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ABSTRACT Considered as a key technology in 5G networks, mobile edge computing (MEC) can sup-

port intensive computation for energy-constrained and computation-limited mobile users (MUs) through

offloading various computation and service functions to the edge of mobile networks. In addition to MEC,

wireless heterogeneous networks will play an important role in providing high transmission capacity for

MUs in 5G, where wireless backhaul is a cost-effective and viable solution to solve the expensive backhaul

deployment issue. In this paper, we consider a setting, where MUs can offload their computations to the

MEC server through a small cell base station (SBS), the SBS connects to the macro BS through a wireless

backhaul, and computation resource at the MEC server is shared among offloadingMUs. First, we formulate

a joint optimization problem with the goal of minimizing the system-wide computation overhead. This is

a mixed-integer problem and hard to derive the optimal solution. To solve this problem, we propose to

decompose it into two subproblems, namely the offloading decision subproblem and the joint backhaul

bandwidth and computation resource allocation subproblem. An algorithm, namely JOBCA, is proposed to

obtain a feasible solution to the original problem by solving two subproblems iteratively. Finally, numerical

results are conducted to verify the performance improvement of the proposed algorithm over two baseline

algorithms and the close performance of the proposed algorithm compared with the centralized exhaustive

search.

INDEX TERMS Computation offloading, heterogeneous networks, mobile edge computing, resource

allocation, wireless backhaul.

I. INTRODUCTION

To accommodate the ever-increasing mobile traffic volume

and offload the overloaded traffic fromMBSs, a large number

of low-cost and low-power small cell base stations (SBSs)

have been deployed [1]. In such heterogeneous networks

(HetNets), an important question is how to forward and

receive massive traffic from SBSs to MBSs and over the

core network, respectively [2]. Moreover, backhaul deploy-

ment for small cells can be based on the wired and wireless

backhauling solutions [3], [4]. Choosing these backhauling

solutions would depend on different factors, such as, the cost

of implementing backhaul connections, traffic load intensity,

latency, and service requirements of MUs. As small cells

are densely deployed in 5G networks, deploying all small

cells with wired backhaul would not be a feasible and cost-

effective solution due to fiber backhaul link installation obsta-

cles. This motivates the adoption of wireless backhaul for

small cells so as to enable small cells receiving and sending

data traffic to MBSs in a wireless fashion [4].

With the proliferation and popularity of mobile devices,

such as, smart phones, tablets, virtual reality glass, new

computation-intensive and energy-hungry applications are

constantly emerging (e.g., real-time online gaming, virtual

reality, natural language processing, and ultra-high-definition

video streaming). However, since mobile devices are often

equipped with low-capacity battery and limited-computation

capability, they may not run many of these applications effi-

ciently and become a bottleneck for the future development of
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mobile applications. One of the possible solutions is enabling

mobile devices to offload their intensive computation tasks to

the remote cloud center, which has high computational capa-

bility and large storage capacity [5]. Nevertheless, existing

mobile cloud computing faces various challenges including

high latency due to the long propagation distance frommobile

devices to the remote cloud center, low scalability, and high

burden on fronthaul links due to the centralized deployment

of the cloud center. To address the drawbacks of mobile cloud

computing, mobile edge computing (MEC) has been pro-

posed and developed by the European Telecommunications

Standards Institute (ETSI) to ‘‘offer application developers

and content providers cloud-computing capabilities and an IT

service environment at the edge of the network’’ [6]. The key

idea behind the MEC concept is to move the cloud services,

resources, and functions to the network edges. As opposed

to mobile cloud computing, MEC is able to achieve lower

latency and higher reliability and energy efficiency [7], [8],

which is therefore suitable for ultra-reliable and low-latency

applications in the emerging 5G networks.

A similar concept to the MEC is the fog computing, which

has been introduced by Cisco in 2012 as a supplement to

mobile cloud computing. MEC and Fog have some com-

mon characteristics. First, both MEC and Fog are able to

provide low latency and location awareness to the end users

at the network edges. In addition, MEC and Fog are usu-

ally distributed over widespread geographic areas instead of

the centralized implementation as in the cloud radio access

network and mobile cloud computing [8]. Finally, due to

close proximity to the end users, both Fog and MEC are

suitable for latency-sensitive applications. However, there are

two significant differences between MEC and Fog. The first

difference is that the fog computing was developed by Cisco

in 2012whileMECwas introduced by ETSI in 2014. Another

important difference is that fog nodes are not integrated to the

mobile networks and the fog computing is highly favoured by

the service providers. However, MEC servers are deployed

by the network operators as a part of the mobile networks

and the MEC is highly favoured by the telecoms service

providers and/or the telecoms infrastructure providers, which

would have their own backbone and radio networks. Since the

bandwidth resource allocation of wireless backhaul is taken

into consideration, the proposed design in our current work is

more suitable for MEC networks.

Due to the great potentials of HetNets and MEC, many

research studies have been conducted for wireless back-

haul [2]–[4], [9]–[13] and mobile edge computing [7], [8],

[14]–[22]. Among major issues in mobile edge computing,

computation offloading is of central importance. However,

computation offloading may incur additional overhead in

terms of energy consumption and latency, e.g., the local

execution only suffers from the locally processing delay

whereas the remote execution latency includes the trans-

mission delay of the incurred data from mobile users to

the MEC server, the remotely processing delay at the MEC

server, and the response delay required by the MEC server

to send back the result to the users [20], [22]. In the pres-

ence of multiple users, the MEC server must be able to

simultaneously execute multiple computation tasks and the

scarce wireless bandwidth needs to be shared amongmultiple

users. Compared to the resourceful cloud, the MEC server

usually has finite resources and would not be able to meet all

users’ computation requirements. As a consequence, the joint

optimization of offloading decisions and resource allocation

is an important research problem in MEC systems to improve

the network performance. Even though there are numerous

studies on computation offloading for MEC systems, afore-

mentioned works a) generally assume that small cells are

connected with macro cells by wired backhaul such as fiber

and optical links, b) have not studied the problem of joint

backhaul and access bandwidth allocation, and c) do not

take the offloading time over wireless backhaul link into

consideration. In fact, existing studies on MEC networks

have not imposed any resource constraints on the wireless

backhaul links. In practice, such wireless backhaul con-

straints exist in wireless MEC HetNets and the backhaul link

capacities strongly impact the offloading decisions. While

the wireless backhaul bandwidth allocation problem has been

studied before to optimize energy efficiency [12] and spectral

efficiency [4], [10] in HetNets, we are not aware of any work

that addresses the optimization of computation offloading

and resource (communication and computation) allocation

in MEC systems with wireless backhaul consideration.

The main contribution of this paper is to introduce a novel

framework for joint computation offloading and resource

allocation in MEC networks with wireless backhaul. The

important factors, such as offloading decisions, computation

resource, and bandwidth spectrum allocation, are jointly con-

sidered. Here, computation offloading pertains to finding the

offloading decisions for users and resource allocation relates

to the computation resource allocation at the MEC server

and bandwidth resource sharing between the wireless access

transmission and wireless backhaul transmission. To the best

of our knowledge, this work is the first attempt to investi-

gate the joint computation offloading decisions and resource

allocation problem with wireless backhaul in the mobile

edge computing system. In a nutshell, the key features and

contributions of our proposed design can be summarized as

follows:

• We formulate a joint optimization problem of offloading

decision, wireless backhaul bandwidth partitioning, and

computation resource allocation, which has not been

studied before. An MEC system with an MBS, an SBS,

and multiple MUs is studied, where wireless backhaul

is used to establish the connection between the SBS

and MBS (MEC server), available spectrum is shared

between the access links, i.e., between MUs and SBS,

and the wireless backhaul transmission, i.e., between

SBS and MBS/MEC server. The formulated optimiza-

tion problem aims to minimize the system-wide com-

putation overhead subject to constraints on offloading

decision, computation resource at the MEC server,
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and bandwidth allocation. This is a mixed integer and

NP-Hard optimization problem, which is hard to obtain

the global centralized optimal solution.

• To solve the underlying optimization problem, we devise

a suboptimal algorithm by decomposing the original

problem into two subproblems: the first one opti-

mizes the computation offloading decision while the

other optimizes the backhaul bandwidth partitioning

and computation resource allocation, which is further

decomposed into subproblems of backhaul bandwidth

allocation and computation resource allocation at the

MEC server. Then, we solve these subproblems indi-

vidually and propose an iterative algorithm, namely

JOBCA, to achieve the solution to the original problem.

• Our simulation results confirm that our proposed algo-

rithm can achieve better performance in comparison

with two baseline schemes in terms of the percent-

age of offloading users and system-wide computation

overhead, and has similar performance with that of the

exhaustive search (i.e., there is a small optimality gap).

The rest of our paper is organized as follows. In Section II,

we briefly introduce the background in mobile edge comput-

ing and wireless backhaul in 5G networks, and summarize

related studies on computation offloading and wireless back-

haul. In Section III, we consider a network model and for-

mulate the considered optimization problem. The proposed

algorithm is described in Section IV. Section V discusses

our proposed algorithm in ultra-dense networks (UDNs)

with inter-cell interference and with partial computation

offloading, and briefly considers deep reinforcement learning

(DRL) for computation offloading in a dynamic MEC system

with wireless backhaul. We provide simulation results in

Section VI while concluding the paper and providing some

interesting future directions in Section VII.

II. BACKGROUND AND RELATED WORK

A. MOBILE EDGE COMPUTING

The development of mobile edge computing is based

on different related technologies including mobile cloud

computing [5], private cloud [23], cloudlet [24], and fog

computing [25]. The key objective design of mobile edge

computing is to distribute cloud contents, services, and

resources to mobile devices in a closer proximity. According

to the ETSI white paper [26], mobile edge computing can

be characterized by some features, namely on-premises,

proximity, lower latency, location awareness, and network

context information. These features can be shortly explained,

as follows:

• On-premises: edge computing can operate indepen-

dently from the rest of the network and has access to

local resources.

• Proximity: the edge is located closely to mobile devices

and it is able to access mobile devices directly.

• Lower latency: thanks to the short distance to

mobile devices, edge computing can achieve relatively

low latency, which can efficiently support emerging

latency-critical applications such as autonomous driv-

ing, virtual sports, and real-time online gaming.

• Location awareness: due to close proximity, the MEC

system can determine locations of mobile devices by

requesting low-level signaling information.

• Network context information: being able to access to

local information and close to mobile devices, the MEC

system can run applications and services with real-

time network information, e.g., cell load and subscriber

location.

Over the last few years, many research studies have been

conducted to realize enormous potentials of mobile edge

computing in different network scenarios. Three examples are

provided in the following as demonstration. Firstly, in order

to meet critical requirements of ultra-reliable and low-latency

applications in 5G networks, authors in [27] and [28] con-

sidered the joint problem of the latency and reliability based

computation offloading optimization in MEC systems. Sec-

ondly, it is forecast that there will be billions of Internet of

Things (IoT) devices in 5G networks, where each IoT device

is limited in storage and computation resources. By offload-

ing computations to the MEC servers, IoT devices can pro-

long their battery life and reduce their energy consump-

tion [7]. Thirdly, it can be expected that edge servers will

be densely deployed in 5G, where each server is equipped

with an energy-limited battery. Therefore, energy harvesting

based MEC systems are promising, where edge servers and

mobile devices are powered by harvesting energy from exter-

nal sources, e.g., solar radiation and wind energy [29].

By offloading computations to the MEC servers, MUs are

able to exploit the rich computation resource from the edge

servers and relieve their limitations on storage, computing,

and computation. Over the past few years, a number of studies

have been carried out to address the computation offload-

ing, e.g., [7], [8], [14]–[19]. According to recent surveys

[7], [8], there are generally two mains types of computation

offloading: binary offloading and partial offloading. In the

binary offloading, as considered in our paper, a computation

task cannot be partitioned into sub-tasks and the whole task

must be executed either locally at the MU or remotely at

the MEC server. Whereas, in partial offloading, a task can

be divided into sub-tasks, which can be executed at different

MEC servers [7]. Chen et al. [14] showed that the prob-

lem of finding the maximum number of offloading users is

NP-Hard and the authors adopted a game-theoretic approach

to find the optimal offloading decision in a distributed man-

ner. The authors in [15] and [16] considered the dynamic

voltage scaling technique for computation offloading under

different design objectives and scenarios, e.g., the offloading

ratio for local and remote computing in a single-task MEC

system [15] and the offloading decision for one MU with

multiple tasks [16].

A joint computation offloading and interference man-

agement framework in HetNets was proposed in [17].

Lyu et al. [18] and Pham et al. [20] studied problems of trans-

mit power and offloading decision for MUs and computation
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resource at the single MEC server and multiple MEC servers,

respectively. Using the submodular optimization, a heuristic

semi-distributed algorithm was proposed in [18], and match-

ing theory was utilized to devise a decentralized computation

offloading scheme in [20]. Motivated by the fact that existing

computation offloading frameworks only take resources of

MUs and MEC servers into consideration, Guo and Liu [19]

proposed an architecture that supports the coexistence of the

centralized cloud computing center and distributed mobile

edge computing servers. In addition, the authors proposed

three collaborative offloading solutions, where each compu-

tation task can be either executed locally or offloaded to the

edge and centralized cloud center for execution.

B. WIRELESS BACKHAUL

To fulfill key requirements of the 5G networks (e.g.,

1000 times higher data rate, sub-millisecond latency, and

10 times higher energy efficiency), dense deployment of

small cells will be one of the key solutions. According to [2]

and [3], one fundamental question is how to design efficient

backhaul solutions with capability to forward and receive

massive traffic from/to small cell users. With the increasing

network densification, implementing wired backhaul for a

great number of small cells would not be affordable or even

feasible. The reasons for this are as follows:

• Althoughwired backhaul approaches can provide higher

reliability and data rate compared with wireless back-

haul solutions, it is costly to implement wired back-

haul for all small cells and time-consuming to deploy

connections for a large number of small cells [2], [3].

In addition, deployment of wired backhaul depends on

various factors such as the location of small cells, quality

of service (QoS) requirements of MUs.

• Different frequency bands have been proposed for wire-

less backhaul [3], [30], such as cellular frequency band,

millimeter wave (mmWave) band, sub-6 GHz band,

satellite frequency band, and TV white space band.

Therefore, wireless backhauling provides a practi-

cal solution for dense small cells in the emerging

5G networks.

• Providing wireless access to rural/remote areas and

some urban areas requires to carefully consider the

deployment cost [31]. In such scenarios, wireless back-

haul is a practical and affordable solution, which can

simplify the deployment and drive down the mainte-

nance cost.

• Besides the improvements in data rate, reliability,

and latency of communication, the emerging 5G net-

works will better support emergency services, which

have the stringent requirements on response time [32].

Nevertheless, in HetNets with all wired backhaul links,

broken wired backhaul may not be recovered instantly;

therefore, emergency services can be severely impacted

due to the slow network recovery and low reliabil-

ity [33]. Deployment of small cells with wireless back-

haul can enable to mitigate the aforementioned issue.

Recently, research on various issues related to wireless

backhaul for HetNets has received enormous attention from

the communication community. In [4], a joint optimiza-

tion problem of transmit beamforming, power allocation,

and bandwidth partitioning in HetNets was considered. The

authors studied the reverse time division duplexing (RTDD)

system, which is to calibrate the transmission of small cells

and a macro cell in two consecutive time slots, and proposed

to partition the bandwidth for two consecutive time slots

using two separate partitioning factors. The user association

problem for wireless networks with wireless backhaul was

studied in [10] and [13]. Liu et al. [10] considered a massive

multiple-input multiple-output HetNet, where each MU can

associate with either a pico cell or the macro cell, and this

work jointly optimized the association vector and bandwidth

allocation factor. A joint resource allocation and user asso-

ciation problem with backhaul constraints was considered

for hybrid-energy-powered HetNets, where the base station

can be powered by the traditional grid, renewable energy

sources, or both. The energy efficiency of HetNets with wire-

less backhaul was considered in [9], [11], and [12]. Utilizing

the RTDD as in [4], the authors in [9] supposed that the

bandwidth is equally partitioned for wireless access/backhaul

communication and the work optimized a new metric, called

access energy efficiency, in which due to the consideration

of wireless backhaul, the adaptive decoding power at SBSs

are taken into consideration. A holistic approach to energy

efficiency optimization was studied in [11], where both the

access and backhaul transmissions are considered. By jointly

optimizing the transmit power of SBSs and unified bandwidth

partitioning factor, Zhang et al. [12] investigated the energy

efficiency maximization problem under constraints of back-

haul capacity and user QoS requirements.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. NETWORK MODEL

We consider a network setting as illustrated in Fig. 1, where

a macro cell with one MBS is overlaid by one small cell

(with one SBS), and N MUs are randomly positioned in and

associated with the SBS.We assume that the small cell shares

the same spectrum with the macro cell and the MBS is col-

located with an MEC server to provide computation services

to MUs. In this work, the wireless access transmission refers

to the transmission between MUs and the SBS, whereas the

wireless backhaul transmission refers to the communication

between the SBS and MBS. In addition, we assume that α

is the fraction of total available bandwidth allocated for the

wireless access transmission, i.e., (1 − α) fraction of band-

width is allocated for the wireless backhaul transmission.

To enable tractable analysis, we assume that computation

offloading through the SBS can be realized at the beginning

of each offloading period [34]. Latency-tolerant applications

(e.g., natural language processing and face recognition) are

considered in our work, where the offloading period is within

several seconds [35]. This assumption could ensure that the

offloading period is at the shorter timescale than that of the
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FIGURE 1. The model for multiple MUs, one SAP, and one MBS.

network dynamics and UEmobility, and the computation task

can be accomplished within the offloading period [34], [36].

B. COMMUNICATION MODEL

We consider a quasi-static network scenario, where MUs’

locations remain unchanged during the computation offload-

ing period but they can change locations over different

periods.We assume that differentMUs use different subchan-

nels so that intra-cell interference is eliminated. Moreover,

the inter-cell interference is ignored due to orthogonal band-

width allocation over the cells and/or wall penetration loss

and low transmit power of SBSs, especially when small cells

are utilized in sparse wireless networks and the interference

received from adjacent small cells is negligible.

Denote by pn and hn as the fixed transmit power of MU n

and the channel gain between MU n and the SBS, respec-

tively. The signal-to-noise ratio of MU n is expressed by

γn = pnhn/n0, where n0 is the additive white Gaussian noise

(AWGN) power. Accordingly, the transmission rate between

MU n and the SBS is given by rn = α
Noff

W log2 (1 + γn) ,

whereNoff is the number of offloadingMUs andW is the sys-

tem bandwidth (i.e., we assume equal bandwidth allocation

for different MUs in each cell). Similarly, the transmission

rate of the wireless backhaul from the SBS to MBS can be

written as Rbh = (1 − α)W log2 (1 + P0h0/n0), where P0 is

the fixed transmit power of the SBS and h0 is the channel gain

between the SBS and MBS.

C. COMPUTATION MODEL

Each MU n has a computation task In = {Dn,Cn}, where

Dn is the computation input data size (in bits) and Cn is

the number of CPU cycles required to accomplish the task,

i.e., computation workload/density. Each computation task

can be executed either locally or remotely in the MEC server.

For local computing resource, we denote f ln as the com-

putational capability (in CPU cycles per second) of MU n,

where the superscript l stands for local. We consider a het-

erogeneous computing scenario where MUs may have dif-

ferent computational capabilities. Let t ln be the completion

time of the task In by MU n, which can be computed as

t ln = Cn
f ln
. To compute the energy consumption E ln (in Joule)

of MU n when the task is executed locally, we adopt the

model in [7], [17], and [18]. Specifically, E ln = κnCn
(

f ln
)2
,

where κn is a coefficient relating to the chip’s hardware

architecture. According to the measurements in [17], we set

kn = 5 × 10−27. It is worth noting that t ln and E ln depend

on unique features of MU n and the underlying application;

therefore, they can be computed in advance.

The computation overhead1 by the local computing

approach which is a function of the computational time and

energy consumption is defined as [14], [17], [20]

Z ln = λtnt
l
n + λenE

l
n, (1)

where λtn ∈ [0, 1] and λen ∈ [0, 1] are respectively weighted

parameters2 for the computational time and energy consump-

tion of MU n. In this paper, we employ the weighted sum

method to deal with the multi-objective optimization prob-

lem of computational time and energy as in (1). In gen-

eral, the objective function can be defined using other

approaches, for example, lexicographic method, weighted

max-min method, and weighted product method [1], [38]

which is outside of the scope of this paper and will be studied

in future work. Similar to the heterogeneous computation

tasks of MUs, different MUs may have different values of

λtn and λen. The weighted parameters can affect the offloading

decisions of MUs. Consider a network scenario with three

MUs as an example, the first MU with a latency-sensitive

application sets λtn = 1 and λen = 0, the second MU running

an energy-hungry application and low battery state can set

the weighted parameters as λtn = 0 and λen = 1, the third

MU can set 0 < λtn, λ
e
n < 1 if it takes both computa-

tional time and energy consumption in making offloading

decision. It is worth noting that an MU may have different

weighted parameters λtn and λen for different applications and

the weighted parameters can be dynamically changed for

different computation offloading periods due to the dynamic

computation demands of MUs.

If an MU is not able to execute the computation task

due to the limited battery or stringent application require-

ments, it will offload the computation task to the MEC

server. By offloading, an MU incurs the extra overhead in

terms of the time and energy consumption. The overhead

in time comprises the transmission time from MU/SBS to

1Here, the term ‘‘overhead’’ means the execution cost of the computation
task. Since binary offloading is considered in this paper, local computation
overhead refers to the case of local execution and remote computation
overhead refers to the case of computation offloading (remote execution).
The term ‘‘cost’’ can be used in the same manner.

2The proper values of weighted parameters λtn and λen can be determined
using the multiple criteria decision making theory [14], [37]. To normalize
λtn and λen, some approaches can be utilized such as dividing λtn by the local
completion time and λen by the local energy consumption [18], and defining
units of λtn and λen as monetary unit per second and joule, respectively.
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SBS/MBS and the execution time at theMEC server, whereas

the overhead in energy consumption includes the energy for

computation offloading from MU/SBS to SBS/MBS. Here,

we ignore latency in downlink transmission of the computa-

tional result due to the small size of the involved data and we

also ignore the energy consumption at the MEC server since

it is generally powered by cable power supply [14], [17].

The time and energy costs for computation offloading from

the MU n to the SBS are, respectively, computed as

tacn =
Dn

αN−1
off W log2

(

1 +
pnhn
n0

) , (2)

where the superscript ‘‘ac’’ stands for access and

Eac
n = pnt

ac
n =

pnDn

αN−1
off W log2

(

1 +
pnhn
n0

) . (3)

Similarly, the time and energy costs for computation offload-

ing from the SBS to the MBS are given, as follows:

tbhn =
Dn

(1 − α)W log2

(

1 + P0h0
n0

) , (4)

where the superscript ‘‘bh’’ stands for backhaul and

Ebh
n = P0t

bh
n =

P0Dn

(1 − α)W log2

(

1 + P0h0
n0

) . (5)

The MEC server provides each offloading MU a comput-

ing f rn (in cycles per second). Then, the execution time of

the computation task In at the MEC server is expressed as

texen = Cn/f
r
n .

Similar to the computation overhead due to local execution,

the computation overhead under remote execution can be

computed as Z rn = λtn
(

texen + tacn + tbhn
)

+ λen
(

Eac
n + Ebh

n

)

.

D. PROBLEM FORMULATION

We define the offloading decision profile as

x = {xn, ∀n ∈ N } and computation resource vector as f =

{f rn , ∀n ∈ N }. Since our design aims to minimize the system-

wide computation overhead, the objective function is defined

as Z (x, α, f ) =
∑

n∈N Zn(xn, α, f ), where Zn(xn, α, f rn ) =

(1 − xn)Z
l
n + xnZ

r
n , ∀n ∈ N . The joint problem of offload-

ing decision, wireless backhaul bandwidth partitioning, and

computation resource allocation is formulated as follows:

min
{x,α,f }

∑

n∈N
Zn(xn, α, f rn )

s.t. C1: xn = {0, 1} , ∀n ∈ N

C2: 0 ≤ α ≤ 1,

C3:
∑

n∈Noff

rn ≤ Rbh,

C4: f rn > 0, ∀n ∈ Noff

C5:
∑

n∈Noff

f rn ≤ f0. (6)

In this formulation, C1 represents the binary offloading

decisions of computation tasks and C2 captures the lower

and upper bounds of the bandwidth partitioning factor α;

α = {0, 1}when there is no offloadingMUs. C3 enforces that

the wireless backhaul transmission rate from the SBS to the

MBS should be greater than the total data access transmission

rate on the uplink between the SBS and its associated MUs.

Since the SBS receives computation tasks from MUs and

transmits the received tasks to the MEC server, the wireless

backhaul link becomes a crucial factor for the offloading

rates fromMUs, thus affecting the offloading decisions. Even

if MUs decide to offload and have good channel qualities,

offloading all the tasks would not be preferable when the

wireless backhaul link is of low capacity. Here, Noff =
∑

n∈N xn and pn = 0 if the MU n processes its computation

task locally. The last two constraints imply that the required

computation resource of offloading MUs is positive and the

total computation resource assigned to offloading MUs is

limited by the maximum computational capability f0 of the

MEC server, respectively.

Remark 1: Since the offloading decision variables x are

binary and the bandwidth partitioning factor α and computa-

tion resource f are continuous, the optimization problem (6)

is a mixed integer problem (MIP). According to [39], theMIP

is NP-hard in general complexity theory. Some general algo-

rithms can be used for solving MIP, for example, branch-and-

bound algorithm, branch-and-cut method, and exhaustive

search. However, these algorithms often have prohibitive time

complexity and would only be feasible for the network sce-

narios with a small number of MUs. To tackle the formulated

problem under more general settings, e.g., the Internet of

Things with a massive number of IoT devices, we propose to

decompose the original problem into subproblems and then

solve them separately and iteratively until convergence.Many

existing works have applied the decomposition technique for

solving their problems with convergence and good perfor-

mance, for example, [10]–[12], [40].

Remark 2: For wireless networks using wired backhaul,

there is no need to partition the bandwidth for wireless access

and wireless backhaul transmissions and the entire band-

width can be allocated for the wireless access transmission,

i.e., α = 1. The performance of MEC systems with wired

backhaul is higher than that with wireless backhaul since

there is no cost of time and energy for computation offloading

over the wireless backhaul, thus lowering the remote com-

putation overhead of the MUs and increasing the percentage

of offloading users. In that case, the constraints C2 and C3

are absent from the optimization problem (6). Moreover,

the resource allocation subproblem is to assign computing

resource of the MEC server to the offloading users and one

does not need to check the backhaul capacity constraint

when making the offloading decision (since the capacity of

wired backhaul links is usually large enough and sometimes

assumed to be unlimited).

IV. PROPOSED ALGORITHM

We decompose the original problem into two subproblems:

offloading decision for a given bandwidth factor and com-

putation resource allocation, and joint wireless backhaul

VOLUME 7, 2019 16449



Q.-V. Pham et al.: MEC With Wireless Backhaul: Joint Task Offloading and Resource Allocation

bandwidth and computation resource allocation for a fixed

offloading decision. Then, two subproblems are solved indi-

vidually and an iterative algorithm is proposed to solve the

original problem. The proposed framework for solving the

original optimization problem (6) is summarized in Fig. 2.

FIGURE 2. Proposed framework for solving the problem (6).

A. OFFLOADING DECISION

When the bandwidth allocation factor α and computation

resource f are both fixed, the offloading decision subproblem

can be rewritten as follows:

min
x

∑

n∈N
Zn(xn)

s.t. xn = {0, 1} , ∀n ∈ N
∑

n∈Noff

rn (x) ≤ Rbh. (7)

The objective function of (7) can be re-expressed as
∑

n∈N Zn(xn) =
∑

n∈N xn
(

Z rn − Z ln
)

+
∑

n∈N Z ln, where

the second part is known in advance; therefore, this part can

be eliminated from the optimization problem (7). Recall that

this paper considers binary offloading such that a compu-

tation task cannot be partitioned into subtasks. To be exe-

cuted remotely, computation offloading has to be profitable to

MUs in terms of computation overhead. Consequently, MU n

decides to offload its computation task In to the MEC server

only if
(

Z rn − Z ln
)

≤ 0, i.e., Z rn ≤ Z ln or the local computation

overhead of the MU n is greater than that of the MU n when

the computation task In is executed remotely at the MEC

server. In addition, for a given bandwidth allocation factor

α, Rbh is fixed, whereas the total access rate is dependent on

the offloading decisions x. Consequently, for a given (α, f ),

the last constraint in (7) somehow relates to the maximum

number of offloadingMUs. The problem (7) can be viewed as

a many-to-one matching game, where several MUs send their

bid requests to theMEC server, which either accepts or rejects

the offloading requests from MUs according to the compu-

tation allocation policy, so as to minimize the system-wide

computation overhead.

Inspired by the matching theory, we propose an algorithm

to solve the offloading decision problem (7), which can be

described as follows. Initially, all N MUs are assumed to be

in the offloading mode and send their requests to the MEC

server, which is responsible for either accepting or rejecting

the computation offloading request from MUs. At each iter-

ation t , if Z rn > Z ln (i.e., MU n does not benefit from compu-

tation offloading), this MU does not offload its computation

task In to the MEC server, i.e., xn(t) = 0. Only MUs that sat-

isfy the offloading condition Z rn ≤ Z ln can offload their com-

putation tasks to the MEC server, i.e., xn(t) = 1. By checking

the offloading conditions for all the MUs, we can determine

the outputs, which are the offloading decision vector x(t),

the set of offloading MUs Noff(t), and the set of rejected

MUs Nrej(t), all at the iteration t . Beside ensuring that the

offloading MUs benefit from the remote execution, one must

satisfy the backhaul capacity constraint. When offloading all

the MUs in Noff(t) violates the backhaul capacity constraint,

someMUs, even satisfying the offloading condition Z rn ≤ Z ln,

are not accepted to offload their computation tasks to the

MEC server. In this case, the MUs inNoff(t) are sequentially

removed from the set of offloading MUs in the ascending

order of the computation gain
(

Z ln − Z rn
)

. The removed users,

so-calledNrem, are then inserted into the set of rejected users,

i.e., Nrej(t) := Nrej(t) ∪ Nrem and Noff(t) := Noff(t) \ Nrem.

Then, the set of offloading MUs Noff(t) will be used as the

input to the optimization problem of computation resource

allocation and bandwidth spectrum partitioning, as presented

in the next subsection IV-B, while the rejected MUs Nrej(t)

will be processed in the next iteration (t + 1).

B. JOINT WIRELESS BACKHAUL BANDWIDTH AND

COMPUTATION RESOURCE ALLOCATION

Once the solution Noff(t) is achieved for the subproblem (7)

parameterized by (α, f ), it is used for the wireless backhaul

bandwidth and computation resource allocation as follows:

min
{α,f }

∑

n∈Noff

Zn
(

α, f rn
)

s.t. 0 ≤ α ≤ 1,
∑

n∈Noff

rn (α) ≤ Rbh,

f rn > 0, ∀n ∈ Noff
∑

n∈Noff

f rn ≤ f0. (8)

The objective function can be rewritten as

∑

n∈Noff

Zn (α, f ) =
∑

n∈Noff

λtnCn

f rn
+
A

α
+

B

1 − α
, (9)

where t
′ac
n = tacn α, t

′bh
n = tbhn (1 − α), E

′ac
n = Eac

n α, and

E
′bh
n = Ebh

n (1 − α), A =
∑

n∈Noff

(

λtnt
′ac
n + λenE

′ac
n

)

, and

B =
∑

n∈Noff

(

λtnt
′bh
n + λenE

′bh
n

)

. It can be observed from

constraints in (8) and the equivalent objective function (9)

that the joint problem of bandwidth and computation resource

allocation is decoupled in the bandwidth partitioning factor α

and computation resource vector f . Consequently, the prob-

lem (8) can be further decomposed into two subproblem: one

for wireless bandwidth backhaul allocation and the other for
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computation resource at theMEC server, whichwill be solved

in the following.

1) WIRELESS BACKHAUL BANDWIDTH ALLOCATION

In (8), the second constraint can be equivalently represented

as

α ≤ αup :=
log2

(

1 + P0h0
n0

)

log2

(

1 + P0h0
n0

)

+
∑

n∈Noff

1
Noff

log2

(

1 +
pnhn
n0

) .

Therefore, the feasible set of the optimization problem

reduces to 0 ≤ α ≤ αup since αup < 1 if there are more than

one offloading MU. After decomposition of (8), the optimal

bandwidth allocation factor can be obtained by solving the

following problem

min
α

[

f (α) =
A

α
+

B

1 − α

]

s.t. 0 ≤ α ≤ αup. (10)

The second-order derivative of f (α) can be expressed as

∂2f

∂α2
=

2A

α3
+

2B

(1 − α)3
.

It can be verified that
∂2f

∂α2 > 0 with 0 < α ≤ αup;

therefore, the optimization problem (10) is convex. Hence,

the optimal value of the bandwidth partitioning factor α can

be achieved by letting
∂f
∂α

= 0 and comparing the results with

the boundary values 0 ≤ α ≤ αup.

2) COMPUTATION RESOURCE ALLOCATION AT

THE MEC SERVER

From (8), the problem of computation resource allocation at

the MEC server can be rewritten as

min
f



g (f ) =
∑

n∈Noff

λtnCn

f rn





s.t. f rn > 0, ∀n ∈ Noff
∑

n∈Noff

f rn ≤ f0. (11)

It can be verified that ∂2g/∂f r2n = 2Cn/f
r3
n and

∂2g/∂f rn ∂f rm = 0 for all n 6= m; hence, the objective in (11)

is a convex function. Additionally, two constraints in (11)

are both linear. Therefore, (11) is a convex problem and

the optimal solution can be easily obtained by the duality

technique [38], [41].

Let ν be the dual vector associated with the second con-

straint, the Lagrangian can be written as

L(f , ν) =
∑

n∈Noff

λtnCn

f rn
+ ν





∑

n∈Noff

f rn − f0



 .

Then, the dual function is defined as G(ν) = min
f≻0

L(f , ν) and

the dual problem is given by max
ν>0

G(ν). Since (11) is a convex

problem, the optimal computation resource f rn can be derived

by setting the first-order derivative of L(f , ν) with respect to

(w.r.t.) f rn to zero. Accordingly, we have f rn =
√

λtnCn/ν, from

which we have G(ν) = 2
∑

n∈Noff

√

λtnCnν − νf0. By setting

the first-order derivative of G(ν) w.r.t. ν to zero and plugging

back to the formula of f rn , the optimal computation resource

can be written as follows:

f r∗n =
f0
√

λtnCn
∑

n∈Noff

√

λtnCn
. (12)

From (12), the computation resource assigned to the MU n

is proportional to its weighted parameter of computational

time and the required number of CPU cycles to accom-

plish the computation task In, i.e., the computation workload.

Therefore, the MU with the higher computation workload

will be assigned more computation resource by the MEC

server. This is reasonable since multiple MUs share the same

computation pool (at the MEC server) and each MU is of

equal opportunity to offload its computation task and exploit

powerful computation capabilities at the MEC server.

C. JOINT COMPUTATION OFFLOADING, BANDWIDTH,

AND COMPUTATION RESOURCE ALLOCATION

1) ALGORITHMIC DETAILS

According to the analysis of the offloading decision and

resource allocation discussed in previous two subsections,

we propose an iterative algorithm to tackle the original opti-

mization problem (6). The details of the proposed algorithm

are summarized in Algorithm 1.

Algorithm 1 Algorithm of Joint Offloading decision,

Bandwidth, and Computation resource Allocation (JOBCA).

1: Initialization: Select a random α and f , and solve to get

the initial solution x, and the iteration t = 0.

2: repeat

3: Set t = t + 1.

4: The offloading decision phase: for a given (α, f )

5: Check all the offloading conditions to find

Noff(t)

and Nrej(t).

6: Check the backhaul constraint to find Nrem.

7: Update Nrej(t) := Nrej(t) ∪ Nrem and

Noff(t) := Noff(t) \ Nrem.

8: The resource allocation phase: for a given x

9: Solve
∂f
∂α

= 0 and compare the results with the

boundary values 0 ≤ α ≤ αup to get α.

10: Update f is achieved using Eq. (12).

11: Update x∗(t) according to (13).

12: Update remote computation overheads of the MUs

and the backhaul capacity availability.

13: until The set of offloading MUsNoff remains unchanged

for two consecutive times.

14: Output: the optimal solution
(

x∗, α∗, f ∗
)

.
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In Algorithm 1, the MUs that are rejected by the MEC

server in the iteration t will be reconsidered as new MUs

and will join the offloading decision problem (7) in the next

iteration (t + 1). In order to start new iterations, local/remote

computation overheads of theMUs and the backhaul capacity

availability are updated in the last step of the previous iter-

ations. Here, only the MUs that are accepted by the MEC

server in the iteration t will join the resource allocation prob-

lem (8) in the iteration (t + 1). However, both the rejected

and accepted MUs are considered in the offloading deci-

sion problem (7) so as to optimize the offloading decisions

x∗(t + 1), which are updated, as follows:

x∗(t + 1)=

{

x∗(t), if
∑

n∈N
Zn(t)≤

∑

n∈N
Zn(t+1)

x(t + 1), otherwise,

(13)

where x(t + 1) is the solution of the problem (7) for a given

(α(t), f (t)). The algorithm will terminate once the set of

offloading/rejected users does not change for two consecutive

iterations. In other words, when there is no further com-

putation offloading requests from MUs for two consecutive

iterations, the algorithm will stop.

2) COMPLEXITY ANALYSIS

To obtain the solution, the original problem (6) is decom-

posed into two subproblems of the offloading decisions

and joint computation resource and bandwidth partitioning.

Specifically, the MUs with Z rn ≤ Z ln are firstly assumed

to be profitable from computation offloading and subse-

quently the MU with the smallest computation offloading

gain, i.e.,
(

Z ln − Z rn
)

, is removed from the offloading MU

candidate list until the backhaul capacity constraint is not vio-

lated. Therefore, the complexity of finding the computation

offloading decisions is O (N ). The bandwidth partitioning

factor is achieved by solving the first-order derivative of

f (α) and comparing the result with the boundary values
[

0 αup

]

, hence the complexityO (1). Moreover, the computa-

tion resources for offloadingMUs are obtained via the duality

method. Let T be the number of iterations required to update

the offloading decisions, bandwidth partitioning factor, and

computation resources. For a given T , the computational

complexity of the proposed algorithm is O (T N ). Since we

consider small cells with wireless backhaul, the number of

MUs is often not large. As a result, the computational com-

plexity of the proposed algorithm is affordable.

3) CONVERGENCE ANALYSIS

The JOBCA algorithm has two phases: the offloading deci-

sion phase and the resource (computation and bandwidth

spectrum) allocation phase. Once the offloading decision

phase terminates, all the MUs are either accepted or rejected

by the MEC server to offload their computation tasks. The

process of determining the offloading decisions is simi-

lar to the many-to-one matching game with the deferred-

acceptance algorithm [20]. Hence, at each iteration t ,

the outputs of the offloading decision problem, Nrej(t) and

Noff(t), are all stable, in which no MU in Nrej(t) can join

Noff(t) and no MU in Noff(t) can leave to join Nrej(t).

Moreover, the solution for the offloading decision phase

meets the backhaul capacity constraint as well as reducing

the system-wide computation overhead, i.e.,
∑

n∈N Zn(t) ≥
∑

n∈N Zn(t + 1). Additionally, the feasible solution set is

finite and reduced after each iteration, i.e., the feasible solu-

tion set of offloading MUs that both satisfy the backhaul

capacity constraint and reduce the system-wide computation

overhead becomes smaller after each iteration. As a result,

the JOBCA algorithm is guaranteed to converge after a finite

number of iterations.

V. FURTHER DISCUSSIONS AND EXTENSIONS

In this section, we first explain how to extend our proposed

framework to multi-cell settings, then consider partial com-

putation offloading, and finally discuss DRL for computation

offloading in a dynamicMEC systemwith wireless backhaul.

A. COMPUTATION OFFLOADING IN ULTRA-DENSE

NETWORKS

Due to the low transmit power of SBSs and the wall pen-

etration loss, the effect of inter-cell interference for indoor

small cells can be small when considering UDNs. However,

for outdoor small cells, one major issue is to account for the

strong inter-cell interference. Now, we consider an MEC sys-

tem with one MEC server collocated with the MBS, J small

cells deployed within the coverage of the macro cell, and

N MUs. We assume that the MBS is equipped with a very

large number of antennas and has perfect channel state infor-

mation (i.e., it knows the channel gain matrix for all SBSs)

and the MBS is assumed to employ the typical zero-forcing

beamforming technique. The set of SBSs is denoted as J =

{1, 2, . . . , J} and the set ofMUs in the j-th cell is presented by

Ij. It is assumed that the bandwidth resources allocated to the

wireless access transmission is divided orthogonally into S

subchannels, the set of subchannels is S , and the resources S

are reused among all SBSs. The channel gain between the

i-th MU of the j-th small cell and the j′-th SBS on the s-th

subchannel is denoted as hs
i(j),j′

. The rate of the i-th MU in

the j-th small cell on the s-th subchannel can be computed

according to the Shanon capacity formula as follows:

rsij = Bs log2

(

1 + γ sij

)

= Bs log2









1 +
psijh

s
i(j),j

n0 +
∑

j′ 6=j

∑

k∈Ij′

ps
kj′
hs
k(j′),j









, (14)

where Bs = αW/S is the bandwidth of a subchannel, psij
is the transmit power of the i-th MU in the j-th small cell

on the s-th subchannel. Denote by pij =
[

p1ij, . . . , p
S
ij

]

the

transmit power vector of the i-th MU in the j-th small cell.

Accordingly, the transmission rate between the i-th user and
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j-th SBS is

rij =
∑

s∈S

Bsa
s
ij log2

(

1 + γ sij

)

,

where asij is the assignment indicator, which is 1 if the sub-

channel s of the j-th cell is assigned to the i-th user and 0

otherwise.

According to [42], the transmission rate of the wireless

backhaul uplink from the SBS j to the MBS is given by

Rbhj = (1 − α)W log2

(

1 +
M

M − N

βjPj

n0

)

, (15)

where M is the number of MBS antennas, βj models the

geometric attenuation and shadow fading, which is usually

known in advance and remains constant over many coherence

time intervals, and Pj is the transmit power of the j-th SBS.

From (15), if the number of MBS antennas grows without

bound, the backhaul capacity of the j-th SBS can be repre-

sented as Rbhj = (1 − α)W log2
(

1 + βjPj/n0
)

. To eliminate

the interference from other small cells, other beamforming

techniques such as maximum-ratio combining and minimum

mean-squared error can alo be used in the massive MIMO

systems [42].

To formulate the optimization problem similar to

problem (6) in UDNs, we reuse the same notations as given

in Section III while using i as the user index and adding

some extra indexes, e.g., subchannel index s and cell index j.

Let us define aij =
[

a1ij, . . . , a
S
ij

]

, a =
[

a11, . . . , a|IJ |J

]

,

x =
[

x11, . . . , x|IJ |J
]

, and f =
[

f r11, . . . , f
r
|IJ |J

]

. We also

denote the set of offloading MUs in the j-th cell as Ioff
j . The

computation offloading problem in UDNs can be formulated

as follows:

min
{α,x,a,f }

∑

j∈J

∑

i∈Ij

Zij(xij, aij, α, f rij )

s.t. C1’: xij = {0, 1} , ∀j ∈ J , i ∈ Ij

C2’: 0 ≤ α ≤ 1,

C3’:
∑

i∈Ioff
j

rij ≤ Rbhj , ∀j ∈ J

C4’: f rij > 0, ∀j ∈ J , i ∈ Ioff
j

C5’:
∑

j∈J

∑

i∈Ioff
j

f rij ≤ f0,

C6’:
∑

i∈Ioff
j

asij ≤ 1, ∀j ∈ J , ∀s ∈ S

C7’: asij ∈ {0, 1} , ∀j ∈ J , ∀i ∈ Ioff
j , ∀s ∈ S. (16)

Compared with the optimization problem (6), there are an

additional variable, i.e., the subchannel allocation vector a,

and two additional constraints, that are C6’ and C7’. The

constraint C6’ ensures that each subchannel is assigned to

at most one MU and C7’ indicates the binary subchannel

assignment variables.

In the following, we briefly explain how our proposed

framework can be extended to consider general scenarios,

where one MBS covers several SBSs. The main idea is

still based on the problem decomposition technique. The

original problem (16) is decomposed into three subprob-

lems: (i) offloading decision, (ii) subchannel assignment, and

(iii) resource allocation.

1) OFFLOADING DECISION

For a given (α, a, f ), the problem to optimize the offloading

decisions can be formulated as

min
x

∑

j∈J

∑

i∈Ij

Zij(xij)

s.t. xij = {0, 1} , ∀j ∈ J , i ∈ Ij
∑

i∈Ioff
j

rij ≤ Rbhj , ∀j ∈ J . (P1)

One can observe that the subproblem (P1) is fully decoupled

across different SBSs, thus (P1) can be further decomposed

into J SBS-level subproblems. Each SBS-level subproblem

can be solved using our proposed method as presented in

Subsection IV-A.

2) SUBCHANNEL ASSIGNMENT

Given a set (α, x, f ), the subchannel assignment subproblem

is as follows:

min
a

∑

j∈J

∑

i∈Ioff
j

Zij(aij)

s.t.
∑

i∈Ioff
j

asij ≤ 1, ∀j ∈ J , ∀s ∈ S

asij ∈ {0, 1} , ∀j ∈ J , ∀i ∈ Ioff
j , ∀s ∈ S. (P2)

Similarly, the subproblem (P2) is fully decomposable, i.e., it

can be decomposed into J SBS-level subproblems, each sub-

problem is to allocate S subchannels to the offloading users

so as to minimize the computation overhead. When xij = 1,

Zij = Z rij , which can be rewritten as follows:

Zij = λtij

(

texeij +
Dij

rij
+

Dij

(1 − α)WRbhj

)

+ λeij

(

pij
Dij

rij
+ Pj

Dij

(1 − α)WRbhj

)

= Const
(

α, xij, f
r
ij

)

+
1

∑

s∈S

asij
rsij

(

λtij+pijλ
e
ij

)

Dij

, (19)

where Const
(

α, xij, f
r
ij

)

indicates a constant value for a

given
(

α, xij, f
r
ij

)

, which is independent of aij. The j-th

SBS-level subproblem for subchannel assignment can be
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formulated as

max
a

∑

i∈Ioff
j

∑

s∈S

asij

rsij
(

λtij + pijλ
e
ij

)

Dij

s.t.
∑

i∈Ioff
j

asij ≤ 1, ∀s ∈ S

asij ∈ {0, 1} , ∀i ∈ Ioff
j , ∀s ∈ S. (P2j)

We indicate by i(j, s) the MU served by the j-th SBS on

the s-th subchannel. From (19), the solution to the subprob-

lem (P2j) can be written as

î(j, s) = argmax
i∈Ioff

j

rsij
(

λtij + pijλ
e
ij

)

Dij

.

3) RESOURCE ALLOCATION

Once the offloading decision and subchannel assignment vec-

tors are obtained, they can be used for the joint optimization

of wireless bandwidth and computing resource allocation as

follows:

min
{α,f }

∑

j∈J

∑

i∈Ioff
j

Zij(α, f rij )

s.t. C2’,C3’,C4’,C5’,C6’. (P3)

As presented in Subsection IV-B, (P3) can be decomposed

into two smaller subproblems: one for computing resource

allocation at the MEC server and the other for wireless back-

haul bandwidth allocation. After some algebraic manipula-

tion, the allocation of computing resources for offloading

users can be expressed as

f r∗ij =
f0

√

λtijCij

∑

j∈J ,i ∈Ioff
j

√

λtijCij

and the bandwidth partitioning factor is achieved by

solving (10) with t
′ac
ij = tacij α, t

′bh
ij = tbhij (1 − α),

E
′ac
ij = Eac

ij α, and E
′bh
ij = Ebh

ij (1 − α), A =
∑

j∈J ,i ∈Ioff
j

(

λtijt
′ac
ij + λeijE

′ac
ij

)

, B =
∑

j∈J ,i ∈Ioff
j

(

λtijt
′bh
ij + λeijE

′bh
ij

)

, and

αup = min
j∈J







Rbhj

Rbhj +
∑

i∈Ioff
j

1
S
log2

(

1 + rij
)







.

As can be seen from (14), the inter-cell interference must

be estimated and measured at the SBSs and MBS as well.

Some common approaches for inter-cell interference mitiga-

tion are power control and fractional frequency reuse. In the

former approach, transmit powers of MUs and SBSs are

controlled to minimize the computation overhead while satis-

fying their power budget. The latter approach groups nearby

small cells into a cluster and divides the system bandwidth

into spatial regions, each region corresponds to a cluster.

Therefore, co-cluster small cells are assigned with different

frequency bands. This technique can significantly mitigate

the effect of co-cluster inter-cell interference while the inter-

cluster interference is negligible and can be ignored. A design

of computation offloading and resource allocation (transmit

power and computation) in UDNswith wireless backhaul will

be investigated in our future work.

Another important issue in UDNs is user association,

where each MU must either associate with one among mul-

tiple small cells or simultaneously connect to multiple small

cells [20]. In practice, SBSs connect to the MBS by distinct

backhaul links, i.e., wired and wireless links. For small cells

with wireless backhaul, beside the bandwidth partitioning

factor, the transmit power strongly impacts the backhaul

capacity. Therefore, each offloading MU needs to select the

best SBS to associate with considering the quotas of different

SBSs and the MBS, channel quality, and backhaul condition.

Take single-user networks as an example, MUs would defi-

nitely connect to the SBS with the wired backhaul and best

quality channel and then offload directly to the MEC server

rather than offloading to the MEC server through a small

cell with wireless backhaul. A joint consideration of user

association, computation offloading, and resource allocation

in UDNs with wireless backhaul is a promising direction

which will be studied our future work.

B. PARTIAL OFFLOADING DECISION

In Subsection IV-A, the offloading decisions are found in a

heuristic manner. This scheme is simple to implement and

efficient in the case where a large number of MUs connected

to an SBS. According to [20] and [43], there can be fewMUs

per small cell in UDHNs. For a given offloading decision

vector x, we only need to examine the backhaul capacity

constraint and then, among feasible solutions, the offloading

decision with the smallest computation overhead is selected

as the optimal offloading decision. Therefore, in small cells,

it is computationally efficient to achieve the optimal offload-

ing solution by the exhaustive search.

We can obtain the lower bound in terms of the computa-

tional time and energy consumption of the original problem

by considering the offloading decision relaxation of the prob-

lem (7) as follows:

min
x

∑

n∈N
xn

(

Z rn − Z ln

)

s.t. C6 : xn ∈ [0, 1] , ∀n ∈ N

C7 :
∑

n∈Noff

rn (Noff) ≤ Rbh. (21)

Different to the problem (7), C1 is relaxed to become C6.

In fact, this corresponds to partial offloading, i.e., a frac-

tion of a computation task is offloaded to the MEC server

while the remaining part is handled locally. Once the set of

offloading MUs is given, both the left-hand-side and right-

hand-side (RHS) of C7 are fixed, and then its feasibility

can be checked easily. Moreover, the objective function is

linear in and the RHS of C7 is independent of the offloading

decisions x. Hence, the final offloading decisions of MUs

16454 VOLUME 7, 2019



Q.-V. Pham et al.: MEC With Wireless Backhaul: Joint Task Offloading and Resource Allocation

are either local handling or remote processing. As a result,

the optimal solution of the relaxed problem is the same as

that achieved by the exhaustive search. However, the relaxed

optimization problem (21) becomes greatly complicated in

UDHNs since each MU can divide its computation task to

multiple subtasks and offload each computation subtask to

the MEC server through a distinct SBS.

C. MACHINE LEARNING BASED COMPUTATION

OFFLOADING

Recently, machine learning (ML) has emerged as an effective

method for handling many challenges and problems in wire-

less and communication networks. In terms of computation

offloading for MEC systems, there have been some works

using ML, especially reinforcement learning (RL) for com-

putation offloading problems, for example, [44], [45]. Two

advantages of using RL for computation offloading problems

are: (1) it is suitable for random and time-varying MEC

systems and (2) it enables learningwithout a priori knowledge

of network statistics [46].

In the current work, we consider a quasi-static network.

To make our proposed algorithm feasible for MEC systems

with fast-fading channel, one potential extension is applying

DRL to solve the underlying optimization problem. In par-

ticular, the state, action, and reward of the RL agent can be

modeled as follows:

• State: the system state is defined as the channel gains

between MUs and SBS and between SBS and MBS,

i.e., s = {h, h0}, where h = {h1, . . . , hN }.

• Action: the action consists of offloading decision x and

resource allocation (α, f ). Thus, the action vector can be

given as a = [x, α, f ].

• Reward: the objective of the original problem is to min-

imize the system-wide computation overhead while the

goal of RL is to maximize the long-term reward. There-

fore, the reward can be given as
∑

n∈N

(

Z ln − Z rn (s, a )
)

.

The RL-based problem can be solved to obtain the opti-

mal policy by using conventional methods such as dynamic

programming and Q-learning. To deal with the curse of

dimensionality due to the large number of MUs, DRL-based

methods can be used instead, for example, deep Q network

(DQN) and dueling DQN. DRL-based methods can also be

used to extend our work to consider a more complex MEC

system, which takes interference into consideration.

VI. NUMERICAL RESULTS

A. SIMULATION SETTINGS

In this section, we will demonstrate the performance of

the proposed algorithm (JODBA) through numerical study.

Consider an MEC system with an MBS and an SBS, which

have the coverage radius of 250 m and 50 m, respectively.

The SBS (MUs) is randomly positioned within the coverage

of the MBS (SBS) and the minimal distance from the MBS

to SBS is 40 m. The system bandwidth is 20 MHz, AWGN

power is −100 dBm, and the transmit power of both the SBS

andMUs is 100mW. The pathlossmodel is assumed to follow

the log-distance path lossmodel [47], where theMBS-to-SBS

path loss for the distance r is calculated as L (r) = 15.3 +

37.6 log10 (r) and the SBS-to-MU path loss for distance r is

computed as L (r) = 38.46 + 20 log10 (r). The large-scale

shadowing is modeled by a log-normal distribution with zero

mean and standard deviation 8 dB and the small-scale fading

coefficients are assumed to be Rayleigh random variables

with unit variances.

Regarding the computation model, the face recognition

application is adopted, where the computation input data

size is 420 KB and the total required number of CPU

cycles is 1000 Megacycles [18]. The CPU computational

capability f ln of MU n is randomly assigned from the set

{0.5, 0.8, 1.0} GHz and the maximum computation resource

at the MEC server f0 is 10 GHz. The weighted parameters

of computational time and energy consumption are both 0.5,

i.e., λtn = λen = 0.5, ∀n ∈ N . Simulation results are obtained

with 5000 channel realizations on average and MUs, SBS,

and MBS locations are uniformly distributed randomly in

each realization.

B. SIMULATION RESULTS

For performance evaluation, two benchmark schemes are

considered and compared with our proposed algorithm:

1) Local computing only: All MUs perform their compu-

tations locally, i.e., xn = 0, ∀n ∈ N .

2) Offloading only: All MUs offload their computations to

the MEC server, which will execute all the tasks from

MUs, i.e., xn = 1, ∀n ∈ N .

Fig. 3 shows the variation and convergence of the system-

wide computation overhead (i.e., total computation overhead)

for Algorithm 1 versus the number of iterations in two scenar-

ios: 10 and 14 mobile users. It is observed that the larger the

number of MUs is, the higher the system-wide computation

overhead is generated. In addition, the proposed algorithm

can converge to the stable solution within ten iterations.

This result, together with the previous convergence analysis,

confirms that the proposed iterative algorithm is convergent.

FIGURE 3. The convergence in terms of the system-wide computation
overhead versus the number of iterations.

In the second experiment, we vary the number of MUs and

observe the various performance of the proposed algorithm
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FIGURE 4. Comparison of JOBCA and two baseline schemes under
different numbers of MUs. (a) Percentage of offloading UEs.
(b) Computation overhead. (c) Bandwidth Allocation Factor.

as well as the benchmark schemes. From Fig. (4a), the per-

centage of offloading MUs of the local and offloading only

schemes are respectively 0 and 1, and that of JOBCA changes

with the number of MUs. When the number of MUs is small,

the percentage of offloading MUs keeps increasing. This is

because when the number of MUs is sufficiently small, each

MU has a high opportunity to be assigned large computation

resource by theMEC server, and then the remote computation

overhead is lower than the local one. However, when the

number of MUs becomes large enough, the percentage of

offloading MUs begins to decrease. This is reasonable since

more MUs tend to offload their computations to the MEC

server and the computation resource assigned to each offload-

ing MU becomes smaller. Therefore, the MEC server rejects

some of the requested MUs that incur higher computation

overhead compared to the local computing scheme.

It can be observed from Fig. (4b) that JOBCA can achieve

relatively lower computation overhead compared with two

baseline schemes (local and offloading only). This is due

to the fact that the offloading decision, bandwidth, and

computation resource are jointly optimized in our proposed

framework such that computation offloading is advantageous

to offloading MUs. Fig. (4b) additionally reveals that the

offloading only scheme can generate higher computation

overhead than the local computing only approach when the

number of MUs becomes sufficiently large. It is due to

the competition among MUs for the limited computation

resource at the MEC server. Fig. (4c) shows the bandwidth

allocation factor α w.r.t. the number of MUs. It can be seen

that the bandwidth factor is inversely proportional to the

percentage of offloading MUs, as illustrated in Fig. (4a). The

reason for this is that at first the wireless access rate increases

with the number of offloading MUs and in turn the larger

backhaul capacity, i.e., the lower α value according to formu-

las of rn and Rbh in Subsection III-A, is required to make the

backhaul capacity constraint satisfied. Nevertheless, when

the wireless access rate declines, a larger portion of band-

width α can be allocated for the wireless access transmission,

i.e., (1 − α) fraction for wireless backhaul is smaller.

In Fig. 5, we plot the simulation results as functions

of the system bandwidth, where N = 12 (MUs) and

FIGURE 5. Performance comparison under different system bandwidths.
(a) Percentage of offloading MUs. (b) Computation overhead.
(c) Bandwidth Allocation Factor.

f0 = 10 (GHz). We can see from Figs. (5a) and (5c) that as

the wireless channel bandwidth increases, the percentage of

offloading users and bandwidth partitioning factor increases

and decreases, respectively. In fact, increasing the system

bandwidth provides MUs with higher opportunities to reduce

the offloading time and to offload computation tasks to the

MEC server. Accordingly, the bandwidth partitioning factor

α is a decreasing function of the wireless channel bandwidth

as well. It is reported by Fig. (5b) that when the system

bandwidth is small, offloading all the computation tasks to

the MEC server is not efficient. It is due to the fact that the

offloading time decreases as the system bandwidth increases.

Therefore, the offloading only scheme is more beneficial than

the local only scheme if and only if the system bandwidth

is large enough (15 MHz in this simulation setting). We can

again observe that the proposed algorithm JOBCA generates

significantly lower overhead compared to the two baseline

schemes. However, when the system bandwidth is relatively

large, e.g., 50 MHz, the percentage of offloading users by

our proposed algorithm can nearly reach the maximal point

(100% offloading users) and the computation overhead by the

offloading only scheme is as low as that by our proposed algo-

rithm. This is reasonable since the computation offloading

time is quite small when the system bandwidth is sufficiently

large.

In Fig. 6, we compare the performance of the three schemes

when the transmit power of the SBS P0 is varied. As can be

FIGURE 6. Performance comparison under variant transmit power of the
SBS P0. (a) Percentage of offloading MUs. (b) Computation overhead.
(c) Bandwidth Allocation Factor.
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seen, the performance trends in three sub-figures, i.e., the

percentage of offloading users, system-wide computation

overhead, and bandwidth partitioning factor, are similar to

those in Fig. 5. The impacts of the system bandwidth W and

transmit power P0 are similar in the sense that the offloading

time is a decreasing function of both parameters. It is worth

noting that due to the short distance between MUs and the

SBS, the channel gains hn are usually much larger than h0.

In addition, the power budget of the SBS is higher than those

of MUs. Therefore, as the result of formulae (2), (3), (4), (5),

the transmit power P0 has stronger impact on the system

performance than pn and it is important to efficiently allocate

the transmit powers of SAPs to determine the offloading

decisions of MUs.

In the final experiment, we examine the impacts of the

maximum computational capability f0 on the performance.

Fig. (7a) shows the percentage of offloading MUs w.r.t.

the increasing computational capability f0, where there are

6 MUs. As we can see, the percentage of offloading MUs

increases with the increasing of f0. The reason is that, when

the maximum computational capability f0 increases, more

computation resource can be allocated to each offloadingMU

(in this case, the number of MUs is fixed). Therefore, remote

computation overhead of offloading MUs tends to decline

as f0 increases. The result from Fig. (7c) reports that the

higher the maximum computational capability f0, the lower

the bandwidth allocation factor α. The observations from

Figs. (7a)-(7c) identically match up with those in Fig. 4,

i.e., the percentage of offloading MUs increases in inverse

proportion to the bandwidth allocation factor and vice versa.

As depicted in Fig. (7b), when the maximum computational

capability f0 is small enough (f0 < 5 GHz in this case),

locally performing computations is better than offloading to

the remote MEC server.

FIGURE 7. Performance comparison under different f0. (a) Percentage of
offloading MUs. (b) Computation overhead. (c) Bandwidth Allocation
Factor.

In order to evaluate the optimality gap of the proposed

algorithm, we further compare JOBCA with the exhaustive

search solution, where the bandwidth partitioning factor and

computation resource are jointly optimized for all of the

feasible offloading solutions and then the one with the lowest

system-wide computation overhead is selected as the optimal

solution. It is worth noting that the exhaustive search is only

affordable for the networks with few MUs, for example,

4 cellular users in small cell networks [20], [43]. For general

scenarios with a massive number of IoT devices connected

with the SBS to handle their computations, the exhaustive

search will lead to extremely high computational complexity

and long processing time.

Fig. 7 confirms the exhaustive search achieves the best

performance among the schemes since moreMUs can benefit

from computation offloading (a larger portion of the system

bandwidth is allocated for wireless backhaul transmission,

i.e., smaller α). It is observed from Fig. (7b) that the optimal-

ity gap between our proposed algorithm and the exhaustive

search generally increases with the maximum computational

capability f0 at the MEC server. It is reasonable since our pro-

posed algorithm may reject to handle computations of some

MUs who can indeed benefit from computation offloading

with the increment of the maximum computational capabil-

ity f0, while the exhaustive search finds the optimal solution

by selecting the one with the smallest computation overhead.

Another observation from Fig. (7b) is that at f0 = 7 GHz and

6 MUs, our proposed algorithm generates the system-wide

computation overhead of 8.8117, which is close to that of

the exhaustive search and our proposed scheme achieves the

optimality gap of 2.45%, and 36.19 % and 71.08 % lower

than those of the offloading only and local only schemes,

respectively.

VII. CONCLUSION

In this paper, we studied the computation offloading problem

in mobile edge computing with wireless backhaul. A joint

problem of task offloading, wireless backhaul bandwidth

partitioning, and computation resource allocationwas investi-

gated. Since the original problem is hard to tackle, we decom-

posed it into subproblems of offloading decision and joint

backhaul bandwidth and computation resource allocation,

which are solved individually and iteratively. We then pro-

posed an algorithm JOBCA.We conducted numerical studies

to analyze our proposed algorithm and two baseline schemes

under different values of the maximum computational capa-

bility, number of MUs, system bandwidth, and transmit

power of the SBS. These numerical studies validated that our

proposed algorithm can improve significantly the network

performance compared with two baseline solutions in terms

of the system-wide computation overhead and the number of

offloading users. In addition, our proposed algorithm could

perform close to that of the centralized exhaustive search

with the small optimality gap of 2.45% at the maximum

computational capability f0 = 7 GHz.

Our work can provide a useful guideline for mobile oper-

ators when they deliver MEC services to MUs. Based on

the available spectrum, the number of expected users, chan-

nel qualities, and hosted applications, the mobile operators

can utilize our framework to partition the bandwidth spec-

trum between wireless access and backhaul transmissions,

and allocate the computing resources to serve the offloading

users. For example, some users in a rural area need to use
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MEC services; however, they/their SBS would not be able to

directly connect to the MEC server. In this case, applying the

solution with wireless backhaul between the SBS andMBS is

technically feasible and suitable. In addition, the designs and

results in this paper motivate researchers to further develop

complex frameworks of computation offloading and resource

allocation in MEC systems, for example, extension to dense

HetNets, consideration of mixed wireless and wired back-

haul links, and distributed offloading decisions in multi-users

MEC HetNets.

REFERENCES

[1] Q. V. Pham and W. J. Hwang, ‘‘Energy-efficient power control in uplink

spectrum-sharing heterogeneous networks,’’ Int. J. Commun. Syst., vol. 31,

no. 14, p. e3717, Sep. 2018.

[2] X. Ge, H. Cheng, M. Guizani, and T. Han, ‘‘5G wireless backhaul net-

works: Challenges and research advances,’’ IEEE Netw., vol. 28, no. 6,

pp. 6–11, Nov. 2014.

[3] U. Siddique, H. Tabassum, E. Hossain, and D. I. Kim, ‘‘Wireless backhaul-

ing of 5G small cells: Challenges and solution approaches,’’ IEEEWireless

Commun., vol. 22, no. 5, pp. 22–31, Oct. 2015.

[4] T. M. Nguyen, A. Yadav, W. Ajib, and C. Assi, ‘‘Resource allocation in

two-tier wireless backhaul heterogeneous networks,’’ IEEE Trans.Wireless

Commun., vol. 15, no. 10, pp. 6690–6704, Oct. 2016.

[5] N. Fernando, S. W. Loke, and W. Rahayu, ‘‘Mobile cloud computing:

A survey,’’ Future Generat. Comput. Syst., vol. 29, no. 1, pp. 84–106,

2013.

[6] ETSI. (2017). Multi-Access Edge Computing. [Online]. Available:

http://www.etsi.org/technologies-clusters/technologies/multi-access-

edg%e-computing

[7] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on

mobile edge computing: The communication perspective,’’ IEEECommun.

Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[8] P. Mach and Z. Becvar, ‘‘Mobile edge computing: A survey on architecture

and computation offloading,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 3,

pp. 1628–1656, 3rd Quart., 2017.

[9] T.M.Nguyen, A. Yadav,W.Ajib, and C. Assi, ‘‘Centralized and distributed

energy efficiency designs in wireless backhaul HetNets,’’ IEEE Trans.

Wireless Commun., vol. 16, no. 7, pp. 4711–4726, Jul. 2017.

[10] Y. Liu, L. Lu, G. Y. Li, Q. Cui, and W. Han, ‘‘Joint user association

and spectrum allocation for small cell networks with wireless backhauls,’’

IEEE Wireless Commun. Lett., vol. 5, no. 5, pp. 496–499, Oct. 2016.

[11] G. Nie, H. Tian, C. Sengul, and P. Zhang, ‘‘Forward and backhaul link

optimization for energy efficient OFDMA small cell networks,’’ IEEE

Trans. Wireless Commun., vol. 16, no. 2, pp. 1080–1093, Feb. 2017.

[12] H. Zhang, H. Liu, J. Cheng, and V. C. M. Leung, ‘‘Downlink energy

efficiency of power allocation and wireless backhaul bandwidth allocation

in heterogeneous small cell networks,’’ IEEE Trans. Commun., vol. 66,

no. 4, pp. 1705–1716, Apr. 2018.

[13] Q. Han, B. Yang, G. Miao, C. Chen, X. Wang, and X. Guan, ‘‘Backhaul-

aware user association and resource allocation for energy-constrained

HetNets,’’ IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 580–593,

Jan. 2017.

[14] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user computation

offloading for mobile-edge cloud computing,’’ IEEE/ACM Trans. Netw.,

vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[15] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, ‘‘Mobile-edge comput-

ing: Partial computation offloading using dynamic voltage scaling,’’ IEEE

Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Oct. 2016.

[16] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, ‘‘Offloading in mobile

edge computing: Task allocation and computational frequency scaling,’’

IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584, Aug. 2017.

[17] C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang, ‘‘Joint computation

offloading and interference management in wireless cellular networks

with mobile edge computing,’’ IEEE Trans. Veh. Technol., vol. 66, no. 8,

pp. 7432–7445, Aug. 2017.

[18] X. Lyu, H. Tian, C. Sengul, and P. Zhang, ‘‘Multiuser joint task offloading

and resource optimization in proximate clouds,’’ IEEE Trans. Veh. Tech-

nol., vol. 66, no. 4, pp. 3435–3447, Apr. 2017.

[19] H. Guo and J. Liu, ‘‘Collaborative computation offloading for multiaccess

edge computing over fiber–wireless networks,’’ IEEE Trans. Veh. Technol.,

vol. 67, no. 5, pp. 4514–4526, May 2018.

[20] Q. V. Pham, T. LeAnh, N. H. Tran, and C. S. Hong, ‘‘Decentralized

computation offoading and resource allocation for mobile-edge comput-

ing: A matching game approach,’’ IEEE Access, to be published, doi:

10.1109/ACCESS.2018.2882800.

[21] Y. Wu et al., ‘‘Secrecy-driven resource management for vehicular com-

putation offloading networks,’’ IEEE Netw., vol. 32, no. 3, pp. 84–91,

May 2018.

[22] J. Zheng, Y. Cai, Y.Wu, and X. S. Shen, ‘‘Dynamic computation offloading

for mobile cloud computing: A stochastic game-theoretic approach,’’ IEEE

Trans. Mobile Comput., to be published.

[23] T. Brummett, P. Sheinidashtegol, D. Sarkar, and M. Galloway, ‘‘Perfor-

mance metrics of local cloud computing architectures,’’ in Proc. IEEE 2nd

Int. Conf. Cyber Secur. Cloud Comput., Nov. 2015, pp. 25–30.

[24] M. Jia, J. Cao, and W. Liang, ‘‘Optimal cloudlet placement and user to

cloudlet allocation in wireless metropolitan area networks,’’ IEEE Trans.

Cloud Comput., vol. 5, no. 4, pp. 725–737, Oct. 2017.

[25] M. Chiang and T. Zhang, ‘‘Fog and IoT: An overview of research

opportunities,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 854–864,

Dec. 2016.

[26] (Sep. 2014). Mobile-Edge Computing: Introductory Technical White

Paper. [Online]. Available: https://portal.etsi.org/portals/0/tbpages/mec/

docs/mobile-edge_computing_-_introductory_technical_white_paper_

v1%2018-09-14.pdf

[27] C. F. Liu, M. Bennis, and H. V. Poor, ‘‘Latency and reliability-aware task

offloading and resource allocation for mobile edge computing,’’ in Proc.

IEEE Globecom Workshops (GC WKSHPS), Dec. 2017, pp. 1–7.

[28] J. Liu and Q. Zhang, ‘‘Offloading schemes in mobile edge computing

for ultra-reliable low latency communications,’’ IEEE Access, vol. 6,

pp. 12825–12837, 2018.

[29] Y. Mao, J. Zhang, Z. Chen, and K. B. Letaief, ‘‘Dynamic computation

offloading for mobile-edge computing with energy harvesting devices,’’

IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[30] W.Hao and S. Yang, ‘‘Small cell cluster-based resource allocation for wire-

less backhaul in two-tier heterogeneous networks with massive MIMO,’’

IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 509–523, Jan. 2018.

[31] M. Fiorani, S. Tombaz, P. Monti, M. Casoni, and L. Wosinska, ‘‘Green

backhauling for rural areas,’’ in Proc. Int. Conf. Opt. Netw. Design Model-

ing, May 2014, pp. 114–119.

[32] E. K. Markakis et al., ‘‘Efficient next generation emergency communica-

tions over multi-access edge computing,’’ IEEE Commun. Mag., vol. 55,

no. 11, pp. 92–97, Nov. 2017.

[33] N. Omidvar, A. Liu, V. Lau, F. Zhang, D. H. K. Tsang, and M. R. Pakra-

van, ‘‘Optimal hierarchical radio resource management for HetNets with

flexible backhaul,’’ IEEE Trans. Wireless Commun., vol. 17, no. 7,

pp. 4239–4255, Jul. 2018.

[34] J. Du, L. Zhao, J. Feng, and X. Chu, ‘‘Computation offloading and

resource allocation in mixed fog/cloud computing systems with min-max

fairness guarantee,’’ IEEE Trans. Commun., vol. 66, no. 4, pp. 1594–1608,

Apr. 2017.

[35] X. Chen, ‘‘Decentralized computation offloading game for mobile

cloud computing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,

pp. 974–983, Apr. 2015.

[36] Q.-V. Pham, H.-L. To, and W.-J. Hwang, ‘‘A multi-timescale cross-layer

approach for wireless ad hoc networks,’’ Comput. Netw., vol. 91, no. 11,

pp. 471–482, 2015.

[37] J. Wallenius, J. S. Dyer, P. C. Fishburn, R. E. Steuer, S. Zionts, and

K. Deb, ‘‘Multiple criteria decision making, multiattribute utility theory:

Recent accomplishments andwhat lies ahead,’’Manage. Sci., vol. 54, no. 7,

pp. 1336–1349, Jul. 2008.

[38] Q. V. Pham and W. J. Hwang, ‘‘Fairness-aware spectral and energy effi-

ciency in spectrum-sharing wireless networks,’’ IEEE Trans. Veh. Technol.,

vol. 66, no. 11, pp. 10207–10219, Nov. 2017.

[39] Y. Pochet and L. A. Wolsey, Production Planning by Mixed Integer Pro-

gramming, vol. 233. New York, NY, USA: Springer, 2006.

[40] Q.-V. Pham and W.-J. Hwang, ‘‘Resource allocation for heterogeneous

traffic in complex communication networks,’’ IEEE Trans. Circuits Syst.

II, Exp. Briefs, vol. 63, no. 10, pp. 959–963, Oct. 2016.

[41] Q.-V. Pham and W.-J. Hwang, ‘‘Network utility maximization-based con-

gestion control over wireless networks: A survey and potential direc-

tives,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 1173–1200,

2nd Quart., 2017.

16458 VOLUME 7, 2019

http://dx.doi.org/10.1109/ACCESS.2018.2882800


Q.-V. Pham et al.: MEC With Wireless Backhaul: Joint Task Offloading and Resource Allocation

[42] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, ‘‘Energy and spectral

efficiency of very largemultiuserMIMO systems,’’ IEEE Trans. Commun.,

vol. 61, no. 4, pp. 1436–1449, Apr. 2013.

[43] V. Chandrasekhar, J. G. Andrews, and A. Gatherer, ‘‘Femtocell networks:

A survey,’’ IEEE Commun. Mag., vol. 46, no. 9, pp. 59–67, Sep. 2008.

[44] J. Li, H. Gao, T. Lv, and Y. Lu, ‘‘Deep reinforcement learning based

computation offloading and resource allocation for mec,’’ in Proc. IEEE

Wireless Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1–6.

[45] H. Cao and J. Cai, ‘‘Distributed multiuser computation offloading for

cloudlet-based mobile cloud computing: A game-theoretic machine learn-

ing approach,’’ IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 752–764,

Jan. 2018.

[46] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, ‘‘Optimized

computation offloading performance in virtual edge computing systems

via deep reinforcement learning,’’ IEEE Internet Things J., to be published,

doi: 10.1109/JIOT.2018.2876279.

[47] H. Wang and Z. Ding, ‘‘Power control and resource allocation for outage

balancing in femtocell networks,’’ IEEE Trans. Wireless Commun., vol. 14,

no. 4, pp. 2043–2057, Apr. 2015.

QUOC-VIET PHAM (M’18) received the B.S.

degree in electronics and telecommunications

engineering from the Hanoi University of Sci-

ence and Technology, Vietnam, in 2013, and the

M.S. and Ph.D. degrees in telecommunications

engineering from Inje University, South Korea,

in 2015 and 2017, respectively. From 2017 to

2018, he was a Post-Doctoral Researcher at Kyung

Hee University, South Korea. He is currently a

Research Professor at the ICT Convergence Cen-

ter, Changwon National University, South Korea. His research interests

include network optimization, mobile edge/cloud computing, and resource

allocation for wireless networks. He received the Best Ph.D. Thesis Award

in engineering from Inje University in 2017.

LONG BAO LE (S’04–M’07–SM’12) received

the B.Eng. degree in electrical engineering from

the Ho Chi Minh City University of Technol-

ogy, Vietnam, in 1999, the M.Eng. degree in

telecommunications from the Asian Institute of

Technology, Thailand, in 2002, and the Ph.D.

degree in electrical engineering from the Univer-

sity of Manitoba, Canada, in 2007. He was a Post-

Doctoral Researcher with the Massachusetts Insti-

tute of Technology from 2008 to 2010 and with

the University of Waterloo from 2007 to 2008. Since 2010, he has been

with the Institut National de la Recherche Scientifique (INRS), Universite du

Quebec,Montreal, QC, Canada, where he is currently anAssociate Professor.

He has co-authored the books Radio Resource Management in Multi-Tier

Cellular Wireless Networks (Wiley, 2013) and Radio Resource Management

in Wireless Networks: An Engineering Approach (Cambridge University

Press, 2017). His current research interests include smart grids, cognitive

radio, radio resource management, network control and optimization, and

emerging enabling technologies for 5G wireless systems. He is currently

a member of the Editorial Board of the IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS and the IEEE COMMUNICATIONS SURVEYS AND TUTORIALS.

SANG-HWA CHUNG received the B.S. degree in

electrical engineering fromSeoul National Univer-

sity in 1985, the M.S. degree in computer engi-

neering from Iowa State University in 1988, and

the Ph.D. degree in computer engineering from the

University of Southern California in 1993.

He was an Assistant Professor with the Elec-

trical and Computer Engineering Department,

University of Central Florida, from 1993 to 1994.

He is currently a Professor with the Computer

Engineering Department, Pusan National University, South Korea. He also

serves as the Director of the Dong-Nam Grand ICT R&D Center, South

Korea. His research interests are in the areas of sensor networks, embedded

systems, fog computing, and IoT.

WON-JOO HWANG (S’01–M’03–SM’17)

received the B.S. and M.S. degrees in com-

puter engineering from Pusan National University,

Pusan, South Korea, in 1998 and 2000, respec-

tively, and the Ph.D. degree in information systems

engineering from Osaka University, Osaka, Japan,

in 2002. He is currently a Full Professor at Inje

University, Gimhae, South Korea. His research

interests include network optimization and cross

layer design.

VOLUME 7, 2019 16459

http://dx.doi.org/10.1109/JIOT.2018.2876279

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	MOBILE EDGE COMPUTING
	WIRELESS BACKHAUL

	SYSTEM MODEL AND PROBLEM FORMULATION
	NETWORK MODEL
	COMMUNICATION MODEL
	COMPUTATION MODEL
	PROBLEM FORMULATION

	PROPOSED ALGORITHM
	OFFLOADING DECISION
	JOINT WIRELESS BACKHAUL BANDWIDTH AND COMPUTATION RESOURCE ALLOCATION
	WIRELESS BACKHAUL BANDWIDTH ALLOCATION
	COMPUTATION RESOURCE ALLOCATION AT THE MEC SERVER

	JOINT COMPUTATION OFFLOADING, BANDWIDTH, AND COMPUTATION RESOURCE ALLOCATION
	ALGORITHMIC DETAILS
	COMPLEXITY ANALYSIS
	CONVERGENCE ANALYSIS


	FURTHER DISCUSSIONS AND EXTENSIONS
	COMPUTATION OFFLOADING IN ULTRA-DENSE NETWORKS
	OFFLOADING DECISION
	SUBCHANNEL ASSIGNMENT
	RESOURCE ALLOCATION

	PARTIAL OFFLOADING DECISION
	MACHINE LEARNING BASED COMPUTATION OFFLOADING

	NUMERICAL RESULTS
	SIMULATION SETTINGS
	SIMULATION RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	QUOC-VIET PHAM
	LONG BAO LE
	SANG-HWA CHUNG
	WON-JOO HWANG


