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Abstract Bacteria such as Staphylococcus aureus are

successful as commensal organisms or pathogens in part

because they adapt rapidly to selective pressures imparted

by the human host. Mobile genetic elements (MGEs) play a

central role in this adaptation process and are a means to

transfer genetic information (DNA) among and within

bacterial species. Importantly, MGEs encode putative vir-

ulence factors and molecules that confer resistance to

antibiotics, including the gene that confers resistance to

beta-lactam antibiotics in methicillin-resistant S. aureus

(MRSA). Inasmuch as MRSA infections are a significant

problem worldwide and continue to emerge in epidemic

waves, there has been significant effort to improve diag-

nostic assays and to develop new antimicrobial agents for

treatment of disease. Our understanding of S. aureus MGEs

and the molecules they encode has played an important role

toward these ends and has provided detailed insight into the

evolution of antimicrobial resistance mechanisms and

virulence.
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Introduction

Mobile genetic elements (MGEs) were first described in

the maize genome in the late 1940s [1, 2] and are an

important means for transfer of genetic information among

prokaryotes and eukaryotes. MGEs are typically identified

as fragments of DNA that encode a variety of virulence and

resistance determinants as well as the enzymes that mediate

their own transfer and integration into new host DNA [3].

MGEs demonstrate intracellular and intercellular mobility,

and those within one particular cell are called a ‘‘mobilo-

me’’ [4]. Transfer of MGEs between cells is known as

lateral or horizontal gene transfer (HGT). HGT occurs

as prokaryote-to-prokaryote, prokaryote-to-eukaryote, and

eukaryote-to-eukaryote transfer of DNA [5, 6] (Fig. 1).

MGEs may consist of insertion sequences, transposons,

phages, plasmids, pathogenicity islands, and chromosome

cassettes. These segments of DNA are largely propagated

by vertical gene transfer, which is transmission of genetic

information from parent to progeny cell (Fig. 1).

The bacterial genome consists of core and accessory

genomes. The core genome contains all genes vital to cell

survival, such as genes encoding molecules involved in

metabolism, DNA and RNA synthesis, and replication. The

accessory gene pool represents the diversity within bacte-

rial species by encoding proteins required for adaptation of

bacteria in different ecological niches (resistance, virulence

factors, etc.). Accessory genes typically have a different

G ? C content than those in the core genome, often

because they are obtained from other species of bacteria

[7, 8]. Bacteria obtain genetic information from other cells

or the surrounding environment in three ways: (1) uptake

of free DNA from the environment (transformation), (2)

bacteriophage transduction, and (3) direct contact between

bacterial cells (conjugation).
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In prokaryotes, transfer of genetic information between

cells and among different species or genera is one of the

main forces that generate ‘‘step change’’ or quantum leap

evolution [7]. Extrachromosomal DNA elements such as

MGEs play a crucial role in the plasticity of the genome,

allowing bacteria to adjust readily to new environments.

Selective pressure from the environment drives enrichment

for specific genes that promote fitness and survival. An

example of selective pressure is that imparted by use of

antibiotics, which promotes development or acquisition of

antibiotic resistance in bacteria. Inasmuch as S. aureus is

notorious for acquiring resistance to antibiotics, some of

which is encoded by MGEs, and also contains many

putative virulence molecules on MGEs, it is an ideal model

bacterium for the purpose of this review.

S. aureus MGEs

The genus Staphylococcus consists of Gram-positive bac-

teria that colonize human or animal skin and mucosal

membranes. Although staphylococci are a part of normal

human flora and thus commensal microorganisms, they are

also opportunistic pathogens and cause a wide range of

diseases. Among staphylococci, S. aureus is the most

invasive species and an etiological agent of diverse human

and animal maladies, including skin infections, abscesses,

food poisoning, toxic shock syndrome, septicemia, endo-

carditis, and pneumonia [9–11]. S. aureus is one of the

most prominent causes of nosocomial- and community-

acquired bacterial infections worldwide [12]. Although the

basis for this cadre of diseases is multifactorial and largely

dependent on host susceptibility, heterogeneity of S. aureus

strains likely plays a role in this process. Heterogeneity

among S. aureus strains develops in part as a consequence

of its interaction with the mammalian host. Numerous

putative and proven virulence factors, genes responsible

directly for host adaptation, and toxins, are located on

S. aureus MGEs [8, 13–22]. S. aureus contains many types

of MGEs, including plasmids, transposons (Tn), insertion

sequences (IS), bacteriophages, pathogenicity islands, and

staphylococcal cassette chromosomes (Figs. 2 and 3). It is

remarkable that most genes encoded by MGEs remain

under the control of global regulators located within the

core genome.

Plasmid-encoded antibiotic resistance

Plasmids are auto-replicating DNA molecules. Staphylo-

cocci typically carry one or more plasmids per cell and

these plasmids have varied gene content. Staphylococcal

plasmids can be classified into one of the three following

groups: (1) small multicopy plasmids that are cryptic or

carry a single resistance determinant; (2) larger (15–30 kb)

low copy (4–6/cell) plasmids, which usually carry several

resistance determinants; and (3) conjugative multiresistance

plasmids [23]. Larger plasmids undergo theta replication

Fig. 1 Horizontal and vertical gene transfer

Fig. 2 Acquisition of MGEs by S. aureus. 1 Incorporation of

plasmids or plasmid elements into genomic DNA. 2 Plasmids can

be maintained as free circular DNA. 3 Suicide plasmid. 4 Transfer of

a transposon or an insertion sequence between plasmid and genomic

DNA. 5 Transfer of a transposon or an insertion sequence between

plasmids within the cell. 6 Transfer of a transposon or an insertion

sequence from genomic DNA to another plasmid
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(a DNA replication mechanism that resembles the Greek

letter theta), whereas small plasmids usually replicate by the

rolling-circle mechanism [24, 25]. As a consequence of

the limited ability of S. aureus to acquire DNA from the

environment (low natural competence) compared to bacte-

ria such as Escherichia coli or Bacillus subtilis, most of

the intercellular transfer of staphylococcal plasmids occurs

by transduction or conjugation [26]. Upon entering the

bacterial host, staphylococcal plasmids remain as free

circularized DNA or linearize and integrate into the chro-

mosome (Fig. 2).

Penicillin was the first antibiotic mass produced for use

in humans. Although initially highly effective for treatment

of S. aureus infections, today over 90% of human S. aureus

strains are resistant to this antibiotic [27]. Penicillin resis-

tance is conferred by b-lactamase, which hydrolyzes the

b-lactam ring of penicillin thereby inactivating the antibi-

otic, and/or production of a low-affinity penicillin-binding

protein (PBP2a) encoded by the mecA gene [12, 27, 28].

In S. aureus, b-lactamase is encoded by the blaZ gene and

the closely linked regulatory genes, blaI and blaR [28].

Aside from plasmid encoded b-lactamase, bla genes may

be located on transposons or within chromosomal DNA

[27, 29].

More recently, S. aureus acquired vancomycin resis-

tance elements from enterococci, resulting in the

emergence of vancomycin-resistant S. aureus (VRSA) [30,

31]. Compared with vancomycin-intermediate S. aureus

(VISA, MIC: 4–8 lg/ml), in which the mechanism of

resistance is incompletely determined [32], high-level

vancomycin resistance (that in VRSA) or VanA-mediated

resistance is better characterized [30, 33, 34].

Tn1546 encodes the vancomycin resistance gene cluster

within a conjugative plasmid. This MGE was most likely

transferred to methicillin-resistant S. aureus (MRSA) from

vancomycin-resistant enterococci (VRE) during co-infec-

tion [25, 30, 31, 35]. There are two predicted fates of the

enterococcal plasmid upon entering staphylococci. On one

hand, the enterococcal plasmid could simply be main-

tained, as occurred with strains VRSA-3, 5, and 6 [31, 36].

Alternatively, Tn1546 could be incorporated into a staph-

ylococcal plasmid (VRSA-1, 7, 8, 9, and 10; plasmid

pLW1043) in which case the original enterococcal plasmid

functions as a suicide vector [31, 36]. Transposon Tn1546

encodes the vanA operon, which consists of vanA, vanH,

vanX, vanS, vanR, vanY and vanZ [30, 38]. It is interesting

that, for the second VRSA isolate reported in the US

(VRSA-2), the van operon is located within a truncated

Tn1546 on a 120-kbp plasmid, which is an unusually large

plasmid for S. aureus [37]. vanA and vanH are responsible

for synthesis of a D-Ala-D-Lac precursor that has much

lower affinity to glycopeptide antibiotics than the original

D-Ala-D-Ala. vanX encodes a dipeptidase that plays a role

in the elimination of wild-type D-Ala-D-Ala targets by

hydrolysis [39]. Expression of vancomycin resistance

genes occurs only in the presence of vancomycin, a process

mediated by a two-component signal transduction system

encoded by vanS and vanR. vanY and vanZ encode an

accessory protein that could play a role in teicoplanin

resistance [34, 40].

Fig. 3 Linear schematic of the USA300 genome (strain FPR3757)

and its major MGEs. a Genome. SCCmecIVa encodes methicillin

resistance. mSAa encodes lpl, ssl and mSAb encodes lukDE, spl, bsa.

SaPI5 encodes seq2 and sek2, uSA2USA300 encodes lukS/F-PV, and

uSA3USA300 encodes sak and chip. b Plasmids of FPR3757.

pUSA03 contains genes encoding resistance to mupirocin (ileS) and

MLSB (ermC). pUSA02 encodes resistance to tetracycline (tetK).

pUSA01 is a cryptic plasmid
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In addition to genes encoding antibiotic resistance and

molecules involved in metabolism, staphylococcal plas-

mids encode resistance to a variety of organic and

inorganic ions, such as cadmium, mercury, arsenate, etc.,

which are highly toxic for living cells (Table 1) [41].

Staphylococcal plasmids may also encode toxin genes. For

example, a large 37.5-kb S. aureus plasmid, pRW001,

contains genes encoding exfoliative toxin B, bacteriocin,

and bacteriocin immunity [42]. Staphylococcal exfoliative

toxins (ETs) are associated with strains isolated from

patients with staphylococcal scaled-skin syndrome (SSSS)

or bullous impetigo [43–45]. ET isoforms A, B and D are

serine proteases that specifically cleave host desmoglein 1,

resulting in loss of cell–cell adhesion in the epidermal layer

of skin, thereby causing blister formation and exfoliation

[43, 46]. In addition to pRW001, genes encoding exfolia-

tive toxins are located on phages (uETA, uETA2, and

uETA3), a genomic island (mSAc, former etdPI), and at

least one other plasmid (pETB) (Table 2) [21, 42, 44, 45].

Bacteriophages and virulence

Bacteriophages (phages) or bacterial viruses seem to have

the greatest impact on staphylococcal diversity and evo-

lution. All phages are classified into one of three distinctive

groups: lytic, temperate, and chronic. Lytic phages are

members of the Myoviridae family that have been used in

phage therapy, because bacteria lyse completely during

release of progeny phages. Bacteria infected with chronic

phages release progeny into the extracellular environment

without killing the host, which allows bacteria to grow and

divide. Temperate phages, which are members of the

Siphoviridae family, form the most numerous group among

all phages. Temperate phages have the ability to lyse

bacteria after infection, but they typically form a long-term

relationship with the host cell, whereby the phage DNA

integrates into the staphylococcal genome as a prophage

[47, 48]. Phages can impact expression of virulence

determinants by either positive or negative lysogenic con-

version. Following positive lysogenic conversion, bacteria

express prophage-encoded virulence determinants. Nega-

tive lysogenic conversion occurs when there is insertional

inactivation of genes (e.g., b-hemolysin of S. aureus) by

integration of the phage DNA into the bacterial chromo-

some [47, 49]. Although there is loss of b-hemolysin

during lysogeny, these prophages contain genes encoding

immune-modulator proteins, such as staphylokinase (Sak),

staphylococcal inhibitor of complement (SCIN), and che-

motaxis inhibitory protein of S. aureus (CHIPS) [49, 50].

Other S. aureus prophages encode virulence molecules

such as enterotoxins and Panton-Valentine leukocidin

(PVL) (Table 2). PVL belongs to a group of bi-component,

pore-forming cytolytic toxins that are specific for myeloid

cells [51].

Prophages and prophage-encoded molecules also work

in concert with other MGEs within staphylococci. For

example, prophages create mobility for some staphylo-

coccal pathogenicity islands. The most common example is

the ability of helper phage 80a to mediate excision and

transfer of SaPI1 to other staphylococci [52, 53]. Some

phages also have the ability to transfer antibiotic resistance

by transduction of plasmids or plasmid elements previously

incorporated into chromosomal DNA. Plasmid pS194 with

a chloramphenicol resistance determinant and pI258 con-

taining erythromycin resistance are transduced by phages

u11 and u11de, respectively [41].

Pathogenicity islands

Staphylococcal pathogenicity islands (SaPIs) are MGEs of

14–17 kb in size (Table 2). To date, at least 16 SaPIs have

been sequenced and SaPI1 is considered as the prototype

[53, 54]. SaPIs form a coherent family with highly con-

served core genes [53, 55]. Core genes include two open

reading frames encoding transcriptional regulatory proteins

and a region encoding intergrase, Rep protein, and ter-

minase. In addition to core genes, almost all SaPIs encode

enterotoxins or toxic shock syndrome toxin (TSST) [56].

SaPIbov2 is an exception to this rule, and instead contains

Bap adhesion protein, which plays a role in bovine chronic

mastitis infections [57, 58].

Staphylococcal pathogenicity islands are integrated in

one of six different specific sites on the chromosome (atts)

and each is always in the same orientation [53]. SaPIs can

be mobilized following infection by certain staphylococcal

bacteriophages or by induction of endogenous prophages

[59, 60], such as induced excision of SaPI1 by phage 80a
[54]. Several hypotheses to explain the origin and evolution

of SaPIs exist [56]. For example, Yarwood et al. [56]

proposed the existence of a common ancestral genetic

element—probably a prophage—for all SaPIs that then

generated diversity of islands through modular recombi-

nation events.

Genomic islands

Three families of genomic islands exist among the S.aureus

strains whose genomes have been sequenced [8, 13, 16,

61]. These genomic islands, named mSAa, mSAb, and mSAc
(Table 2), are flanked by a broken transposase gene

upstream and partial restriction-modification system (RM)

type I downstream. Given the composition of genomic

islands (remnant transposase genes and a G ? C content
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Table 1 Resistance determinants encoded on non-SCCmec staphylococcal MGEs

MGE Resistance determinant Antibiotic/heavy metal Mechanism of action Reference

Plasmid aadD Neomycin, kanamycin,

paromomycin, and tobramycin

Aminoglycoside adenyltransferase [100, 101]

ant40 Tobramycin Aminoglycoside nucleotidyltransferase [102]

arsRBC Arsenate, antimonite Efflux ATPase [21, 103, 104]

blaZ, blaI, blaR1 Penicillin (b-lactam antibiotics) b-lactamase [105, 106]

ble Bleomycin Bleomycin-binding protein prevents DNA

damage by binding bleomycin

[107, 108]

cadA,B Cadmium resistance and probably

zinc

Cadmium efflux ATPase [109, 110]

cadD,X Cadmium resistance Efflux [21, 111]

cat Chloramphenicol Chloramphenicol acetyltransferase [112, 113]

cfr Chloramphenicol, florfenicol, and

clindamycin

Methylation of 23S subunit of bacterial

ribosome

[114, 115]

dfrA, dfrK Trimethoprim Dihydrofolate reductase [101, 116]

ermB,C MLSB resistance (macrolides:

erythromycin, lincosamides:

clindamycin, streptogramin B)

Methylation of 23S subunit of bacterial

ribosome

[117, 118]

fusB Fusidic acid Ribosome protection mechanism [119, 120]

ileS-2 High-level resistance to mupirocin

(pseudomonic acid A)

Isoleucyl RNA synthetase [121, 122]

mer operon Mercury Reduction of mercury ions to elementary Hg [123]

mphBM Macrolide antibiotics Putative phosphorylase [124]

msrA Macrolide antibiotics Active efflux [124]

mupA High-level mupirocin resistance Novel isoleucyl RNA synthetase [122, 125]

qacA,B and smr (qacC/D) Quaternary ammonium compounds,

biocides

Drug efflux pump [126–128]

str Streptomycin Streptomycin adenyltransferase [113]

tetK, tetL Tetracyclines Active efflux of tetracycline [129–131]

vat Streptogramins type A Acetylation of the antibiotic [132]

vga Streptogramins type A, lincosamides,

and pleuromutilins

Efflux [101]

vgb Streptogramins type B Inactivation by virginiamycin B lyase [133]

Transposon aacA-aphD Gentamycin, kanamycin, tobramycin Antibiotic modification by aminoglycoside

acetyltransferase and aminoglycoside

phosphotransferase

[82, 86, 90]

blaZ, blaI, blaR1 b-Lactam antibiotics Hydrolysis of b-lactam ring [134]

cadB, cadC Cadmium resistance Efflux [135]

ermA,B MLSB resistance (macrolides:

erythromycin, lincosamides:

clindamycin, streptogramin B)

Methylation of 23S subunit of bacterial

ribosome

[118]

fexA Florfenicol, chloramphenicol Efflux [114]

merA, B Respectively, inorganic and organic

mercury resistance

Ion transport [89, 136, 137]

sat4 Streptothricin Streptothricin acetyltransferase [115]

spc(ant9) Spectinomycin Spectinomycin adenyltransferase [102]

tetM Tetracycline, minocycline Protection of ribosome binding site for

tetracycline

[129, 131]

vanRSHAXYZa Vancomycin Production of low affinity pepdydoglican

precursor with terminal D-Ala-D-Lac

[30, 31, 34, 35, 40]

SCC476 far1 Fusidic acid resistance [18]

SCCmercury mer operon Mercury Ion transport [69]

a Vancomycin resistance is encoded on the Tn1546 transposon but transferred by conjugative plasmid
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Table 2 S. aureus virulence determinant encoded on MGEs

Toxin/virulence determinant

(gene)

MGE Disease/mechanism of action Reference

Adhesion protein Bap (bap) SaPIbov2 Specific adhesion to bovine

mammary mucosa

[55]

Bacteriocin (bsa) mSAb Bactericidal activity against other

bacteria

[13]

Capsular polysaccharide protein SCCcap1 Inhibits phagocytosis [75]

Chemotaxis inhibitory protein

of S. aureus (chip)

u13, utp310-3, uN315, u252B,

uNM3, uMu3A, uSa3USA300,

uSa3JH1, uSa3mw, uSa3 ms,

uSa3JH9, ubC-

USA300_TCH1516

Blocks C5a and fMLP-induced

neutrophil activation and

chemotaxis; blocks C5a and

formylated peptide receptor

[50, 138]

Epidermal cell differentiation

inhibitor B (edin-B)

mSAc (etdPI) ADP-ribosyltransferase; inhibits

morphological differentiation of

keratinocytes in vitro and

modifies eukaryotic Rho

GTPase

[44]

Epidermal cell differentiation

inhibitor C (edin-C)

pETB ADP-ribosyltransferase, inhibits

morphological differentiation of

keratinocytes in vitro and

modifies eukaryotic Rho

GTPase

[45]

Exfoliative toxin A (eta) uETA, uETA2, uETA3 Causes staphylococcal scalded

skin syndrome (SSSS), Ritter

disease, and bulbous impetigo in

neonates

[21, 44]

Exfoliative toxin B (etb) pETB, pRW001 Causes SSSS, Ritter disease, and

bulbous impetigo in neonates

[42, 45]

Exfoliative toxin D (etd) mSAc (etdPI) Causes SSSS, Ritter disease, and

bulbous impetigo in neonates

[44, 45]

Enterotoxin A (sea) uSa3 ms, uSa3, uSa3mw,

u252B,uNM3, uMu50A,

Super antigen (SAg), causes food

poisoning

[13]

Enterotoxin B (seb) SaPI1, SaPI3,pZA10 SAg, causes food poisoning [13, 139, 140]

Enterotoxin C (sec) SaPIbov1 SAg, causes food poisoning [13, 141]

Enterotoxin C1 (sec1) SaPI4, pZA10 SAg, causes food poisoning [13, 139]

Enterotoxin C3 (sec3) SaPIn1/m1 SAg, causes food poisoning [13]

Enterotoxin C4 (sec4) SaPImw2, SaPIm3 SAg, causes food poisoning [13]

Enterotoxin D (sed) pIB485 SAg, causes food poisoning [142]

Enterotoxin G (seg) uSa3, mSAb (SaPIn3/m3) SAg, causes food poisoning [13]

Enterotoxin I (sei) mSAb (SaPIn3/m3) SAg, causes food poisoning [13]

Enterotoxin J (sej) pIB485 SAg, causes food poisoning [143]

Enterotoxin K (sek) uSa3 ms, uSa3mw, SaPIbov1,

SaPI1, SaPI3, SaPI5

SAg, causes food poisoning [56, 144]

Enterotoxin K2 (sek2) uSa3 SAg, causes food poisoning [145]

Enterotoxin L (sel) SaPI1, SaPIbov1, SaPI3,

SaPIn1/m1, SaPI4

SAg, causes food poisoning [54, 55, 144]

Enterotoxin L2 (sel2) SaPImw2, SaPIm3, SAg, causes food poisoning [13]

Enterotoxin M (sem) mSAb (SaPIn3/m3) SAg, causes food poisoning [13]

Enterotoxin N (sen) mSAb (SaPIn3/m3) SAg, causes food poisoning [13, 146]

Enterotoxin O (seo) mSAb (SaPIn3/m3) SAg, causes food poisoning [13]

Enterotoxin P (sep) uN315, uMu50A SAg, causes food poisoning [146, 147]

Enterotoxin Q (seq) uSa3 ms, uSa3mw, SaPI1, SaPI3,

SaPI5

SAg, causes food poisoning [56]

Ferrichrome operon (fhuD) SaPI3, SaPIm4 Iron up-take [148]

a-hemolysin (hla) mSAc (etdPI) Pore-forming cytolytic toxin [149, 150]
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that differs from the core genome), a current notion is that

genomic islands were once mobile elements acquired by

HGT [62]. A complete RM type I comprises host speci-

ficity determinant genes hsdR, hsdM, and hsdS, but only

hsdM and hsdS are found juxtaposed to the S. aureus

genomic islands [13, 61, 63]. Both flanking DNA segments

contribute to the stability of genomic islands within the

S. aureus chromosome. A lipoprotein gene cluster (lpl) and

staphylococcal superantigen-like genes (ssl) are located on

mSAa [64]. mSAb (also known as SaPIn3/m3) encodes

bacteriocin, enterotoxins, hyaluronate lyase, and a serine

protease gene cluster [13, 18, 65]. The third staphylococcal

Table 2 continued

Toxin/virulence determinant

(gene)

MGE Disease/mechanism of action Reference

Hyaluronate lyase (hysA) mSAb Degradation of

mucopolysaccharide hyaluronic

acid

[13, 151]

Leukocidin (lukM, lukF) uPV83 Pore-forming leukocyte toxin [152]

Leukotoxin D, E (lukD, lukE) mSAb Pore-forming leukocyte toxin [13, 153]

Lipoprotein-like (lpl) mSAa Induce inflammatory response of

host immune system

[13, 65]

Lysophospholipase pAvX (poultry strains) Hypothetical role in virulence [99]

Pantone-Valentine leukocidin

(lukF-PV, lukS-PV)

uSa2mw, uPVL108, uSa2,

uSa2USA300, uSLT, uPVL,

uSLT-USA300_TCH1516,

utp310-1, u2958PVL

Pore-forming leukocyte toxin,

linked by epidemiology to

necrotic infections

[154–158]

Pathogenicity island protein (ear) SaPImw2; SaPI1, SaPI3, SaPI4,

SaPI5

Unknown [54]

Phenol-soluble modulin located

within SCCmec (psm-mec)

SCCmec Pro-inflammatory and cytolytic

activity

[159]

Phenol-soluble modulins (psmb) mSAc (etdPI) Possible pro-inflammatory activity [16, 160, 161]

Plasmin-sensitive surface protein

(pls)

SCCmec I Decreases the invasiveness of

MRSA strains, acts as an

adhesin

[162]

Serine protease-like protein (spl) mSAb (SaPIn3/m3) Hypothetical role in virulence [13, 163]

Staphopain A (scpA) pAvX Edematous and necrotic dermatitis

in chickens

[99, 164]

Staphylococcal inhibitor of

complement (scn)

u13, utp310-3, uN315, uSa3mw,

u252B, uNM3, uMu50A,

uSa3JH1, uSa3 ms, uSa3JH9,

uMu3A, uSa3USA300,

ubC-USA300_TCH1516

Inhibits phagocytosis of S. aureus
by human neutrophils; blocks

formation of C3b

[50, 165]

Staphylococcal superantigen-like,

SSL (former, staphylococcal

enterotoxin-like, set)

mSAa (SaPIn2/m2) Targeting elements of innate

immune response

[13, 166]

Staphylokinase (sak) uN315, uMu50A, uSa2,

uSa3mw, u6390, u13, u252B,

uNM3, uMu3A, uSa3 ms,

utp310-3, ubC-

USA300_TCH1516,

uSa3USA300 uSa3JH1,

uSa3JH9,

Proteolytic destruction of host

tissue; activates conversion of

plasminogen to plasmin; inhibits

opsonization by degradation of

IgG and C3b, promotes

resistance to defensins

[147, 167–169]

TSST-1 (tst) SaPI1, SaPI2, SaPIbov1, SaPI3,

SaPIn1/m1

Causes toxic shock syndrome

(TSS)

[46, 55, 170, 171]

Genomic islands: mSAa, mSAb, and mSAc (etdPI)

Pathogenicity islands: SaPIbov1 and SaPIbov2, SaPI1- SaPI5, SaPIn1/m1, SaPIn3/m3, SaPImw2, SaPIm3, and SaPIm4

Phages: u13, utp310-3, uN315, uSa3, uSa3mw, u252B, uNM3, uMu50A, uSa3JH1, uSa3 ms, uSa3JH9, uMu3A, uSa3USA300, ubC-

USA300_TCH1516, uETA, uETA2, uETA3, uPV83, uPVL108, uSLT, uPVL, uSLT-USA300_TCH1516, utp310-1, and u2958PVL

Plasmids: pAvX, pIB485, pZA10, pETB, and pRW001

SCC Staphylococcal cassette chromosome
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genomic island, mSAc, contains genes encoding b-type

phenol-soluble modulins and a cluster of ssl genes similar

to that present within mSAa [16].

Staphylococcal cassette chromosome

Staphylococcal cassette chromosomes (SCCs) are rela-

tively large fragments of DNA that always insert into the

orfX gene on the S. aureus chromosome. SCC can encode

antibiotic resistance and/or virulence determinants. Con-

sidering that many SCCs encode the methicillin resistance

gene (mecA), SCCs can be classified into staphylococcal

cassette chromosome mec (SCCmec) or non-SCCmec

groups.

SCCmec

The first MRSA strain was reported in 1961, 2 years after

the introduction of methicillin for treatment of penicillin-

resistant S. aureus infections [12, 66]. All MRSA strains

contain SCCmec, which encodes the mecA gene, thus

conferring resistance to methicillin and all b-lactam anti-

biotics (reviewed in [12]). SCCmec may have been

acquired by S. aureus from S. sciuri [67, 68]. Resistance to

b-lactam antibiotics is maintained by production of a low-

affinity penicillin-binding protein (PBP2a), which fails to

bind methicillin and other b-lactam antibiotics. As a result,

these antibiotics do not inhibit the ability of PBPs (trans-

peptidase enzymes) to cross-link peptidoglycan polymers

of the bacterial cell wall. In addition to the mecA gene,

SCCmec encodes the repressor MecI, transmembrane

b-lactam signal transducer MecR1, recombinases CcrAB

and CcrC, and joining (formerly junkyard) regions J, which

may also encode additional antibiotic resistance (Fig. 4).

Integration and excision of SCCmec by the recombinases

occurs within a specific attachment site (attBscc) on the

S. aureus chromosome at the 30 end of orfX [61].

Based on the organization of mec and associated genes

within the SCCmec complex, five (A–E) different classes

of SCCmec have been defined, of which three (A–C) are

the most common in S. aureus [69–71]. Only class A

Fig. 4 Comparison of S. aureus SCCmec types. Class A SCCmec
contains a complete mecA regulon (mec1-mecR1-mecA). Class B and

class C SCCmec contain regulatory genes that are disrupted by

IS, IS1272-DmecR1-mecA and IS431-DmecR1-mecA, respectively.

Tn554 encodes erythromycin (ermA) and streptomycin/spectinomycin

resistance (aad9 or spc); copA encodes a putative copper-transport

ATPase; hsdR, hsdM, and hsdS encode a partial restriction-modifi-

cation system (RM) type I; Tn4001 encodes an aminoglycoside

resistance operon (aacA-aphD); plasmid pT181 encodes tetracycline

resistance (tet); WTn554 encodes cadmium resistance (cadB, cadC);

and plasmid pUB110 encodes bleomycin (ble) and tobramycin

resistance (ant40). pls Plasmin-sensitive surface protein
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SCCmec consists of the complete mecA regulon (mec1-

mecR1-mecA), as the regulatory genes are disrupted by

insertional sequences in class B and C, SCCmec–IS1272-

DmecR1-mecA in class B and IS431-DmecR1-mecA in class

C SCCmec elements [61, 70]. Three classes of the mec

complex and four different ccr allotypes define at present

eight SCCmec types (I–VIII) (Fig. 4). However, SCCmec

types can be further differentiated into subtypes depending

on variations in the J regions. Interestingly, community-

associated MRSA (CA-MRSA) strains typically carry

SCCmecIV, V, or VII elements [72], whereas HA-MRSA

typically contain the larger SCCmecI, II, III, VI, or VIII

elements that may encode resistance determinants in

addition to mecA [12, 13, 69, 72]. These additional resis-

tance determinants are often encoded by plasmids,

transposons, or insertion sequences incorporated into the J

regions of SCCmec [61]. For example, the J1 region of

SCCmecVIII encodes a putative copper-transport ATPase

(copA) and the J2 region has a Tn554 transposon encoding

erythromycin (ermA) and streptomycin/spectinomycin

resistance (aad9) genes (for more details, see Table 1;

Fig. 4) [73, 74].

Non-mec SCC

Staphylococcal cassette chromosomes can be complex and

are thus not limited to encoding methicillin resistance.

Non-mec SCC and wSCC (without or no functional

recombinase) contain virulence or fitness/survival deter-

minants. A methicillin-susceptible S. aureus strain,

MSSA476, contains a mec-like element (SCC476) that

encodes fusidic acid resistance [18]. SCCmercury encodes

resistance to mercury chloride that was probably obtained

from coagulase-negative staphylococci (CoNS) by inte-

gration of a plasmid that carried the resistance determinant

or by direct transfer of the SCCmercury element [69].

Some S. aureus strains produce capsular polysaccharide

1, which has been reported to confer resistance to phago-

cytosis [75]. The genes encoding synthesis of capsular

polysaccharide 1 are located on a special SCC element

named SCCcap1 [75]. Although SCCcapI resembles type

III of SCCmec, it is immobile because it lacks an active

ccrA homologue and the ccrB homologue contains a non-

sense mutation [75, 76].

Arginine catabolic mobile element

The arginine catabolic mobile element (ACME) was dis-

covered by sequencing the complete genome of USA300,

the most prominent CA-MRSA strain of North America

[15]. ACME encodes a complete arginine deiminase

pathway that converts L-arginine to carbon dioxide, ATP,

and ammonia. A cluster of six genes, arcRADBC (arc

locus) and opp3 (oligopeptide permease system), constitute

type I ACME present in the USA300 strain [15]. Type I

ACME is associated with specific SCCmec subtypes

(Fig. 3). It is present in clinical isolates belonging to

multilocus sequence type (MLST or ST) 8 containing

SCCmecIVa, but not in SCCmecIVb, IVc, or IVmisc [77].

An ACME variant that lacks the opp3 operon and varies

in DNA sequence has also been found in ST8 MSSA,

ST5 (USA100, SCCmecII), and ST59 (USA1000) strains

[77–79]. An ACME variant has also been detected in

MRSA ST97 strains carrying SCCmecV [77].

The arc cluster contained within ACME is distinct from

the other S. aureus arc cluster encoded within the core

genome [15]. ACME is adjacent to SCCmec and integrated

at the same attB site within orfX [15]. Therefore, it is likely

that the recombinases that mediate excision of SCCmec

also mobilize ACME [15, 80].

The role played by ACME in the success of USA300

remains unknown. Diep et al. suggest it enhances fitness

of S. aureus, possibly by facilitating colonization and/or

hematogenous dissemination to target organs [15, 80]. On

the other hand, Montgomery et al. [81] found no significant

difference between ACME-positive and ACME-negative

USA300 strains in a rat model of necrotizing pneumonia and

a mouse model of skin infection. Further studies are needed

to better understand the importance of this interesting MGE.

Other transposable elements

Both insertion sequences (IS) and transposons (Tn) are

widely distributed among the S. aureus genome. They may

be present in a single copy or multiple copies on the

chromosome or in association with other MGEs.

Insertion sequences

Although insertion sequences (IS) can exist independently

in the S. aureus genome, they often present as pairs con-

stituting a composite transposon [82]. IS insert into various

loci and may cause changes in the expression of genes in

the core chromosome. In addition, IS inactivate genes by

direct insertion or by having a polar effect on the tran-

scription of nearby genes [83, 84]. Activation of genes

within the vicinity of an IS is usually mediated by pro-

moters carried by IS elements or by forming a hybrid

promoter with the native promoter of particular gene [85].

IS256 and IS257, in addition to constituting composite

transposons Tn4001 and Tn4003, form a hybrid promoter

for the aminoglycoside resistance operon (aacA-aphD) and

the gene encoding resistance to trimethoprim (dfrA),

respectively [82, 86, 87].
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Transposons

Transposons (Tn) predominantly encode antibiotic resis-

tance genes in S. aureus (Table 1). The smaller transposons

are usually presented in multiple copies in the staphylo-

coccal genome, either inserted into the chromosome or into

MGEs, such as SCC or plasmids. This group includes

Tn554 and Tn552, which encode resistance to MLSB

antibiotics and spectinomycin or penicillinase, respectively

[41, 61, 88].

By comparison, larger transposons ([18 kbp) are pres-

ent in single copies and encode resistance to antibiotics

such as tetracycline [89], trimethoprim [87], aminoglyco-

sides [82, 90], or vancomycin [30, 31, 35].

Concluding remarks

A wide range of environmental conditions, including

interspecies competition within particular ecological niche

and antibiotic selective pressure, select for organisms that

have acquired MGEs—those that are presumably advan-

tageous for survival—by HGT. Production of antibiotics

by microorganisms is mirrored (countered) by develop-

ment of resistance to these molecules and is a naturally

occurring phenomenon. Antibiotics are toxins produced

by bacteria and fungi to compete with other micro-

organisms for a specific ecological niche. Unfortunately,

the level of antibiotic resistance among bacteria continues

to increase, consistent with the high use of antibiotics by

humans. Sub-inhibitory concentrations of antibiotics also

create an environment conducive to acquisition of resis-

tance [91].

Antibiotics that interfere with bacterial DNA replication

and induce an SOS response also induce excision and

transduction of prophages and staphylococcal pathogenic-

ity islands in the bacterial genome, resulting in high-

frequency of horizontal gene transfer [60, 92, 93].

Consequentially, this process promotes dissemination of

determinants encoding antibiotic resistance molecules and

virulence factors. MGEs can be species-specific, and,

therefore, differences exist in MGEs of S. aureus strains

that have a tropism for humans or animals [94]. Never-

theless, some S. aureus strains transmit from animals to

humans or vice versa [95–98]. Transfer of staphylococci

from one host species to another provides an additional

means to acquire new genetic material, often encoded by

MGEs [99].

In summary, although MGEs constitute only *25% of

the staphylococcal genome [8], they encode many puta-

tive virulence factors and antibiotic determinants and thus

play an important role in bacterial adaptability and

survival.
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