no physical direct

connection. Under the same virtual link provisioning trend,

core nodes can be considered as interconnected to each other

by a full mesh topology of virtual links, as depicted in

Fig. 1. As far as we know, partitioning of traffic from one

AP to multiple aggregation nodes, and from one aggregation
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node to multiple core nodes is not the dominating current

practice in backhauling networks; still, such features would not

change significantly the nature of our modeling and heuristic

described in the next two sections. It is worth noting that

the decisions of associating APs to aggregation nodes and

placing aggregation nodes can be fully compatible with the

current trend of dynamically reprogramming the cellular back-

hauling network [27]. Likewise, another customization could

correspond to the routing re-optimization for a given cloudlet

placement. Moreover, those decisions can also realistically

embed association and placement functions in cloud-based

Evolved Packet Core architectures [28].

III. MOBILE EDGE CLOUD NETWORK MODEL

In the following, we give a formal definition of the cloudlet

design dimensioning problem, and we propose two variants:

• Static planning (SP in the remainder): network status is

considered static in time; neither user mobility nor virtual

machine mobility are taken into account when planning

cloudlet placement, and associations of APs to cloudlets.

• Dynamic planning (DP in the remainder): variations in

the network load during the planning time horizon are

taken into account together with user mobility. Adaptive

VM mobility is included in a generalized way to consider

three different technologies: VM bulk migrations, VM

live migrations and VM replications.

A. Problem statement

Our models finds simultaneously: (i) an optimal network

design, including cloudlet placement and assignment of APs to

cloudlets, and (ii) an optimal routing of the traffic from and to

the cloudlets. Its main aim is to provide strategic insights into

optimal design policies rather than an operational planning.

From a practical perspective, placing a cloudlet at a location

could mean turning on already installed servers, and not

only physically installing new machines. Similarly, changing

AP to cloudlet assignments would in practice correspond to

a re-routing of virtual links over the transport network in-

frastructure, and not physically changing the interconnection.

We consider a solution to be feasible if users’ service level

agreement is respected; optimal feasible solutions minimize a

linear combination of overall installation costs.

Our problem turns out to be hard from both a theoretical

and computational point of view. Theoretically, it is strongly

NP-Hard, generalizing the traditional uncapacitated facility lo-

cation problem and its capacitated and single-source variants.

Computationally, it is on the cutting edge of those currently

under investigation in the facility location literature [29]: state-

of-the-art methods are successful when up to two facility levels

are considered, but in our models routing optimization, latency

bounds and a third location level must be included.

In the following, we introduce the basic models dealing

with network design (in III.B); then we add routing aspects

(in III.C), thereby completing them for the SP variant. Finally,

we discuss how this modeling extends to the DP variant1.

1Complete notation tables for our models and heuristic are included in
Appendix Tables A.I, A.II and A.III in Supplementary Materials.

B. Network design

Input (problem data). We assume that a set of suitable

locations has been identified for hosting network facilities.

Formally, let B be the set of AP locations. Let I , J and K be

the set of sites where aggregation, core nodes and cloudlet can

be installed, resp.. Let also E ⊆ (B × I)∪ (I × J)∪ (J × J)
be the set of feasible links between nodes. Let li, mj , ck be

the fixed cost for activating an aggregation node in i ∈ I , a

core node in j ∈ J and a cloudlet facility in k ∈ K, resp..

Output (decision variables). We introduce two sets of vari-

ables. The first set corresponds to location binary variables:

xi take value 1 if an aggregation node is set in i ∈ I; yj
take value 1 if a core node is set in j ∈ J ; zk take value 1
if a cloudlet is set in k ∈ K. The second set corresponds to

network topology binary variables: ts,i take value 1 if an AP

link is established between an AP s and an aggregation node

i; wi,j and wj,i simultaneously take value 1 if an aggregation

link is established between an aggregation node i and a core

node j; om,n take value 1 if a core link is established between

two core nodes m and n. In order to model already existing

or forbidden links, the corresponding variables can be fixed to

value 1 and 0, resp..

Objective function Since our main purpose is the MEC

network design, the model goal (1) is to minimize installation

costs of all network facilities. We do not include the links

installation costs as we do not take into consideration the

cellular infrastructure dimensioning.

min
∑

i∈I

lixi +
∑

j∈J

mjyj +
∑

k∈K

ckzk (1)

Constraints. A complete MEC network topology results as a

by-product of our model, in terms of arrangement of links.

As specified in Section II.B we model this network as a

superposition of stars: this has to be intended as a topological

rule, which constrains the resulting arrangement of links.

Each AP is connected to a single aggregation node, and each

aggregation node to a single core node (as depicted in Fig. 1),

while a full mesh is built among cores. The following set

of constraints enforce our topological rules to be respected:

each link (i, j) can be used only for one purpose (i.e. AP,

aggregation or core) - (2); aggregation links must be symmetric

- (3); core nodes and cloudlet nodes are also aggregation nodes

- (4) and (5); if (i, j) is an AP link then j is an aggregation

node - (9), while if (i, j) is an aggregation link, then i is an

aggregation node - (10); if (i, j) is an aggregation link, then

either i or j is a core node - (11) - and similarly if (i, j) is

a core link, both i and j are core nodes - (12), conversely

if both i and j are core nodes, (i, j) is a core link - (13),

moreover no loops are considered at core links - (8); each AP

is connected to either itself when chosen as aggregation, or

a different node otherwise - (6) and (14); each aggregation

node has an adjacent aggregation link, thereby connecting to

a core node - (15), which can be the node itself - (7), at

most one aggregation link can be connected to non-core nodes

(yi = 0), while an arbitrary number can be connected to core

ones (yi = 1) - (16).
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ti,j + wi,j + oi,j ≤ 1 ∀(i, j) ∈ E | i 6= j (2)

wi,j = wj,i ∀(i, j) ∈ E (3)

xi ≥ yi ∀i ∈ N (4)

xi ≥ zi ∀i ∈ N (5)

ti,i = xi ∀i ∈ N (6)

wj,j = yj ∀j ∈ N (7)

oi,i = 0 ∀i ∈ N (8)

ti,j ≤ xj ∀(i, j) ∈ E (9)

wi,j ≤ xi ∀(i, j) ∈ E (10)

wi,j ≤ yi + yj ∀(i, j) ∈ E | i 6= j (11)

2 · oi,j ≤ yi + yj ∀(i, j) ∈ E | i 6= j (12)

yi + yj − 1 ≤ oi,j ∀(i, j) ∈ E | i 6= j (13)
∑

i∈N
| j 6=i∧(i,j)∈E

ti,j = 1− xj ∀i ∈ N (14)

∑

j∈N :(i,j)∈E

wi,j ≥ xi ∀i ∈ N (15)

∑

j∈N
| (i,j)∈E∧i 6=j

wi,j ≤ (1− yi) + |I| · yi ∀i ∈ N (16)

C. Static Planning

Input (problem data). Each AP s ∈ B can connect to a

cloudlet located in k ∈ K by a set of paths S̄sk (see paths a,

b, c and d in Fig. 1). Path p ∈ S̄sk can traverse multiple sites

and with j ∈ p we denote that site j is traversed by path p.

For each AP s ∈ B, let δus and δbs be the number of users

connected to s and their overall bandwidth consumption. We

assume that servicing each user requires the activation of one

VM, and therefore δus represents also the number of VMs

needed for AP s. It is worth noting that considering multiple

VMs per user (i.e., a generic Infrastructure as a Service) is

straightforward and can be easily defined; conversely, sharing

a VM by multiple users is not straightforward (and may not be

the most common edge computing service deployment); these

adaptations are out of scope and left to future work.

Let C be the number of VMs that each cloudlet can host.

Let di,j and ui,j be the latency (latency or length are used

interchangeably hereafter) and bandwidth capacity of each link

(i, j) ∈ E. Let U ∈ [0, 1] be the parameter representing

the maximum link utilization (percentage) in the network;

indeed, as a common practice in IP traffic engineering with

non deterministic loads, links need to have a level of over-

provisioning so that they are robust against traffic fluctuations

(due to failures, traffic peaks, etc) and hence the risk of

congestion, which is particularly important for real-time and

interactive services as those considered by MEC [6], [7].

Finally, we consider static and identical SLAs for all

users, defined as the maximum allowed latency a user may

experience, assuming it to be represented by three types of

constraints: (i) maximum sum of link length in a path D̄; (ii)

maximum number of hops in a path H̄ that according to [11]

affects the effectiveness of cloudlets; (iii) maximum distance

allowed between nodes in the network to establish a link d̄. In

Section VI we provide a parametric analysis on these bounds,

showing their influence on network planning decisions.2

Output (decision variables). To model routing decision we

introduce an additional set of binary variables: rs,kp take value

1 if users in AP s ∈ B are served by cloudlet in k ∈ K, and

the corresponding traffic is routed along path p ∈ S̄sk.

Constraints. Feasible paths are those that satisfy SLA latency

requirements defined previously. In order to enforce that only

feasible paths are considered, we replace each set S̄sk with

the following set:

S
sk = {p ∈ S̄

sk :
∑

(i,j)∈p

d(i,j) ≤ D̄ ∧ |p| ≤ H̄

∧ d(i,j) ≤ d̄ ∀(i, j) ∈ p}

(17)

where by |p| we denote the number of links forming path p.

Constraints (18)-(20) impose that each path from AP s ∈ B
to cloudlet k ∈ K, traversing either an aggregation node i ∈ I
or a core node j ∈ J , can be selected only if that network

facility is installed in the corresponding site.

∑

p∈Ssk|i∈p

r
s,k
p ≤ xi ∀s ∈ B, ∀k ∈ K, ∀i ∈ I (18)

∑

p∈Ssk|j∈p

r
s,k
p ≤ yj ∀s ∈ B, ∀k ∈ K, ∀j ∈ J (19)

∑

p∈Ssk

r
s,k
p ≤ zk ∀s ∈ B, ∀k ∈ K (20)

Constraint (21) sets to 1 the number of cloudlets used by a

single AP, as AP-level load-splitting is typically not performed

in backhauling networks. (22) enrich (20) by further imposing

that active cloudlets provide at most C VMs. Constraints (23)

ensure that capacity of link (i, j) is not exceeded.

∑

k∈K

∑

p∈Ss,k

r
s,k
p = 1 ∀s ∈ B (21)

∑

s∈B

∑

p∈Ss,k

δ
u
s r

s,k
p ≤ Czk ∀k ∈ K (22)

∑

s∈B

∑

k∈K

∑

p∈Ss,k

|(i,j)∈p

δ
b
sr

s,k
p ≤ u(i,j)U(wi,j + oi,j + ti,j)

∀(i, j) ∈ E

(23)

Overall, (1) – (23) represent our mobile edge cloud network

model with static planning.

D. Dynamic Planning aware of temporal user & VM mobility

In the second variant of our model, we consider the dynamic

status of the network. As users move during the planning

horizon, they connect to different APs, changing the network

load distribution, with the necessity to re-plan the network

to re-balance the system. Moreover as they move they may

distance themselves from their VM, worsening their QoEs and

violating their SLA. In order to re-balance the system and to

enforce SLA we introduce VMs mobility in our model.

2The formalization of the generalized model that considers multiple SLAs
concurrently is presented in Appendix A.1 in Supplementary Materials.



5

We partition the planning horizon in periods called time-

frames, identified by set T . To consider the changing in the

network load distribution, let δu,ts and δb,ts be the (average)

number of users connected to AP s ∈ B and their overall

bandwidth consumption during time-frame t ∈ T . We consider

the user mobility during the overall given horizon without

making assumptions on the users positions in a specific point

in time, yet we assume that in a single time-frame a user can

connect to a single AP; in particular, let fs′s′′ be the number

of users moving from AP s′ ∈ B to AP s′′ ∈ B during

time horizon T . We allow routing decisions to be changed

dynamically, i.e. we allow an AP s ∈ B to be assigned to

different cloudlets k ∈ K in different time-frames t ∈ T ,

replacing the variable rs,kp with a set of variables rs,k,tp for

each t ∈ T . Constraints (18)-(23) of SP model are extended

as the following DP variant:

∑

p∈Ssk|i∈p

r
s,k,t
p ≤ xi

∀s∈B,∀k∈K
∀i∈I,∀t∈T (24)

∑

p∈Ssk|j∈p

r
s,k,t
p ≤ yj

∀s∈B,∀k∈K
∀j∈J,∀t∈T (25)

∑

p∈Ssk

r
s,k,t
p ≤ zk

∀s∈B,∀k∈K
∀t∈T (26)

∑

k∈K

∑

p∈Ss,k

r
s,k,t
p = 1 ∀s∈B

∀t∈T (27)

∑

s∈B

∑

p∈Ss,k

δ
u,t
s r

s,k,t
p ≤ Cyk

∀k∈K
∀t∈T (28)

∑

s∈B

∑

k∈K

∑

p∈Ss,k

|(i,j)∈p

δ
b,t
s r

s,k,t
p ≤ u(i,j)U(wi,j + oi,j + ti,j)

∀(i, j) ∈ E, ∀t ∈ T

(29)

These are composed by single copies of location variables

and |T | copies of each path variable and constraints (18)-(23)

of SP model. However, the former are not independent one

another, being linked by constraints (24), (25) and (26).

To include in DP model the user mobility, let variables

gk
′k′′

s′s′′ ∈ Z+ represent the amount of users connecting through

the planning horizon to APs s′ ∈ B and s′′ ∈ B served by

cloudlets in sites k′ ∈ K and k′′ ∈ K, resp.. Let also binary

variables vsk take value 1 if AP s ∈ B is assigned to a cloudlet

in k ∈ K in at least one time-frame. Following constraints are

needed to enforce coherence among these additional variables:

∑

p∈Ssk

r
s,k,t
p ≤ vsk

∀s∈B,∀k∈K
∀t∈T (30)

g
k′k′′

s′s′′ ≥ (vs′k′ + vs′′k′′ − 1)fs′s′′
∀s′,s′′∈B

∀k′,k′′∈K
(31)

In the following we define the set of constraints modeling

the three VM mobility technologies presented in Section II.A.

a) VM replication: We model the VM replication option

including explicitly in our model the routing and congestion

assessment arising from cloudlet to cloudlet synchronization

traffic. Let Q̄k′k′′

be the set of paths connecting cloudlet

facilities installed in k′, k′′ ∈ K, through which to route the

synchronization traffic of copies of a VM deployed in the two

cloudlets. We refer to these as synchronization paths. Let D̄Q

and L̄Q be the counterpart of D̄ and H̄ for synchronization

paths, and let:

Q
k′k′′

= {p ∈ Q̄
k′k′′

:
∑

(i,j)∈p

d(i,j) ≤ D̄
Q ∧ |p| ≤ H̄

Q

∧ d(i,j) ≤ d̄ ∀(i, j) ∈ p}

(32)

represent the set of feasible synchronization paths between

k′ and k′′. Then, let continuous variables qk
′k′′t

p ∈ R+ rep-

resent the amount of synchronization traffic between cloudlet

facilities in k′ ∈ K and k′′ ∈ K routed along path p ∈ Qk′k′′

during time-frame t ∈ T . A path p ∈ Qk′k′′

can traverse

multiple sites and with j ∈ p we denote that site j is traversed

by path p. The following constraints enforce coherence among

these additional variables:

∑

p∈Qk′k′′

q
k′k′′t
p ≥

∑

s′,s′′∈B

|s′ 6=s′′

Φ(gk
′,k′′

s′,s′′
) ∀k′,k′′∈K

|k′ 6=k′′ , ∀t ∈ T (33)

∑

p∈Qk′k′′

|i∈p

q
k′k′′t
p ≤ xi

∑

s′,s′′∈B

Φ(fs′,s′′) ∀i∈I,∀k′,k′′∈K
∀t∈T

(34)

∑

p∈Qk′k′′

|j∈p

q
k′k′′t
p ≤ yj

∑

s′,s′′∈B

Φ(fs′,s′′) ∀j∈J,∀k′,k′′∈K
∀t∈T

(35)

and link utilization constraints (29) become:

∑

(s,k)∈
B×K

∑

p∈Ss,k

|(i,j)∈p

r
s,k,t
p +

∑

k′,k′′∈K

|k′ 6=k′′

∑

p∈Qk′k′′

|(i,j)∈p

q
k′,k′′,t
p ≤

≤ u(i,j) · U(wi,j + oi,j + ti,j) ∀(i, j) ∈ E, ∀t ∈ T

(36)

Function Φ : Z+ → R maps the number of moving users

gk
′,k′′

s′,s′′ to the amount of synchronization traffic they induce

among cloudlets. The VM replication variant is therefore

obtained by applying (1)-(16), (24)-(28), (30)-(31), (33)-(36).

b) Bulk and Live VM Migration: The dynamic associ-

ation of users to a nearer cloudlet allows an improvement

in their QoE, with a possible worsening of the status of

the network. Hence the expected number of user migrations

given by variables gk
′k′′

s′s′′ has to be limited by the number of

migrations that the network infrastructure can handle in an

amount of time such that the migration ends before the user

moves further, which we will refer to as useful migrations.

Given the parameters:

• Tw: the temporal window during which the migration of

the VM is useful. This values is strictly related to the

user’s sojourn time in an area Ts, and usually Tw ≪ Ts;

• V : the size of the VM file to migrate;

the number of migrations that a link can manage is given by:

(1− U) · ui,j · Tw

V
(37)

We therefore limit the number of VMs migrations that a

single link can handle, with the following constraints:
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∑

(k′,k′′)
∈K×K

∑

p∈Qk′,k′′

|
(i,j)∈p

Φ
−1
(

qk
′,k′′,t

p

)

≤
(1− U) · ui,j · Tw

V
∀(i,j)∈E
∀t∈T

(38)

where Φ
−1

is the inverse of function Φ found in (33), retrieving

the number of migration routed through link (i, j). Bulk

VM Migration model variant is therefore obtained by the

set of equations (1)-(16), (24)-(31), (33)-(35) and (38), while

Live VM Migration model variant is obtained by the set of

equations (1)-(16), (24)-(28), (30)-(31), (33)-(36) and (38).

IV. HEURISTIC ALGORITHM

As reported in the Introduction, we found adaptations of

heuristics from the literature to be unable to produce accurate

results; this was one of the main motivations to build our

models. Still, our path-based formulations offer great modeling

flexibility and present computational challenges at once. In

particular, the number of feasible paths in sets Ssk and Qk′k′′

grows very fast with the network size. In order to obtain good

feasible solutions in limited computing time, we implemented

two ILP-based heuristics, whose flowcharts are presented in

Fig. 2 and 3, respectively for SP and DP variants. Both

heuristics share the following pre-processing steps (in Fig. 2-

Block (a) and Fig. 3-Block (a)):

1) we fix the location of aggregation nodes, and the as-

signment of APs to them, creating clusters of APs of

limited size and minimum worst-case latency through

the following heuristic: (i) fix a number F of aggregation

nodes to be installed; (ii) fix a maximum number G of

APs connected to each aggregation node; (iii) run a PAM

k-medoids heuristic [30] on the set of APs to choose F
baricentric ones; (iv) use such a solution as initialization

for a G-capacitated F -center alternating heuristic. This

alternating heuristic, in turn, works as follows: (i) fix

the locations of aggregation nodes, and solve an ILP for

assigning the APs to aggregation nodes, forming clusters

where at most G APs are connected, and minimizing

the maximum distance between an AP and the center

of its cluster; (ii) choose as new center for each cluster

the AP minimizing the maximum distance between all

other APs in the cluster; then iterate from (i), until no

more changes in the solution are observed.

2) we fix the xi variables in our models according to the

G-capacitated F -center solution obtained as above, we

fix J = K = {i ∈ I : xi = 1}, and we remove from

each Ssk set all paths in which the AP s is not assigned

to the aggregation device of its cluster. After preliminary

experiments, we fixed F = 50, G = 1.3 · (|B|/F ).

The subsequent steps differ for the SP and DP variants,

hence we present them separately.

a) Static Planning Heuristic Algorithm: The number of

feasible paths that can link APs and cloudlets can be significant

and become intractable with the increase of the nodes in the

network. As second step, in Figure 2-Block (b), we consider

the dynamic generation of these feasible paths and their related

variables rs,kp with a so-called column generation approach

start

(a) G-capacitated F -center alternating
heuristic: fix activated aggregation devices

(b) Dynamic generation of AP-
cloudlet paths: get a fractional solution

(c) Hierarchical rounding: get first feasible solution

(d) Local Search Refinement: improve solution

end

Fig. 2: Structure of the Static Planning algorithm

[8]. Each Ssk is replaced by a restricted subset S̃sk having

tractable size. Then, iteratively, the continuous relaxation of

the model described by (1)–(23) is optimized, but including

S̃sk instead of Ssk, and a search for potentially improving

variables in S̃sk \ Ssk is carried out. Linear programming

theory guarantees that potentially improving variables are

those of negative “reduced cost”: if no such a variable is

found, then the solution is optimal also for the continuous

relaxation of the initial model including the full sets Ssk.

If, instead, variables are found having negative reduced cost,

these are added to the S̃sk, and the process is iterated. In our

case, the search for variables of minimum reduced cost can

be formulated as a constrained shortest path problem of poly-

nomial complexity, and solved with dynamic programming.

Preliminary experiments proved this approach to be efficient

in terms of both computing time and memory usage [31].

As the column generation process leads to a fractional

solution s̄, to obtain an integer feasible one, a hierarchical

rounding on the variables is executed (Fig. 2-Block (c)): (i)

select the location variable f̄ with higher fractional value

in s̄ that was not already fixed, and fix it to value one,

(ii) propagate the rounding, by fixing to zero all variables

that would lead to infeasibility when set to one, (iii) resume

column generation, to dynamically generate new paths given

the new fixed variables, (iv) if a new fractional solution is

found, repeat rounding from step (i); instead, if no feasible

solution can be found after fixing, reset f̄ to value zero,

undo rounding propagation and resume column generation;

if a feasible solution is found, repeat rounding from step (i),

otherwise stop rounding with FAIL. (v) Stop with SUCCESS

whenever f̄ has a fractional value in s̄ that is lower than a

small enough positive threshold ǫ.

Instead of choosing an arbitrary f̄ , we perform rounding

according to the following hierarchy: (i) cloudlet location vari-

ables zk, (ii) core nodes location variables yj , (iii) aggregation

nodes location variables xi, (iv) paths variables rs,kp . That is,

each hierarchical level is explored only if no previous one

contains a fractional variable. Variables related to topological

rules are never rounded explicitly. At the end of the rounding

process, in case of SUCCESS, a MILP problem remains to
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fix them, involving a small number of variables, which can be

easily optimized by general purpose ILP solvers. Nevertheless,

we often observed network topology variables to take integer

values directly after rounding: in these cases we skip this

last MILP optimization process. In case of FAIL, instead, the

solution produced in step (a) is considered. That is, in any

case our static planning algorithm produces a feasible solution,

unless the instance itself admits no feasible one.

Given an integer solution Ŝ, we try to improve it with

an ILP-based very large scale neighborhood search strategy

(Fig. 2-Block (d)), exploring a κ-OPT neighborhood [32]:

(i) we consider only the paths created during the column

generation process and the subsequent hierarchical round-

ing and pricing;

(ii) we include the following local-branching constraint

∑

k∈K|z̄k=1

(1− zk) +
∑

k∈K|z̄k=0

zk ≤ ⌈κ ·
∑

k∈K

z̄k⌉ (39)

where z̄k are the fixed values of corresponding variables

zk in Ŝ, and κ is the fraction of zk variables whose values

are allowed to flip w.r.t. the current solution;

(iii) we solve this restricted model with a general purpose ILP

Solver, setting a limit τ on the execution time.

After preliminary experiments, we set ǫ = 10−3, κ = 30%
and τ = 300 seconds.

b) Dynamic Planning Heuristic Algorithm: Optimizing

the DP variant is even more involved. First, a copy of each

association path rs,k,tp needs to be considered for each time-

frame t. Second, the set of sync-paths variables qk
′,k′′,t

p may

grow combinatorially as well. Third, the number of variables

gk
′,k′′

s′,s′′ and constraints (31) - (33) is polynomial, but too large

to be explicitly considered in practice. Therefore we perform

column generation also on the set of sync-paths variables, and

we relax constraints (31) - (33) as follows:

∑

q∈Qk′,k′′

q
k′,k′′t
p ≥

∑

s′∈B
s′′∈B

Φ(fs′,s′′) · (vs′k′ + vs′′k′′ − 1)
∀k′,k′′∈K

|k′ 6=k′′

∀t∈T

(40)

When integrality conditions are enforced, (40) are equiva-

lent to (31) - (33). Unfortunately, this is not always true when

the continuous relaxations are considered during rounding; we

therefore strengthened them with the following inequalities:

vs′,k′ + vs′′,k′′ ≤ 1 , ∀s′,s′′∈B

k′,k′′∈K
|

fs′,s′′>0

∃ p∈Ss,k

∃ p∈Ss′,k′

6∃ p∈Qk′,k′′

, ∀t ∈ T (41)

vs′,k′ −
∑

k′′∈K |

∃p∈Ss′′,k′′

∃p∈Qk′,k′′

vs′′,k′′ ≤ 0 , ∀s′,s′′∈B

∀k′∈K
|
fs′,s′′>0 ∧

∃p∈Ss′,k′ (42)

∑

t∈T

∑

p∈Ss,k

rs,k,tp ≥ vsk ∀s ∈ B, ∀k ∈ K (43)

start

(a) G-capacitated F -center
alternating heuristic

(b) Dynamic
generation of paths

(c) Hierarchical rounding

(d) Comply
sync-traffic?

(e) Fix active
cloudlets and APs-

cloudlets associations

(f) Dynamic
generation of paths

(g) Hierarchical
rounding

end

No

Yes

1st stage: Relaxed
Synchronization Constraints

2nd stage: Generate
Sync-Paths

Fig. 3: Overall structure of the Dynamic Planning algorithm

where (41) forbid the simultaneous choice of AP-cloudlet

associations that does not allow to establish a feasible syn-

chronization path, (42) states that, for each pair of APs

with expected users migration, at least a pair of AP-cloudlet

associations having a feasible synchronization path has to be

activated, and (43) ensure that AP-cloudlet association variable

vs,k is activated only if a related path variable rs,k,tp is activated

in any time-frame t.
The relaxed model including constraints (1)-(16), (24)-(28),

(30), (34)-(36) and (40)-(43) is therefore used in the DP

heuristic algorithm, whose structure is depicted in Fig. 3.

Steps (b) and (c) of Fig. 3 are analogous to steps (b) and

(c) of Fig. 2, but we perform the dynamic generation of both

feasible associations paths rs,k,tp and synchronization paths

qk
′,k′′,t

p . In both cases we formulated the pricing problem as

a constrained shortest path problem, and we designed ad-hoc

dynamic programming algorithms to solve it. At the end of

the column generation, a fractional solution is available, and

we resort to the hierarchical rounding to obtain an integer

one. The order of rounding is the same as that used for SP

variant. In fact, new continuous variables qk
′,k′′t

p do not need

to be rounded; the new binary variables vs,k are not rounded

explicitly but are fixed by rounding propagation: when a zk
variable is fixed to zero, related vs,k variables are fixed to

zero as well; when an association path variable rs,k,tp is fixed

to one, the related vs,k variable is fixed to one as well.

At the end of the rounding process, we check the compli-

ance with the relaxed constraints on synchronization traffic

(31) and (33). Given the AP-cloudlet associations, defined by

variables vs,k with value 1, the computation of the related

amount of user migration and hence the amount of synchro-

nization traffic to route is straight. If the synchronization

paths created until this step are enough to route this amount

of synchronization traffic, a feasible solution is found and
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the optimization process ends successfully. If not, further

synchronization paths need to be created (Fig. 3-Block (e)): we

fix cloudlets locations variables zk and AP-cloudlet association

variables vs,k, and the related amount of synchronization

traffic is replaced in the right hand sides of constraints (40).

All other variables are unfixed and a new process of dynamic

generation of path variables is executed (Fig. 3-Block (f)):

differently from the previous step, we look only for AP-

cloudlet association paths related to variables vs,k whose value

was fixed to one. At the end of the iterative hierarchical

rounding and column generation process (Fig. 3-Block (g)),

if an integer solution is found, then it is also feasible for the

original problem; if not, our algorithm stops in a FAIL status.

No very large scale local search is performed.

V. DATASET

In order to ground our simulations on real data, we used

a dataset collected by Orange mobile, France, in the frame

of the ABCD project [33]. The dataset comes from network

management tickets, containing UE data exchange information

aggregated in 6 minutes periods. User session is assigned to

the cell identifier of the last used antenna. Data are recorded on

a per-user basis and cover a large metropolitan area network,

including urban, peri-urban and rural areas. We had access to

data of a single 24-hour period, originated by 606 LTE 4G

APs in an area of 931 km2, with a density of ∼ 0.65 APs per

km2. The number of users served by the considered APs is

∼ 180 thousands, generating an overall daily traffic of 11TB.

1) Estimation of Model Parameters: Coefficients δus and δbs
for each base station s ∈ B are drawn by direct queries from

the dataset. Following [34] and [35] we fix costs li = 0.01,

mj = 0.1, and ck = 1, which can be seen as percentages. That

is, we give maximum priority to the minimization of cloudlet

costs, assuming to be the most relevant, and, as suggested in

[34], we estimate the network costs to be as about 10% of the

overall cloud data center costs.

As di,j values we take the euclidean distances between each

pair of APs i, j ∈ B, as the underlying operator physical topol-

ogy is not available to us. We recall that the topological rules

we chose are described in Section III.B and encoded in set of

constraints (2)-(16). We fix the bandwidth capacities u(i,j) of

each link (i, j) ∈ E to 10 Gbps in both hierarchical levels.

Observing the positioning of the APs, we fix the maximum

link length d̄ = 7.5 km, corresponding approximately to half

the radius of the metropolitan region under consideration, and

we limit the paths to four hops. Instead of choosing a particular

setting for C, U and D̄, we perform a parametric analysis on

them, as presented in Sect. VI.

2) User Mobility Patterns: Individual user mobility patterns

cannot be obtained for confidentiality reasons. Furthermore,

allowing migrations even when an AP is visited infrequently

would have a strong negative impact on the overall network

load, without significantly improving user experience. Trying

to cope with this issue we perform binning on data: for

each user we consider his two more frequently visited APs

during the planning horizon. We restrict to consider possible

migrations only between these two locations representing, for

Fig. 4: CDF of traveled

distances of user flights.

Fig. 5: Histogram of nb. of

users covering same flight.

instance, home and work places of users, which, following

[36], [37], dominate human mobility. Technically, this data is

obtained by creating groups of users and obfuscating individ-

ual identifiers. Other options may be considered, in absence

of such data, to estimate mostly visited places [38].

Summarizing, for each pair of APs s′ and s′′ let fs′,s′′ be

the number of users having s′ and s′′ as the most frequently

visited APs; this parameter is general and can be used with any

number of frequently visited locations other than two, without

changes. In order to further characterize such user mobility

patterns, and to allow third parties to reproduce adequately

our findings, we report in Fig. 4 the cumulative distribution

function of the distances traveled by users while migrating. We

observe that about 20% of users do not move at all during the

day and that almost all users move less than the radius of the

considered region (i.e. 15km). Moreover, in Fig. 5, we present

a histogram reporting on the x axis ranges for number of users.

For each range [x′, x′′] on the x axis, a bar represents the

number of pairs of APs s′ and s′′ having fs′,s′′ ∈ [x′, x′′]. We

can conclude that: (i) the majority of paths are covered by

a small number of users, and (ii) about 72% of the possible

pairs of APs never appear as most frequent for any user. That

is, the mobility is concentrated along a few frequently chosen

paths, matching our intuition.

VI. EXPERIMENTAL RESULTS

We implemented our algorithms in C++, using IBM ILOG

CPLEX 12.6 [39] to solve both LP and MILP problems. Our

experiments ran on an Intel Core 2 Duo 3Ghz workstation

equipped with 2GB of RAM. In a preliminary round, we

experimented on a dataset of ten small size instances involving

50 APs adapted from the facility location literature [31]. In

these we could obtain valid lower bounds with our framework,

measuring a worst case gap in terms of number of additional

cloudlets activated in our solutions w.r.t. globally optimal ones.

Our solutions were found to be of high accuracy: no extra

cloudlets were activated in two cases, one extra cloudlet in

seven cases and two extra cloudlets in the remaining case.

That is, it was impossible to improve by removing more than

a single cloudlet in nine over ten cases, even by assuming the

most optimistic scenario. We experimented on the real-world

dataset, considering three cloudlet size cases: tiny cloudlet of

C = 2 racks, car parking cloudlets of C = 4 racks and C = 5
racks, and a 2-4 DC-room cloudlet with C = 40 racks. Using

values from [14], we assume one rack to host up to 1500 VMs.
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TABLE I: Labelling of parametric scenarii

Cloudlet Access Delay Bound

Strict Mid-Level Loose

M
ax

im
u

m
L

in
k

U
ti

li
za

ti
o

n
B

o
u

n
d

Strict S-S S-M S-L

Mid-Level M-S M-M M-L

Loose L-S L-M L-L

Related Reference

Mobile Cloud Services

Augmented

Reality Supp.
Remote

Desktop
Storage Box

Considering bottleneck-free back-hauling networks (U ≤
1), where latency is approximately directly proportional to

the euclidean distances among nodes, we consider three la-

tency bounds D̄: ‘loose’, ‘mid-level’, and ‘strict’ bounds,

corresponding respectively to roughly the urban area radius

(15 km), 4/5 of it, and 2/3 of it. These three levels of cloudlet

access latency are chosen to correspond to three reference

mobile cloud services: delay-tolerant storage box services for

the loose case, delay-sensitive remote desktop services for the

mid-level case, and delay-critical augmented-reality support

services for the strict case. We express these bounds as relative

numbers, since there is no available public information on

absolute cloudlet network latency requirements, despite partial

valuable information can be found at [10], [40].

As already described, the maximum link utilization ( per-

centage) U needs to be kept as low as possible in order to

better master the congestion risk and guarantee the QoE for

real-time and interactive services. We evaluate three levels

for the maximum link utilization bounds: ‘loose’, ‘mid-level’,

and ‘strict’. The stricter they are, the better interactive service

support is expected to be, such as for remote desktop and

augmented reality. Storage box (TCP-based) services are fault

tolerant, given the bulk transfer nature of its data.

In the following, we report extensive results for the SP

variant, then we investigate the parametric scenarii for the

DP model with VM live migration, finally comparing the

approaches in terms of virtual resource migration volume with

VM bulk migration. In the plots, we label every parametric

scenario with a pair of letters representing respectively the

maximum link utilization percentage level U and the cloudlet

access latency level D̄, as in Table I.

A. Analysis of Static Planning solutions

For the static planning case (see Sect. II.B) we consider

the full day average behavior, by averaging the traffic and

number of users at each AP over the full day. Combining in

every possible way capacity, delay and link utilization bound

settings, we get 3 · 3 · 3 = 27 scenarii.

As first fitness measure we consider the number of installed

cloudlets, as reported in Fig. 6. We can observe that:

• w.r.t. cloudlet capacity C, trivially the lowest rack ca-

pacity leads to the largest number of installed cloudlets

(i.e. between 15 and 20 over 50 nodes), with no relevant

changes by strengthening delay and utilization bound.

No substantial difference was found between the 4-rack

and the 40-rack cases, while intuition suggests a lower

Fig. 6: Number of enabled cloudlets.

Fig. 7: Average usage of cloudlets (%).

number of cloudlets for the 40-rack case: this effect is due

to the delay constraints requiring a minimum level of geo-

distribution. Overall, intermediate size facilities (4 racks)

appear as the most appealing option: smaller ones require

to install on average one cloudlet every two aggregation

nodes, which appears as too much, and larger ones do

not reduce the number of required facilities significantly,

leading to resource and space waste.

• w.r.t maximum link utilization, the number of required

cloudlet facilities rapidly grows while moving from mid-

level to strict bound, except for the 2-racks case, likely

due to the lower aggregation of traffic on a more dis-

tributed cloudlet network.

• w.r.t. cloudlet access latency, we cannot see clear trends.

On average, the solutions show little sensitivity on the

value of D̄, suggesting that, if a decision maker decides

to resort to static models unaware of users and VMs

mobility, a location planning could be pursued without

specifically taking into account different services.

As second fitness measure, we consider the average usage

of the enabled cloudlets, whose percentage values are reported

in Fig. 7. Such a value is trivially related to the number of

enabled cloudlets. We can however observe that:

• tiny cloudlets have always a high average usage, with

a slight usage decrease just in the case with strict link

utilization, having a higher number of enable cloudlets;

• 4-rack cloudlets show a behavior similar to tiny ones on

mid-level and loose link utilization (scenarii M-* and L-

*); on the other hand, strict constraints on link utilization

(scenarii S-*) lead to a remarkable decrease of the usage;

• as expected, very big cloudlets always show little average

usage, independently of other parameters choice;

• the setting of cloudlet access latency bounds has very

little impact on the average cloudlet usage.
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Fig. 8: Ratio of users with violated SLA after migration.

As third fitness measure, we consider the percentage of

users whose SLAs are violated after their migration. In details,

given a solution S̄ resulting from SP model, we know by the

parameter fs′,s′′ that users migrate in the planning horizon

between APs s′ and s′′; at the same time, we know, by values

of variables rs,kp in S̄, which are those cloudlets k′ and k′′

servicing s′ and s′′, respectively. If it is possible to construct,

after the optimization process, a feasible synchronization path

between k′ and k′′ respecting constraints (32), then we say that

the SLA of those fs′,s′′ users are respected; otherwise we say

that they are violated. Indeed, if a feasible synchronization

path cannot be established, a user may perceive a latency

during migrations that exceeds his SLA. Our results are

presented in Fig. 8, where we notice that:

• enabling a high number of cloudlets leads to low percent-

age of users with violated SLA: this is the case when the

constraint on maximum link utilization is strict. For the

scenario S-L we have no unsatisfied user for neither the

4-racks nor the 40-racks case;

• conversely, enabling a low number of cloudlets, the

percentage of unsatisfied users increases up to 25%.

We argue the reason of this behavior to be the following: when

the number of enabled cloudlets is high, it is possible to create

a higher number of feasible synchronization paths by taking

advantage of the higher number of direct links between core

nodes. Indeed, the lack of control on the number of unsatisfied

users in SP models is the main motivation to consider dynamic

planning ones, which instead allow to explicitly enforce SLA

to be never violated.

Finally, on the computational efficiency side, all SP in-

stances had a running time of few minutes, with an average

time of 360 sec., a minimum of 56 sec. and a maximum of 821
sec., with no evident differences depending on parameters3.

B. Analysis of Dynamic Planning solutions

In a second round of experiments, we tested the behavior of

the dynamic models (see Sect. III.D) in the case of two time-

frames: from 7 am to 8 pm, and from 8 pm to 7 am. These

approximately represent working and resting hours. We com-

pared through simulations the Bulk and Live VM Migration

3Additional details on execution times are given in the Appendix Fig. A.1
of the Supplementary Materials. In Appendix A.2 of Supplementary Materials
we also report additional results on the cloudlet access path length.

Summary of the parametrization of the reference mobile services can be
found in the Appendix Table A.IV in Supplementary Materials.

cases. As VM replication mobility technology can be seen as a

special case of VM Live Migration with infinitesimal amount

of memory to transfer, we have not considered experiments

using this technology; however results on VM Live Migration

are valid also for VM replication scenario. Moreover we

included in our tests also an SP model as reference, using

data from the working-hours time-frame only (i.e. from 7 am

to 8 pm). This may be seen as a ‘worst case’ planning option,

since it is considering the bottleneck time-frame only; we

remark that still no guarantee is obtained on SLA satisfaction,

even resorting to such a conservative static option.

We restrict the simulations to the six most interesting

scenarii, looking at the SP results. That is, we discard the

2-rack scenarii and the loose cloudlet access latency bound

scenarii: the first proved to yield infeasible instances when the

demand of the sole working-hours is considered; the second

provided less interesting insights in previous analysis.

We set the width of the time window suitable to perform VM

orchestration Tw to 5 hours, which is less than a half of our

time-frames. For the storage synchronization path maximum

length, we set D̄Q = 12.75 km (4/5 of the urban area radius),

i.e. we consider the synchronization as a service that requires

a mid-level latency bound. The size of the disk for augmented-

reality support VMs, requiring strict latency bounds, is 20GB,

reasonably lower than the one for remote desktop VMs, that

is 60GB, requiring mid-level latency bounds. Conversely, the

size of the memory is higher for augmented-reality (8GB) than

for remote desktop (4GB). To preserve tractability we defined

the mapping function Φ of (33) as the following linear function

that considers the synchronization traffic generated by any user

as a percentage φ of the average traffic generated by all users:

Φ(x) = x ·

∑

i∈I

∑

t∈T δui,t
∑

i∈I

∑

t∈T δbi,t
· φ

The percentage φ is characterized by the type of mobile cloud

service: considering remote desktop VMs, only part of the

disk is expected to be modified upon user actions; so φ is set

to 70%. Instead, for augmented-reality support VMs disks are

expected to be smaller and consequently only small volume

need to be synchronized; so φ is set to 30%3.

a) Dynamic Planning with Live Migration.: At first, we

experimented on DP variant with VM Live Migration policy.

Our algorithms could find feasible solutions for 9 over 12 of

these instances. In the results provided hereafter, the missing

solutions are marked with the notation NF, meaning Not

Found. In fact, as our heuristic builds the solution by rounding

one variable at a time with a two-stage process, at every

step there is a chance to perform a rounding that eventually

leads to infeasibility. To improve this behavior a diversifica-

tion mechanism could be implemented. However, since these

missing results do not affect the overall understanding of our

experiments, we did not further investigate in that direction.

As first fitness measure we consider the number of enabled

cloudlets, reported in Fig. 9. We note that, while in the 5-rack

case DP enables a slightly higher number of cloudlets w.r.t.

SP, the models behave similarly in the 40-rack case.

As second fitness measure we consider the expected number

of VM migrations generated by the different planning models;
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Fig. 9: Number of enabled cloudlets.

Fig. 10: Expected fraction of VMs to migrate.

this can be seen as a measure of expected incremental point

traffic on the network. Such a value can be computed from

the values of variables gk
′k′′

s′s′′ that encode the number of users

moving from AP s′ to AP s′′ associated to cloudlets k′ and k′′,
resp.. We remark that in DP gk

′k′′

s′s′′ terms are explicitly included

as variables in the models, while in SP they can be computed

in a post-processing phase, once optimization is over. In order

to obtain normalized fitness values, we compute the following

upper bound on the number of possible VM migrations:

γ =
|T | · (|T | − 1)

2

∑

s′∈B

fs′,s′ + |T |
2
·

∑

s′,s′′∈B|s′ 6=s′′

fs′,s′′

which represents the number of migrations needed if all users

are assigned to a different cloudlet in each time slot, and we

measure fitness as (
∑

k′,k′′∈B,s′,s′′∈K gk
′k′′

s′s′′ )/γ. Our results

are reported in Fig. 10 (as percentage points).

The fraction of migrated VMs for the DP is always higher

than that for the SP, without striking differences among

scenarii. It is crucial to consider, however, that only DP has

an explicit control on the feasibility of these orchestrations.

Therefore, as third fitness measure we consider the percentage

of users with violated SLA after migration (Fig. 11). DP

guarantees by design 0% of users with violated SLA. On

the contrary, SP, which does not give any a-priori guarantee,

shows an experimental behavior similar to that presented in

Fig. 8: tighter constraints on link utilization lead to a higher

number of enabled cloudlets, increasing the possibility to

create synchronization paths through a higher number of direct

links between core nodes, and hence yielding a low fraction

of unsatisfied users. A remarkable scenario is the L-S with

5-rack cloudlets: SP asks to enable 11 cloudlets, requiring

∼18% of all possible VMs migrations, but leaving ∼14% of

users unsatisfied; DP asks to enable, during the working-hours

Fig. 11: Percentage of users with violated SLA.

time-frame, 2 more cloudlets, requires ∼45% of all possible

VMs migrations, but without violating any SLA.

To give an insight on the reason for SLA violations in SP,

we show in Fig. 12 the clusters of APs associated to the same

cloudlet by: (a) SP during working-hours time-frame; (b) DP

during working-hours time-frame, and (c) DP during during

night-time time-frame. Cloudlet locations are identified by a

triangle icon and clusters are identified by different colors.

First, we observe that SP spreads cloudlets more uniformly in

the region, while DP locates the cloudlets in a smaller sub-area

near the center of the territory, limiting the maximum distance

between two cloudlets to satisfy SLA latency bound. Second,

we observe that clusters are not necessarily compact; in fact,

capacity restrictions may forbid an area to be associated to its

nearest cloudlet. DP tends to create a more involved clustering

structure, especially during working-hours. Major changes are

observed in pink and light blue clusters, while the remaining

tend to keep the same structure over the two time frames.

On the computational efficiency side, while SP instances

have execution times in the scale of few minutes, DP instances

have execution times that ranges from few hours to several

days. In particular, while SP cases have an average execution

time of 4 min., with a minimum of 74sec. and a maximum of

17 min., DP cases have and average execution time of ∼ 22
hours, with a minimum of 75 min. and a maximum of ∼ 6
days. Since our model is designed for medium and long term

planning, none of them appears to be critical4.

b) Nearest Cloudlet Association: In order to further

assess the need for considering the association between APs

and cloudlets directly within the planning model, we propose

the following experiment: given the network resulting by our

model we disregard the association of AP to cloudlet, and

instead we associate APs to the nearest cloudlet in terms of

number of hops. For example, in Fig. 12(d) we can see the

cluster of APs associated to the nearest cloudlet using the same

network used in Fig. 12(b) and 12(c).

As a first comparison, in Fig. 13 we show the percentage of

users with violated SLA after a nearest cloudlet association.

As compared with our approach in Fig. 11, we remark that:

(i) nearest cloudlet association produces SLA violations even

with dynamic planning, while our approach guarantees no

4 Details on execution times are given in the Appendix Fig. A.1 in
Supplementary Materials. Analysis on percentage usage of cloudlets and
cumulative distribution function of the cloudlet access path lengths does not
show further insight, hence we left their discussion in Appendices A.3 and
A.4 in Supplementary Materials.
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(a) SP, working hours time (b) DP, working hours time (c) DP, resting hours time (d) Nearest Cloudlet

Fig. 12: Clustering produced by AP-cloudlet associations in L-M scenario with 5-rack cloudlets.

Fig. 13: SLA violation (% users) with nearest cloudlet association

Fig. 14: Cloudlet overuse with nearest cloudlet association

violations; (ii) for almost all static planning scenarii, violations

are worse with nearest cloudlet than with our approach.

As a second comparison, we compute the cloudlet overuse,

i.e. the excess over VM capacity C. In Fig. 14 we present the

overuse amount, noting that with 40-rack cloudlets there is no

overuse, and with tiny 5-rack cloudlets there is a high overuse

for several instances of both SP and DP approaches.

c) Bulk migration results: Our initial attempts to op-

timize DP models with VM Bulk migration produced no

feasible solutions on any instance of the dataset. Indeed, bulk

migration policies clash with the ambition of producing ahead

a careful service and synchronization plan; in other terms, bulk

migrations can be seen as the result of an unexpected need of

synchronization, a human-ordered point operation, rather than

a consolidated and automated operation.

Nevertheless, in order to analyze the impact of Bulk Mi-

grations, we proceeded as follows. We produced solutions of

DP with VM Live Migration, and we computed the maximum

size of a VM file that the network could manage to transfer

without violating user SLA. Such a value is unfortunately not

directly available after optimizing DP Live Migration models;

on the contrary, the problem of finding it can be proved to be

NP-Hard. Therefore, we performed the following simplifying

assumptions: (i) cloudlets located in aggregation nodes are

moved to the corresponding core nodes; (ii) synchronization

paths are allowed for an arbitrary number of hops and arbitrary

length - that is, synchronization is performed among core

nodes only, and only maximum single-link length constraints

and single-link latency bounds are kept. Assumption (i) is

particularly mild, as any cloudlet placed at aggregation level

would represent a bottleneck of the whole network.

The problem of finding the largest file size Γ turns out to

be a multicommodity-flow problem modeled as follows:

max Γ (44)

s.t.
∑

k′,k′′∈K

f
k′,k′′

i,j ≤ (1− U) · u · Tw , ∀(i, j) ∈ E
J

(45)

∑

j∈J

f
k′,k′′

i,j −
∑

j∈J

f
k′,k′′

j,i =











f̄k′k′′ · Γ if i = k′

0 if i 6= k′ ∧ i 6= k′′

−f̄k′k′′ · Γ if i = k′′

∀(k′,k′′)∈K
∀i∈J

(46)

f
k′,k′′

i,j = 0 , ∀(i, j) ∈ E
J | d(i.j) ≥ d̄ (47)

f
k′,k′′

i,j ≥ 0 (48)

Let: EJ be the set of links between core nodes; f̄k′k′′ be the

fixed number of VMs to migrate between cloudlets k′ and k′′;

and fk′,k′′

i,j be non-negative continuous variables representing

the number of VMs to migrate from k′ to k′′ and whose

migration path traverses link (i, j). Inequalities (47) and (45)

model single-link length and latency bounds, resp.. Inequalities

(46) are flow conservation constraints. That is, model (44)–

(48) is a LP that can be optimized very efficiently.

For each 5-rack cloudlets case where we obtained a feasible

solution in the VM Live Migration model, we run this model

with a parametric analysis on the link length threshold d̄:

starting from the value used in DP experiments, we decreased

it stepwise, until the problem became infeasible.

Our results are collected in Fig. 15. Three different features

of each solution are reported: (i) the optimal Γ value, i.e. the

maximum VM file size that the network can afford; (ii) the av-

erage number of hops of the generated synchronization paths;
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and (iii) the average length of the generated synchronization

paths. Each chart contains a dashed black line, representing

the required standard for synchronization paths. These are 3

hops, maximum total length of 12Km and either a 28GB
file (8GB memory and 20GB disk) for the augmented reality

service or a 64GB file (4GB memory and 60GB disk) for

remote desktop. That is, fully feasible solutions would have

values above the dashed line in the leftmost chart, and below it

in the central and rightmost ones: it is easy to check that in no

case it was possible to find one of them. Matching intuition,

using high allowed link length values, one can move very

large VM files, at the price of generating highly infeasible

synchronization paths. We can further note that:

• for augmented reality reference service, using the total

link length we can route very big-size VMs (almost 3

times the desired size, see Fig. 15(a)), but with highly

infeasible paths (almost 3 times more hops than expected,

see Fig. 15(b), and 5 times longer paths, see Fig. 15(c)).

However a reasonable trade-off can be reached using 75%

of the maximum link length: in this case we can route a

29GB VM file, with an average number of hops of 5 and

an average path length that is 50% above the threshold;

• for remote desktop reference service we were not able

to route the expected VM file size (see Fig. 15(d)): a

maximum file size of 29GB can be routed, and still

with violations in terms of average number of hops and

average paths length. No improvement is achieved by

lowering the allowed link length. Moreover using less

than 80% of the link length already leads to infeasibility.

Summarizing, Bulk Migration seems to be a feasible al-

ternative to Live Migration on Augmented Reality reference

services, where the size of synchronization files is still limited;

in fact solutions can be found, violating latency and maximum

hop constraints only slightly. On the contrary, on Remote

Desktop reference services, Bulk Migration does not appear

as a viable option. In either case, matching DP models with

VM Live Migration proves to be the most appealing option.

VII. CONCLUSION

We provided for the first time at the state of the art a

comprehensive mobile edge cloud network design framework

for mobile access metropolitan area networks. We formally

defined the problem, including two planning model variations:

(i) considering a static status of the network, unaware of

variations during the planning horizon, and (ii) considering

a dynamic network, including load variations and mobility of

users and virtual machines, encoding three different virtual

machine mobility technologies.

We compared the different planning options extensively for

scenarii built over real cellular network datasets, differentiating

between different traffic engineering and performance goals

for reference mobile cloud services, analyzing: (i) the use of

network facilities resources, i.e. number of enabled cloudlets,

usage of cloudlet resources, migrated volume and (ii) the

compliance with users’ SLA. As conclusion we can state that:

• while we guarantee full compliance with users’ SLA

considering users mobility and dynamic variations of the

network, their exclusion from the modeling leads to the

infringement of SLA for up to 20% of users;

• the increase of use of network resources given by the

consideration of users mobility is limited to at most 5

more enabled cloudlet for serving 600 APs, for the Paris

metropolitan area network use-case (on real traffic logs);

• the simultaneous consideration of the design of the net-

work, the association between APs and cloudlets and the

routing is needed to keep compliance with the limited

resource and users’ SLA: decoupling these design deci-

sions using trivial heuristics leads to SLA infringement

for up to 27% of users and in cloudlet capacity over-use;

• comparing VM Live Migration and VM Bulk Migration

technologies, the former has proved eligible for the use

both with delay-critical and delay-sensitive mobile cloud

services, while the latter constantly violates limits on

network resources and seems to be a feasible alternative

only when the size of VM files to synchronize is small.

We believe the provided insights can stimulate further re-

searches in the rising research field of mobile cloud network-

ing and mobile edge computing, especially in the field of

online routing and cloud migration policies as outlined in [27],

[41]. As a future work, it can be interesting to address the

problem of online management of multiple VMs, application

VMs and network function VMs, using multiple, possibly pre-

installed, cloudlet facilities.
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sity of Milano (Università Degli Studi di Milano),
Department of Computer Science, since 2014. He
obtained a master degree in Computer Science in
2013 from the same university. In 2014, he was
research engineer at LIP6, UPMC, France, and vis-
iting researcher at Tsinghua University, China. His
research interests are about optimization in telecom-
munication networks and mobile cloud computing.

Stefano Secci is an Associate Professor at the
University Pierre and Marie Curie (UPMC - Paris
VI, Sorbonne Universites), since 2010. His works
mostly cover network optimization, protocol design,
Internet routing and traffic engineering. His current
research interests are about Internet resiliency and
Cloud networking. Website: http://lip6.fr/Stefano.
Secci.

http://www.myoonet.com
https://wiki.openstack.org/wiki/Tacker
https://wiki.openstack.org/wiki/Tacker
https://wiki.openstack.org/wiki/Nova
https://wiki.openstack.org/wiki/Nova
http://abcd.lip6.fr
http://research.microsoft.com/en-us/um/people/bahl/Present/Bahl_keynote_mobile_gaming_2012.pdf
http://research.microsoft.com/en-us/um/people/bahl/Present/Bahl_keynote_mobile_gaming_2012.pdf
http://www.di.unimi.it/ceselli
http://www.di.unimi.it/ceselli
http://lip6.fr/Stefano.Secci
http://lip6.fr/Stefano.Secci

	Introduction
	Background
	VM mobility technologies
	Mobile Edge Cloud Network Topology

	Mobile Edge Cloud Network Model
	Problem statement
	Network design
	Static Planning
	Dynamic Planning aware of temporal user & VM mobility

	Heuristic Algorithm
	Dataset
	Estimation of Model Parameters
	User Mobility Patterns


	Experimental Results
	Analysis of Static Planning solutions
	Analysis of Dynamic Planning solutions

	Conclusion
	References
	Biographies
	Alberto Ceselli
	Marco Premoli
	Stefano Secci


