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Abstract. Objective In the past few years there has been a growing interest
in studying brain functioning in natural, real-life situations. Mobile EEG allows
to study the brain in real unconstrained environments but it faces the intrinsic
challenge that it is impossible to disentangle observed changes in brain activity due
to increase in cognitive demands by the complex natural environment or due to the
physical involvement. In this work we aim to disentangle the influence of cognitive
demands and distractions that arise from such outdoor unconstrained recordings.
Approach We evaluate the ERP and single trial characteristics of a three-class
auditory oddball paradigm recorded in outdoor scenario’s while peddling on a
fixed bike or biking freely around. In addition we also carefully evaluate the trial
specific motion artifacts through independent gyro measurements and control for
muscle artifacts. Main results A decrease in P300 amplitude was observed in the
free biking condition as compared to the fixed bike conditions. Above chance P300
single-trial classification in highly dynamic real life environments while biking
outdoors was achieved. Certain significant artifact patterns were identified in
the free biking condition, but neither these nor the increase in movement (as
derived from continuous gyrometer measurements) can explain the differences
in classification accuracy and P300 waveform differences with full clarity. The
increased cognitive load in real-life scenarios is shown to play a major role in the
observed differences. Significance Our findings suggest that auditory oddball
results measured in natural real-life scenarios are influenced mainly by increased
cognitive load due to being in an unconstrained environment.

Keywords: Mobile EEG, Auditory Attention, Cycling, P300, Gyroscope, Brain-
Computer-Interface, Real-life Environment.
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1. Introduction

The most studied feature in Brain-computer-interfaces
(BCI) with non-invasive electroencephalography (EEG)
is the P300, generated in response to rare and task-
relevant stimuli (e.g.[1, 2, 3, 4]). Originally, BCIs
were proposed to provide accessibility to comput-
ers for locked-in patients [5]. More recently, they
have also gained potential in applications for healthy
users [6, 7]; especially when they are not bound to
highly restricted traditional laboratory settings. In
the past few years there has been a growing interest
in studies that utilize mobile EEG in natural, real-
life situations [8, 9, 10, 11, 12, 13, 14]. The success
of these studies is closely related to the data qual-
ity observed with miniaturized portable EEG hard-
ware such as Emotiv (www.emotiv.com) and SMART-
ING (www.mBrainTrain.com). For example the orig-
inal Emotiv hardware was found to be inferior to a
medical grade system [15, 16], however a modified
setup allowed high quality recordings [8]. Moreover,
it was recently demonstrated that such mobile de-
vices can deliver comparable waveforms as traditional
EEG systems [17]. The presence of mobile EEG cre-
ates new possibilities for investigating cognitive mech-
anisms in natural environments in contrast to lim-
ited and artificial laboratory setups [6, 7, 18]. Al-
though real-life scenarios have been mimicked in labs
[19, 20, 21, 22, 23], true real-life EEG recordings are
sparse (e.g. [8, 9, 24, 25, 26]). These studies demon-
strated the feasibility of investigating auditory atten-
tion while walking which mimics closely a practical ap-
plication of auditory BCI in real-life [10, 11]. However,
these studies face the challenge that the observed differ-
ences (e.g. decreased P300 while walking as compared
to still conditions [8, 9]) can be attributed to either
the higher cognitive demands or to the contributions
of physical activity in such auditory attention tasks.

In mobile real-life experiments the users mental
focus is less controllable compared to indoor record-
ings. Additionally, unconstrained setups may induce
additional artifacts such as head and body motions or
increased muscle activity [27, 28]. Walking outdoors
while performing an auditory oddball task leads to sig-
nificantly lower classification accuracies compared to
sitting still indoors [8, 9]. De Vos et al. speculated
that the subjects in the walking condition endured in-
creased cognitive demands and distractions that caused
the lower performance. In the current study subjects
were presented with the same three-class auditory odd-
ball paradigm in three different outdoor conditions to
disentangle effects of physical activity from higher cog-
nitive demand. In one condition subjects sat still on a
regular bike fixed in a framework so that they did not
move. Secondly subjects sat on the fixed bike and ad-
ditionally pedaled at a user chosen comfortable pace.

The third condition comprised of biking freely on a pre-
explored course on the university campus. This was
the most demanding condition as the subjects need to
attend to the auditory task, execute motor patterns
to pedal and deal with the complex environment as
they move around the streets. The pedaling condi-
tion induces muscle and motor activity but probably
no increased cognitive load as compared to actual bik-
ing around campus. Sitting completely still in a bike
position can be seen as the most restricted condition
(control) in which only environmental noise could dis-
tract the subjects. All conditions took place outside
to ensure similar degrees of random environmental ef-
fects (i.e. weather conditions, cars passing by, people
talking in the background).

Several EEG laboratory studies investigated
specifically the effect of cycling exercise on the P300.
Studies have reported an increase in P300 amplitude
during or after physical pedaling on an exercise bike in
response to visual attention tasks [29, 30, 31]. Vogt et
al. contrastively reported no influence of exercise on
the P300 in a virtual reality study [32]. Furthermore,
Yagi et al. described decreased P300 amplitudes in
during exercise [33]. Potential reason for the decrease
in P300 in these studies is reasoned to be the increase
in cognitive load that diminishes the P300 due to lower
attentional resources. Yet another study indicated
increases in P300 only during 72 to 108 min of exercise
[34]. These studies did not evaluate the fluctuations
in P300 in a true real-life enviroment. Given that
in our setup the cognitive demands will be higher
as compared to the aforemented lab-setups we would
hypothesize for a decrease in P300 in the real biking
conditions as compared to the fixed bike conditions.
Additionally, very few mobile EEG studies explicitly
controlled for the amount of movement while recording
in real-life situations, although many systems allow
to simultaneously record the level of movement. Lab
studies usually try to minimize head and body motion
and the influence of physical motion on, for example,
the P300 is avoided principally by trial rejection. In
the current setup we have instantaneous correlates
of head movement from a 3D gyro measurement
that allows to investigate these potential artifacts
and derive measures to compare the motion to ERP
and classification features. Being in less constrained
scenarios, subjects will be more mobile, leading to
notable EMG artifacts in the EEG (e.g. increased
muscle activity to keep head up) [35, 36, 37, 38, 39].
For an overview on the methodological challenges of
recording EEG during motion we refer the reader to
[38]. Past experience has shown that CCA-based
demixing of the data leads to a superior removal of
artifacts as compared to the wide-spread ICA-based
demixing [40, 41]. Here we follow this approach to
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extract muscle related sources from the EEG.
To summarize, the main goal is to evaluate the

influence of cognitive distraction and physical engage-
ment on auditory attention correlates in unconstrained
out-of-the-lab scenarios. We will investigate both ERP
and single trial correlates recorded from subjects seated
on a bike without pedaling, with pedaling and while
biking in real life environments. Secondly, we will in-
vestigate the effect of different amounts of movement,
as quantified with a 3D gyrometer signal on P300 fea-
tures. Finally we compare the main P300 waveform
results before and after correcting for EMG activity.

The article is structured as follows: Firstly, we
provide a brief overview of the stimuli, hardware,
procedure and data acquisition with the mobile EEG.
Secondly, we discuss the data analysis of the derived
ERP features and classification methods used. Thirdly,
the obtained results are presented in terms of ERP
results, motion quantification and classifier output.
Fourthly, the influence of EMG artifact removal on
the aforementioned results are presented. Finally, we
discuss the effect of real-life circumstances on auditory
attention and the complementary information obtained
from physical motion measures followed by future
perspectives for the field of mobile EEG studies.

2. Methods

2.1. Participants

Fifteen subjects (mean age (SD): 27.1 (2.5), four
women) participated in the current trial. Subjects
reported normal hearing and no past or present
neurological or psychiatric conditions. All participants
signed informed consent prior to participation. The
ethics committee of the KU Leuven approved the
experimental setup. All subjects reported to be able
to ride a bike confidently.

2.2. Stimuli and procedure

A three-class oddball auditory task was used as
proposed by [4]. A standard tone (900Hz) and
two deviant tones (600Hz, 1200Hz) of 62ms duration
(10ms rise/fall time) were presented binaurally through
low-cost consumer headphones (Sennheizer mx460) in
random order. A mean inter-stimulus interval of 1000
ms (jitter [0-375] ms) was used. The participants
task was to silently count the target tones and ignore
the two other tones. Eight subjects attended the
lower (600Hz) tone and the others attended the high
(1200Hz) tone. The subjects’ attention to a certain
tone should elicit a distinguishable P300 (target) as
compared to the non-attended tones (non-Targets).
504 standards, 92 non-target deviants and target
deviants were presented in the first condition. In the

second recording a few more trials were presented in
order to create a valid task silently counting targets
(105 stimuli). In the third recording the stimulus
numbers were equal to the first condition. Due
to technical issues, we recorded only 69 trials in 2
subjects. In all other subjects and conditions the trials
were truncated, restricting each condition to 92 trials in
order to ensure equal comparisons between conditions.
The recordings took place outdoors on the campus of
the KU Leuven. The subjects performed one recording
while sitting still on a bike in a fixed standard facing
nature and one recording while pedaling on the bike
in the fixed standard. The third condition involved
biking freely around on a 500m course on campus for
the period of the experiment. An overview of the three
conditions is presented in Figure 1. The biking route
(move condition) was predefined and practiced before
the start of the experiment. The order of the conditions
was balanced between subjects. These three conditions
will be referred to as Still, Pedal and Move from here
on. During the experiment, participants carried an
ultrabook laptop (weight <2 kg) in a backpack. Each
condition lasted roughly 12 minutes. For the Pedal
and Move conditions subjects were free to pedal at
a comfortable pace. On average, subjects biked 12
km/h, as derived from the average time taken to bike
once around the course. The course for biking in the
Move condition involved regular streets with traffic
(i.e. mostly pedestrians and cyclists, very few cars).
Note that during all recordings, subjects were outdoors
exposed to naturally occuring (sound) distraction (e.g.
insects which seemed to be attracted to the gel, wind,
car traffic noise and people passing by). Recordings
took place during spring and summer of 2015; the
temperature varied between 10 and 30 degrees Celsius.
Recordings with strong wind >4Bft and precipitation
were avoided. OpenViBE software [42] running on
the ultrabook was used for stimulus delivery and
experimental control. After the experiment, subjects
were asked to rate (on a scale from 1 to 10) the three
conditions according to the degree they enjoyed each
of the recordings. This was included in order to obtain
a coarse measure of motivation as this has been shown
to influence the P300 waveform [43].

2.3. Data acquisition

The acquisition was conducted with a SMARTING
mobile EEG amplifier from mBrainTrain (Belgrade,
Serbia, www.mbraintrain.com). This comprises a
wireless EEG system running on a notebook using a
small 24-channel amplifier with similar characteristics
to a stationary laboratory amplifier (<1V peak to
peak noise; 500Hz sampling rate). The EEG was
measured using 24 Ag/AgCl passive scalp electrodes
(Easycap, www.easycap.com), placed according to the
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Figure 1. Schematic of the Still, Pedal and Move conditions. Note that in the Pedal conditions subjects sit on the fixed bike like
the Still condition and pedal like they were biking in the Move condition. All recordings took place outdoors at or next to roads on
the KU Leuven campus

10-20 standard system with positions: FP1, FP2,
Fz, F7, F8, FC1, FC2, Cz, C3, C4, T7, T8, CPz,
CP1, CP2, CP5, CP6, TP9, TP10, Pz, P3, P4,
O1 and O2. Impedances were kept below 10 kOhm
and an abrasive electrolyte-gel was applied in each
electrode. In addition three-axis (x,y,z) gyroscope data
was measured at similar sampling rate as the EEG. The
gyroscope is included in the amplifier which is placed
at the back of the head. Data were recorded through
Openvibe [42] and analyzed offline using custom made
Matlab scripts, EEGLAB13.4.3b [44] and BCILAB1.1
[45].

2.4. Data analysis

2.4.1. Preprocessing Extended Infomax ICA was
used to remove EOG activity by means of manual
component selection that represented eye-blinks and
lateral eye movements. As a pre-processing step for
ICA all EEG data was high-pass filtered at 1Hz as
this is shown to produce stable ICA results for artifact
removal [46]. Consecutively the learned weights of the
marked EOG components were applied to a common
band-pass filtered [0.5-20]Hz dataset. Signals were re-
referenced offline to the mean of TP9 and TP10 and
epochs were extracted 200ms before stimulus onset
to 800ms after. The Tp9 and Tp10 channels were
removed after re-referencing. A baseline subtraction
was applied based on the [-200-0]ms interval. The
gyro-signals were high-pass filtered at 0.5Hz as well.
Average ERPs were calculated at the Pz electrode as
this is the most prominent site for the P300 waveform.
Visual representation of the ERPs was achieved after
removing artifactual single-trials as implemented in
EEGLAB [44]. Rejection criteria were based on
abnormally distributed data and improbable data.
The cutoff was defined as four standard deviations of
the mean kurtosis value and probability distribution
respectively. Note, all the analyses were based on the
full dataset.

In addition we removed EMG activity by means
of BSS-CCA. This assumes that EMG sources have
significantly lower autocorrelation as compared to

brain sources [40]. Removal of the EMG was achieved
through BSS-CCA on 10s non-overlapping windows.
After extracting 24 components (per window), the
power spectral density of each source was computed.
Sources with a power ratio smaller than 2 between
brain band (i.e. 3-15Hz) and muscle band (i.e. 25-
50Hz) were removed. This approach is similar as
presented in [40, 41].

2.4.2. Classification For single-trial P300 classifica-
tion we extracted one feature set which consisted of two
different types of features: The first type comprised
seventeen 47ms data bins on all 22 electrodes between
[0-800]ms, which is similar to previously reported work
[8, 9] resulting in 374 features. In addition we averaged
all standard-stimulus trials of the non-test subjects to
create an average template. This was shown to pro-
vide an accurate estimation of the non-Target wave-
forms and therefore the distance to this template can
be used as discriminative feature to distinguish target
from non-targets trials. We down-sampled the EEG
data and template to 30Hz and subtracted per trial
the EEG data from the template in eleven points in a
200-533ms window on all 22 electrodes, resulting in an-
other 242 features. This feature extraction follows the
approach used in previous publications [14, 47]. Both
feature types were concatenated creating a total of 616
features per single-trial. We classify the EEG signals
using a Linear Discriminant Analysis as it is among the
most used classifiers for the P300 [48, 49, 50]. Shrink-
age regularization as implemented in BCILAB [45] is
used for the rLDA classification. Per subject and ses-
sion the classifiers are trained and evaluated based on
a five-fold cross-validation procedure. Finally, to eval-
uate differences between conditions further, we train
per subject an rLDA classifier on data from one of the
other two conditions of that same subject. For exam-
ple train on the Still condition and Test on the Pedal
condition (Cross-session).

2.4.3. ERP features In order to compare the ERP
features we computed the maximum P300 at Pz for the
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Figure 2. Grand average ERPs to the Target, nonTarget and Baseline stimuli at electrode Pz for the Still, Pedal and Move
conditions from left to right respectively. At the peak N100 and P300 ERP a topoplots indicates the distribution of the peak along
all electrodes for the Target stimuli. Note: for illustrational purposes artifactual single-trials were removed before plotting. Reported
statistics in the text are based on the full dataset.

Target and Distractor tones for each subject in a [200-
600]ms interval. Likewise we computed the minimum
N100 at Pz for all tones in the [0-200]ms interval. This
was achieved by averaging 22ms (i.e. 11 samples [-5
+5]) around the peak latency value at each electrode.
The root mean square (RMS) in the [-200-0]ms baseline
interval was used as noise measure for the EEG which is
similar to [9]. Consecutively we took the average RMS
over the three gyro axes in the [0-800]ms interval as
measure of the amount of head motion per trial. Alpha
band activity (8-12Hz) was calculated at electrode O2
as the average normalized power in this range for the
Target trials.

2.4.4. Statistical analysis One-way ANOVAs were
performed to determine the significance of mean group
differences between the three conditions. This was
used for comparing EEG RMS, N100 amplitude, Gyro
RMS and classification accuracies between conditions.
For the P300 comparison a repeated measures analysis
of variance ANOVA was conducted with the factors
recording (Still, Pedal and Move) and tone (Target,
NonTarget). This way we evaluate the elicted P300
differences between the target and distractor tone
and explore impact of the recording condition on this
effect. In all analyses, the significance level was set at
.05. Pearsons correlation coefficient is used to identify
linear relationships between our derived ERP and RMS
features and classification results.

3. Results

The ERP, Noise level, Classification and Gyro results
presented here are obtained on the data without
explicit control for muscle artifacts. Consequently,
Section 3.5 displays the results after removal of muscle
artifacts.

3.1. ERP

The average ERPs of the Baseline, Target and
NonTarget tones are displayed in Figure 2 with
topographies of the peak P300 and N100 for the
Still, Pedal and Move condition. In all conditions
a clear posterior focus of the P300 topography is
visible whereas the N100 is more central. P300
amplitude in the Move condition was on average
31% and 26% lower as compared to the Still and
pedal condition respectively. The repeated measures
ANOVA recording (Still, Pedal, Move) × tone (Target,
NonTarget) revealed a nearly significant main effect for
recording, F(2,14) = 2.89, p = .06, reflecting larger
amplitudes for the still (mean = 6.8 µV) and pedal
(mean = 6.3 µV) compared to the Move condition
(mean = 4.7 µV). In addition, a significant main effect
for tone emerged, F(2,14) = 68.41, p <.001, confirming
larger P300 amplitudes for target tones (mean = 5.96
µV) compared to distractor tones (mean = 1.57 µV).
The interaction recording tone was far from reaching
significance, F(2,14) = .58, p = .56.

Contrastingly the peak N100 values did not differ
significantly i.e. one way ANOVA (F=0.42, p = .66),
(F=0.21, p = .83) and (F=1.20, p = .31) across
conditions for the target, nontargets and baseline
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stimuli respectively. A slightly higher P300 latency
was observed in the Move condition; 445ms (±95) as
compared to the Still 400ms (±56) and pedal 388ms
(±89) latencies but this difference was not statistically
significant (F=2.00, p = .15). Correlations between the
subject average P300 across the still-pedal conditions
was moderate (r = .70, p <.001), for the pedal-
move (r = .61, p <.001) and still-move (r = .55, p
<.001). Overall, subjects which had more consistent
P300 waveform across conditions also had a higher
P300 amplitude (r = .74, p <.01).

3.2. Noise levels

The mean RMS values of the target trials’ baseline at
Pz did not show significant differences overall between
conditions (F=0.14, p = .87). These RMS values at
Pz are similar to the ones reported during Sitting
and Walking in a previous study [9]. However, at
different electrode sites differences between conditions
can be observed. Figure 3 illustrates the median RMS
of the pre-stimulus window for all channels in the
Still, Pedal and Move condition. The Pedal condition
RMS values were only slightly elevated as compared
to the Still condition and the RMS topography does
not change. In the Move conditions on the outer
electrode sites clear differences can be observed as
compared to the other two conditions. This was
confirmed by (marginally) significant ANOVA results
on channels: FP1 (F=3.09, p = .06), FP2 (F=3.25, p
<.05), O1 (F=2.70, p = .08) and O2 (F=4.50, p <.05).
Pairwise comparisons showed a significant increase in
RMS in the Move condition as compared to either the
Still or Pedal condition. The artifactual pattern in
the Move condition is similar to those presented by
motion artifact studies that report increased artifacts
especially at the outer electrode sites [28].

Figure 3. Median RMS values of the baseline interval [-200-
0]ms of the Target trials at each electrode for the Still, Pedal
and Move condition.

3.3. Classification

Grand average accuracies (±SD) on a single trial
level are 76.6 (±7.0), 72.7 (±9.3) and 67.6% (±8.5)
for the Still, Pedal and Move condition respectively
which are presented in table 1. These differences were
deemed significant (F=4.45, p <.05). The accuracies

in the Move condition were significantly lower as
compared to the Still (t14=3.89, p <.01) and Pedal
(t14=3.31,p<.01) condition. The difference between
Pedal and Still conditions was marginally significant
(t14=2.06,p = .06). P300 ERP amplitudes were
significantly correlated to the rLDA accuracy across
subjects for all three conditions; still (r = .71, p <.001),
pedal (r = .80, p <.0001) and move (r = .64, p
<.05). This indicates that individuals with larger P300
ERPs had better classification accuracies. Similarly,
correlations of the single-trial classification accuracies
between the still-pedal (r = .61, p<0.05) and pedal-
move (r = .78, p <.001) were observed. This was not
the case for the still-move comparison of accuracies (r
= .33, p = .22).

Table 1. Grand-Average Session Specific accuracies (±SD).

Still Pedal Move

Accuracy 76.6% (±7.0) 72.7% (±9.3) 67.6% (±8.5)

Classifying across sessions lead to accuracies of
71.4 (± 8.9) and 68.5 (± 7.6) for the Still condition
when trained on the Pedal and Move data respectively.
Accuracies in the Pedal condition were 71.3 (± 8.7)
when trained on the Still recordings and 67.8% (±
9.4) for training on the Move condition. Finally
the Move condition accuracies were 66.4 (± 6.5) and
65.1 (± 9.3) when trained on the Still or Pedal
condition respectively. The accuracies of all cross
session comparisons are summarized in Table 2.

Table 2. Grand-Average Cross-Session accuracies (±SD).

Train On Test Still Test Pedal Test Move

Still n/a 71.3% (±8.7) 66.4% (±6.5)
Pedal 71.4% (±8.9) n/a 65.1% (±9.3)
Move 68.5% (±7.6) 67.8% (±9.4) n/a

3.4. Gyro Signals

Average (±SD) RMS values of the 3-axis gyroscope
signals are 2.4 (± 0.6) in the Still, 17.4 (± 9.7) in
the Pedal and 27.6 (± 8.0) in the Move conditions.
The single-trial motion distributions are displayed in
Figure 4a. As expected the mean gyro motion RMS
variables were higher in the Move condition as opposed
to the Pedal and Still condition. Similarly the Pedal
condition gyro RMS was higher compared to the Still
condition. To examine the effect of the motion in the
(real-life) Move condition as measured with the gyro
to the ERPs, we split per subject the trials into eight
bins of low to high motion of equal trial numbers.
The gyro effect on the eight grand average ERPs is
depicted in Figure 4b. The color coding indicates the
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eight different levels of motion. Finally in Figure 4c the
peak P300 as seen in Figure 4b is plotted in order to
reveal any effect of motion level on the P300 amplitude.
No decrease in P300 amplitude can be observed and
these results suggest that there is no dependence of
gyro motion on the ERP at Pz. Similar results were
obtained by analysing the P300 waveforms on the
gyro axes separately (not presented here). Finally,
we investigated the relationship of the gyro motion on
the accuracies as computed with the subject specific
rLDA on subject level. The gyro motion level displays
a moderate negative correlation to the rLDA accuracies
for the Still (r = -.39, p = .15), Pedal (r = -.51, p =
.05) and Move (r = -.33, p = .23) conditions and lower
correlations to the average P300 amplitude (r = -.36,
p = .10), (r = -.43, p = .11) and (r = -.16, p = .58)
for the Still, Pedal and Move condition respectively.

3.5. Muscle Artifacts

After removing muscle activity, the mean RMS values
of the target trials’ baseline at Pz showed no significant
differences between conditions (F=0.59, p = 0.56)
which is similar as mentioned before in paragraph
3.2. Overall, the RMS topographies are more similar
between conditions after EMG removal as the ones
prior to removal of the EMG activity (cf. figure 5 and
figure 3). The principal difference is evident as a strong
decrease of the RMS values in the Move condition. In
general the P300 amplitudes at Pz decreased slightly
after removing the EMG activity. The repeated
measures ANOVA recording (Still, Pedal, Move) ×

tone (Target, NonTarget) revealed a significant main
effect for recording F(2,14) = 3.93, p = <.05, reflecting
significantly larger amplitudes for the Still (mean =
6.4 µV, t14=4.08, p <.01) and Pedal (mean = 5.9 µV,
(t14=2.84, p <.05)) condition compared to the Move
condition (mean = 4.1 µV). The difference between the
Pedal and Still condition failed to reach significance
(t14=1.09, p = .29). These differences in P300 are
similar to the ones reported in paragraph 3.1 without
control for muscle artifacts.

The grand average accuracies (±SD) on single
trial level after EMG correction are 75.5 (±8.2), 70.0
(±10.4) and 66.2% (±8.4) for the Still, Pedal and Move
condition respectively. These differences were deemed
significant (F=4.45, p <.05). The difference between
Pedal and Still conditions was deemed significant
(t14=2.47,p = <.05) and the accuracies in the Move
condition were significantly lower when compared to
the Still (t14=4.82, p <.001) condition, but not in
comparison to the Pedal condition (t14=1.70,p=0.11).

3.6. User Metrics

We determined per subject the average normalized
power in the alpha band (8-12Hz) for the three
conditions prior to the muscle activity removal.
Mean (±SD) normalized alpha power for the Still,
Pedal and Move conditions are respectively 18.5
(± 4.2), 16.8 (± 3.6) and 14.7 (± 3.6). These
values differ significantly (F = 3.69, p <.05) which
was caused by a lower alpha power in the Move
condition as compared to the Still (t14=2.51,p<.05)
and Pedal (t14=2.45,p<.05) condition. The difference
between the Still and Pedal conditions failed to reach
significance (t14=1.37,p=.19).

Average motivational scores were highest in the
Move condition with a mean 8.5 (SD ± 1.0) followed
by the Pedal condition with 7.6 (± 1.5) and lastly
the Still condition scored a 6.2 (±1.5). These
were significantly different (F=11.28, p<0.001) and
pairwise comparisons displayed a significantly higher
motivation score for the Move condition compared
to the other two. This indicates that the subjects
enjoyed the Move condition the most. Finally, a
nearly significant correlation (r = .28, p = .07)
between the number of correctly counted tones and
the single-trial classification accuracy suggested that
those individuals attending more to the task had better
classification accuracy. Moreover, the percentage of
correctly counted tones in the Still, Pedal and Move
condition were very high, respectively 98.6 (± 1.2),
97.5 (± 3.3) and 97.7% (± 2.6).

4. Discussion

Mobile EEG allows to study the brain in real
unconstrained environments. Previous studies with
(mobile) EEG did not control independently for the
increase in cognitive demands by the complex natural
environment and the increase in physical involvement
has merely been studied in simulated environments
(e.g. [29, 30, 31, 32, 33, 34, 35, 36, 51, 52]). We
evaluated the ERP characteristics and classification
performance of a three-class auditory oddball paradigm
recorded in outdoor scenarios’s while biking on either
a fixed bike or freely around. The Move condition was
an unconstrained ride around the place, representing
a fully realistic scenario. Above chance P300 single-
trial classification in these highly dynamic real life
environments while biking outdoors was achieved.
Certain artifact patterns were identified in the free
biking condition, but we show that neither these
nor the increase in movement explain the reduction
in classification accuracy and P300 waveform in
the real-life biking condition as compared to the
control conditions. Therefore this study provides
strong evidence that the higher cognitive demands
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Figure 4. A. Averaged (over 3 axis) gyro RMS per trial for the Still, Pedal and Move condition from left to right respectively. B.
The average ERPs at Pz to eight divisions of the Move condition data based on the gyro RMS in A(most right figure). The color
indicates the degree of motion and all degrees have equal number of trials. Finally in C the peak P300 from B in contrast to the
eight motion degrees; the P300 peaks seem to be unrelated to the degree of motion.

Figure 5. Median RMS values of the baseline interval [-200-
0]ms of the Target trials at each electrode for the Still, Pedal
and Move condition after EMG removal.

are the underlying cause of the reduced attentional
brain responses to auditory stimuli. This reasoning
corresponds to the intuitive explanation that biking
around in a natural environment requires definitely
more cognitive resources as the non-mobile conditions.

On the grand average a decreased P300 peak was
observed in the Move condition as compared to the
other (more restricted) conditions (Figure 3, P300 topo
plots). Similar effects were notable after controlling for
muscle artifacts. This decrease in P300 during outdoor
moving conditions was similarly described by [8, 9],
albeit without control for artifacts and movement.
Interestingly, N100 peak values for all stimulus types
did not differ significantly between our conditions. We

reason that the P300 and N100 should be influenced
equally by physical artifacts. Since predominantly the
P300 is altered between conditions this suggests that
the effect of the Move condition on the P300 is larger
as compared to the N100.

Additionally a mildly increased latency of the
P300 was found in the Move condition, although
this was not deemed significant, it may be suggestive
of increased cognitive load. Indoor exercise studies
suggest an increase in P300 during or after physical
pedaling on a bike [29, 30, 31]. In our ERP analysis no
clear distinction could be made between the Pedal and
Still condition; similar P300 waveforms were observed
which is similar to the results of [32]. These differences
may originate from the paradigm that is used to
generate a P300. The three-class auditory oddball
task is dependent on the ability to attend to the
acoustic stimuli and that may be more difficult with
a dual task of listening and biking in a distractive
environment. Another measure related to the level of
cognitive functioning is the EEG power in the alpha
band. A decrease of alpha power may be indicative
of increases in task difficulty and mental workload
[19, 53, 54]. The alpha power decrease in the move
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conditions suggests a lower focus on the auditory
targets which can be related to increased difficulty due
to the real-life circumstances as compared to the pedal
and still conditions. An alternative explanation that
we could not rule out is that the decrease in alpha
power may be correlated with the extent of physical
engagement.

The gyro motion quantification displayed a clear
increase in head motion in the Pedal and Move
conditions as compared to the Still condition (Figure
4A). However, similar ERPs were observed in the
Still and Pedal condition illustrating that the wireless
system used for recording and the unconstrained setup
did not affect the EEG quality at channel Pz. In the
real-life Move condition we split the trials to eight bins
with increasing motion levels. This did not lead to a
decreased P300 waveform or peak amplitude as was
depicted in Figure 4B-C. Furthermore, the correlation
between P300 amplitude and the head-motion was
found to be minor, especially in the Move condition
(r = -.16). A smaller P300 while biking can be
alternatively explained by that the brain is occupied
with extra tasks over and above the experimental task,
for example the evaluation of the dynamic acoustic and
visual environment and ensuring that the bike stays on
the road. Similar reasoning was put forward by [9].

The EEG RMS values between conditions were
only significantly higher at the frontal and posterior
electrodes (Figure 3) for the Move condition. Further
analysis of these channels with higher RMS values in
the Move conditions showed sporadic low frequency
fluctuations (head motion) and short, higher frequency
range artifacts that are indicative of muscle activity.
This can be attributed to a mix of electrode movement
and muscle tension which is more elevated while riding
a bike as opposed to the fixed conditions. Similarly
there was an increase in gyro motion for the Move
condition (Figure 4a). The fact that central channels
such as Cz and Pz remain almost unaffected indicated
that the observed artifacts did not have a large impact
on the ERP results. The increase in head motion in the
Move condition was expected to increase the muscle
acitivity as well. This was confirmed by the large
decrease of baseline RMS in the Move condition after
controlling for muscle artifacts. Generally, controlling
for muscle artifacts did not lead to different insights.
Finally, the RMS topographies and degree of motion
artifacts varied across subjects which is in line with
recent views on motion artifacts and EEG [27].

Single trial characteristics have been assessed by
computing rLDA classification results as is routinely
done in BCI applications. For a practical BCI
application, approaches that reduce the subject-
specific calibration time have gained momentum for
BCI processing [14, 55, 56]. Riemannian geometry in

particular has been shown to be very powerful for P300
classification and easy generalization over subjects
[55]. Furthermore, the incorporation of additional
structural properties present in the paradigm [14],
or a reliance on stimulus presentation distributions
through Bayesian statistics [56] could be beneficial.
A valuable future line of research would be to see
how these more profound methods would perform
on real-life data such as the Move condition in the
current study. A recent study on motor imagery
suggested that methods which work well in a lab
environment can perform poorly in realistic application
scenarios [57]. The differences between conditions
may be larger in real-life scenarios as compared
to restricted lab setups. Differences between our
conditions were also observed from the cross-session
trained classifier models which performed consistently
lower compared to session-specific classification (c.q.
Table 1 and Table 2); when trained on the
Move condition large differences in accuracy can be
observed for the Still and Pedal condition. This is
supported by the high average correlation (r=0.70)
between the subject P300 waveforms of the Still
and Pedal condition, but lower for comparisons of
these to the Move condition, (r=0.61) and (r=0.54)
respectively. The observed differences between
conditions are indicative of non-stationarities or
unidentified artifactual influences in the signal and
transferring these session-specific differences might
improve classification [58]. Furthermore higher
correlations were found between the gyro motion and
the rLDA accuracy as between the gyro motion and the
P300, suggesting that motion artifacts (at the outer
channels) might have an influence of the rLDA results
as compared to the P300 in our ERP analysis.

It is vital to understand that the precise extent by
which participants could focus their attention on the
target tone while blocking out the distractor stimulus
is unknown. Future measurements of the environment
by means of video and audio monitoring may provide
better control of auditory distraction events. Future
analysis may also look into different types of head
motions in the gyro signals. Increased left-right
motion patterns may be indicative of distracting events
whereas nodding patterns occur more naturally during
biking and walking. Several subjects that attended to
the high pitched tones reported that they sometimes
confused the baseline tones with the high tones. This
may be controlled by measuring the hearing thresholds
prior to the experiment. However, post-hoc analysis
showed no effect of tone on the classification accuracy.

Indoor EEG experiments can be very long and
monotonous for the subjects as external influences
and distractions are minimized. High scores on the
motivation question for the Move condition illustrated
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that subjects enjoyed the real-life condition more even
though the distractions made it more difficult to focus
on the auditory mental task. This is a promising
finding as user experience is an important factor in
BCI as well [33, 59].

The current study presents several limitations to
the analysis and setup. The self-reported motivation
score is subject to bias and a standardized test such as
used in [43] is likely to provide a more reliable measure.
Subjects pedaled at a user-defined comfortable pace
in the Pedal and Move conditions. There was no
control of speed in our study, although in related
treadmill walking studies the speed of walking was
shown to be related to the number of artifacts in
the EEG [20, 27]. However, forcing users to stay
in a specific speed range might cause additional bias
since subjects may be controlling for speed constantly.
Future work that combines heart-rate monitoring
with the mobile EEG may provide complementary
information regarding the degree of physical exercise
[30]. Moreover, heart rate has been identified as an
indicator for mental state switches that could have an
influence on the EEG signals [23]. Applying additional
motion correction techniques may lead to new insights
regarding comparisons of the classifiers. A future
comparison of artifact removal techniques on real-life
mobile EEG data as presented in the current study
would therefore be very interesting [11, 27]. Finally
users could have felt abashed as point of attention while
biking outside which may have lowered the ability to
focus on the auditory tones. Fortunately new hardware
solutions are prominent to make the EEG equipment
even less distractive and visible [24, 25] which is a
promising development.

5. Conclusion

In summary, we evaluated the ERP and single trial
classification characteristics of a three-class auditory
oddball paradigm recorded in outdoor scenario’s while
biking on either a fixed bike or freely around. We
identified elevated noise levels in the natural biking
condition affecting only the outer channels. The
influence of the natural head motion on the ERP
waveforms on Pz was minimal and controlling for
muscle artifacts reduced the overall noise level but
did not lead to different insights regarding the P300
differences between conditions. A reduction in P300
in the Move condition led to lower classification
accuracies obtained with rLDA. The reduction in
P300 in the Move condition can be attributed to
increased cognitive load due to being in a real-
life scenario. These findings suggest that cognitive
paradigms measured in natural real-life scenarios, such
as the auditory oddball results presented here, are

influenced significantly by increased cognitive load due
to being in an unconstrained environment.
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SC Kleih, A Kübler, and S Halder. Effects of training
and motivation on auditory P300 brain-computer
interface performance. Clinical Neurophysiology, 2015.

[44] Arnaud Delorme and Scott Makeig. EEGLAB: an open
source toolbox for analysis of single-trial eeg dynamics
including independent component analysis. Journal of
neuroscience methods, 134(1):9–21, 2004.

[45] Christian Andreas Kothe and Scott Makeig. BCILAB:
a platform for brain–computer interface development.
Journal of neural engineering, 10(5):056014, 2013.

[46] Maarten De Vos, Jeremy D Thorne, Galit Yovel, and Stefan
Debener. Let’s face it, from trial to trial: comparing
procedures for N170 single-trial estimation. Neuroimage,
63(3):1196–1202, 2012.

[47] R. Zink, B. Hunyadi, S. Van Huffel, and M. De Vos.
Classifying the auditory P300 using mobile EEG
recordings without calibration phase. In Engineering
in Medicine and Biology Society (EMBC), 2015 37th
Annual International Conference of the IEEE, pages
1777–1780, Aug 2015.

[48] Benjamin Blankertz, Steven Lemm, Matthias Treder,
Stefan Haufe, and Klaus-Robert Müller. Single-trial
analysis and classification of ERP componentsa tutorial.
NeuroImage, 56(2):814–825, 2011.

[49] Fabien Lotte, Marco Congedo, Anatole Lécuyer, and
Fabrice Lamarche. A review of classification algorithms
for EEG-based brain–computer interfaces. Journal of
neural engineering, 4, 2007.

[50] Fabien Lotte, Laurent Bougrain, and Maureen Clerc.
Electroencephalography (EEG)-based brain–computer
interfaces. Wiley Encyclopedia of Electrical and
Electronics Engineering, 2015.

[51] Joseph T Gwin, Klaus Gramann, Scott Makeig, and
Daniel P Ferris. Removal of movement artifact from
high-density eeg recorded during walking and running.
Journal of neurophysiology, 103(6):3526–3534, 2010.

[52] Scott E Kerick, Kelvin S Oie, and Kaleb McDowell.
Assessment of eeg signal quality in motion environments.
Technical report, DTIC Document, 2009.

[53] Michael E Smith, Alan Gevins, Halle Brown, Arati
Karnik, and Robert Du. Monitoring task loading
with multivariate eeg measures during complex forms
of human-computer interaction. Human Factors: The
Journal of the Human Factors and Ergonomics Society,
43(3):366–380, 2001.

[54] Wolfgang Klimesch. Eeg alpha and theta oscillations

reflect cognitive and memory performance: a review and
analysis. Brain research reviews, 29(2):169–195, 1999.

[55] Alexandre Barachant and Marco Congedo. A plug&play
P300 BCI using information geometry. arXiv preprint
arXiv:1409.0107, 2014.

[56] Pieter-Jan Kindermans, Martijn Schreuder, Benjamin
Schrauwen, Klaus-Robert Müller, and Michael Tanger-
mann. True zero-training brain-computer interfacing–an
online study. 2014.

[57] Stephanie Brandl, Johannes Hohne, Klaus-Robert Muller,
and Wojciech Samek. Bringing BCI into everyday
life: Motor imagery in a pseudo realistic environment.
In Neural Engineering (NER), 2015 7th International
IEEE/EMBS Conference on, pages 224–227. IEEE,
2015.

[58] Wojciech Samek, Frank C Meinecke, and Klaus-Robert
Muller. Transferring subspaces between subjects in
brain–computer interfacing. Biomedical Engineering,
IEEE Transactions on, 60(8):2289–2298, 2013.

[59] Andrew Myrden and Tom Chau. Effects of user mental
state on EEG-BCI performance. Frontiers in Human
Neuroscience, 9:308, 2015.


