
Mobile Human Ad Hoc Networks: A Communication Engineering Viewpoint on
Interhuman Airborne Pathogen Transmission

Fatih Guleca,b,∗, Baris Atakanb, Falko Dresslera

aSchool of Electrical Engineering and Computer Science, TU Berlin, Germany
bIzmir Institute of Technology, Department of Electrical and Electronics Engineering, Izmir, Turkey

Abstract

A number of transmission models for airborne pathogens transmission, as required to understand airborne infectious
diseases such as COVID-19, have been proposed independently from each other, at different scales, and by researchers
from various disciplines. We propose a communication engineering approach that blends different disciplines such as
epidemiology, biology, medicine, and fluid dynamics. The aim is to present a unified framework using communication
engineering, and to highlight future research directions for modeling the spread of infectious diseases through airborne
transmission. We introduce the concept of mobile human ad hoc networks (MoHANETs), which exploits the similarity
of airborne transmission-driven human groups with mobile ad hoc networks and uses molecular communication as
the enabling paradigm. In the MoHANET architecture, a layered structure is employed where the infectious human
emitting pathogen-laden droplets and the exposed human to these droplets are considered as the transmitter and receiver,
respectively. Our proof-of-concept results, which we validated using empirical COVID-19 data, clearly demonstrate the
ability of our MoHANET architecture to predict the dynamics of infectious diseases by considering the propagation of
pathogen-laden droplets, their reception and mobility of humans.

Keywords: Airborne pathogen transmission, infectious disease, molecular communication, mobile human ad hoc
networks, epidemiology, COVID-19.

1. Introduction

Throughout the history, epidemics caused by infectious
diseases have been a major threat to human life. Epi-
demic diseases such as smallpox, Spanish flu and recent
COVID-19 gave rise to millions of human deaths [1]. In
addition, epidemics can induce mental disorders in humans
and recessions in the world economy due to prevention and
control measures such as lockdown. Owing to these facts,
it is essential to accurately model the spread of infectious
diseases among humans.

The interhuman spread of infectious diseases occur via
direct contact and airborne transmission1 where pathogens
are transferred from an infectious human to a susceptible
one. In airborne transmission, these pathogens (viruses,
bacteria, fungi, and so on) are carried by large droplets and
aerosols (droplet nuclei) which are emitted via breathing,
speaking, coughing and sneezing [2, 3]. Throughout this
paper, we use the term droplet to refer to both large droplets
and aerosols together.
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1Here, transmission is employed synonymously with contagion
rather than its usage in communication engineering.

As for the modeling of infectious diseases between two
humans, a human emitting expiratory droplets is an in-
formation source [4–6]. When these emitted information
carrying droplets are received by another human through
sensory organs, we can consider there exists a communi-
cation path between them. Hence, a molecular communi-
cation (MC) perspective, has recently been proposed for
airborne transmission modeling [7–9]. [8] and [9] lay the
theoretical and experimental foundations of dualities be-
tween pathogen-laden droplet propagation and MC. [10]
gives a detailed review and discussion about the usage of
MC for viral infection research. In [7], an end-to-end sys-
tem model for airborne pathogen transmission between two
humans is proposed by considering this transmission as an
information transfer through an air-based channel. In ad-
dition, the effect of face masks on the infection probability
is investigated in [11]. In [12] and [13], MC is employed to
model the transmission of pathogens through the human
respiratory tract. In these recent studies with the MC
perspective, the proposed models are for static humans.
However, as people displace, there exist dynamic human
groups exchanging pathogens among each other. Due to
their mobility, humans form different groups in an ad hoc
fashion as their smart phones do in a mobile telecommuni-
cation network. Hence, an analogy between human groups
and mobile telecommunication networks can be established,
since they both possess an intermittent connectivity.
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On the other hand, researchers from many disciplines
work separately at different scales to reveal the mechanisms
of airborne pathogen transmission and model the behav-
ior of epidemics. In fluid dynamics literature, researchers
focus on the propagation of pathogen-laden droplets and
their interactions with air [2, 3]. Biologists deal with the
survival of airborne pathogens in macroscale [14] and their
interactions with the human cells in microscale [15]. Fur-
thermore, the medical literature conducts researches in
cellular level to discover new drugs which cure the infec-
tious diseases. At a larger scale, epidemiology literature
focuses on empirical data to develop mathematical mod-
els for the spread of epidemics in time and space [1, 16].
However, these epidemiological models do not consider the
information from fluid dynamics, biology and medicine and
make estimations by fitting statistical data [17]. The fluid
dynamics of droplets, the geometries and air distribution
of indoor environments, the pathogen-human interaction,
the medical efficacy of the drugs and locations of mobile
humans are essential to be taken into account for accurate
models. Thus, there is a need to merge all of these research
efforts in a unified framework.

To integrate the research attempts from different dis-
ciplines and utilize the analogy between mobile telecom-
munication networks and human groups, we propose a
framework for modeling interhuman airborne pathogen
transmission with communication engineering perspective.
Here, mobile humans forming a group are considered as
a mobile human ad hoc network (MoHANET). In a Mo-
HANET, the infectious human is the transmitter (TX), the
susceptible human is the receiver (RX) and pathogen-laden
droplets are information carriers propagating in the com-
munication channel, i.e., air. Here, MC employing chemical
signals instead of electrical signals emerges as an enabler
paradigm for the communication among humans due to
its biocompatibility with the human body and multiscale
applicability.

Furthermore, communication engineering approach pro-
vides a unified framework by combining micro- and macro-
scale modeling issues. With this framework, a MoHANET
is partitioned into layers where each layer is associated with
a research area at different scales such as fluid dynamics,
biology, medicine or epidemiology. As in the conventional
telecommunication networks, each layer sends its outputs
to an upper layer. In this way, the spread of infectious
diseases can be modeled more accurately by considering
all parameters from various disciplines. In addition, re-
searchers will be able to utilize theoretical tools of commu-
nication theory in order to model the complicated nature of
airborne pathogen transmission. In this paper, a proof-of-
concept study is given for the MoHANET architecture. To
this end, an omnidirectional multicast transmission (OMT)
algorithm in which the average number of contacts in a
MoHANET is calculated by exploiting the truncated Lévy
walk for the mobility of humans is proposed. The infection
states of humans are determined according to their relative
distance. Then, the effective contact rate is determined

by using the probability of infection for airborne pathogen
transmission and the average number of contacts. Lastly,
this effective contact rate is employed in an epidemiological
model to estimate the time course of an epidemic. Numer-
ical results validated by empirical COVID-19 data show
that the number of infected people during an epidemic can
be estimated by taking into account the propagation and
reception of pathogen-laden droplets and the mobility of
humans. Moreover, the results show that the increment of
the population’s immune system strength or the reduction
in the number of received airborne pathogen-laden droplets
leads to a milder outbreak over time.

In the remainder of this paper, we first review the
airborne pathogen transmission mechanisms. Then, the
communication engineering approach which merges differ-
ent disciplines is introduced. In this approach, the layered
architecture of the MoHANET is presented in detail and
open research issues are discussed. In the next section,
proof-of-concept study is given with the proposed OMT
algorithm and numerical results. Finally, we give a discus-
sion on the existing and possible experimental techniques
and conclude the paper.

2. Overview of Main Issues on Airborne Pathogen
Transmission

This section provides a brief overview for the main
issues of the airborne pathogen transmission mechanisms
as illustrated in Fig. 1.

2.1. Respiratory Activity, Droplet Size and Evaporation
Pathogen-laden droplets are emitted to the air from an

infected human via respiratory activities such as coughing,
sneezing, speaking and breathing. These activities have
different initial droplet velocities allowing different prop-
agation distances. For instance, the initial velocities for
coughing and breathing are about 10 m/s and 2.67 m/s,
respectively [18]. Therefore, a cough can infect people at
a greater distance than breathing in still air in a short
time interval. However, breathing can be more effective
than coughing or sneezing for longer intervals due to the
continuous emission. Furthermore, the expiratory droplets
are defined according to their diameters where aerosols
and large droplets are assumed to have smaller and larger
diameters than 10 µm, respectively [3]. While speaking,
sneezing, and coughing release more large droplets into
the air, breathing mostly contains aerosols. In addition,
larger droplets settle to the ground due to gravity before
evaporation and smaller droplets can become aerosols via
evaporation depending on the temperature and relative
humidity (RH) [19]. For long durations, aerosols can be
more infectious than large droplets, since they can remain
suspended in the air and be drifted by airflows.

2.2. Air Distribution
In addition to the initial velocity, emitted droplets are

influenced by the airflows, similar to a MC channel with
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Figure 1: The spread of an infectious disease through airborne pathogen transmission with communication engineering perspective and
effective issues for an indoor sneezing/coughing scenario.

drift. In outdoor environments, winds carry the droplets
and dilute the concentration of pathogens via dispersion.
Therefore, it is less probable to get infected in outdoor
environments. However, in indoor environments such as
hospitals or offices, airflows generated by ventilation sys-
tems are critical for the spread of pathogens due to the
circulation of air in bounded conditions [18].

2.3. Posture, Relative Orientation, Distance and Move-
ment of the Human

For short distances, the posture, that is, standing, sit-
ting or lying position, and the relative orientation of the
infected and susceptible persons are important for the in-
fection risk as shown in Fig. 1. For instance, a doctor
can reduce the exposure from an infected lying patient
in a hospital ward via a standing posture and sideways
orientation instead of face-to-face orientation [18]. Further-
more, a walking person can increase the infection risk in
a closed and ventilated room by increasing the dispersion
of droplets [18]. Another important factor influencing the
infection risk is the relative distance of the humans which
is also referred as the social distance. Surely, the infection
risk decreases, as the relative distance between two people
increases.

2.4. Thermofluid Boundary Conditions
The temperature difference between the human body

surface and the surrounding air generates a thermal plume
which is a buoyancy-driven upward flow of the surrounding
air. As illustrated in Fig. 1, this thermal plume leads to a
convective boundary layer (CBL) around the human body,
which should be taken into account for the movement of the

droplets in the breathing zone [20]. This upward flow can
change the channel impulse response, which mathematically
characterizes the alteration caused by the channel located
between the TX and RX during airborne transmission, via
generating an upward drift for the pathogens during the
reception into the human body as shown in Figure 1.

2.5. Survival of Pathogens
Subsequent to a respiratory activity, all of the emit-

ted pathogens may not survive. In [14], it is shown that
more than 80 percent of the influenza viruses cannot sur-
vive within one minute. However, these survival rates are
severely influenced by environmental factors such as tem-
perature and RH. While increasing temperature decreases
survival rates of the pathogens due to its effect at molecular
levels, increasing RH results in decreasing evaporation of
droplets [21]. The decreasing number of pathogens results
in a time-varying channel due to the dependence on the
previous number of pathogens.

3. Communication Engineering Approach to Inter-
human Airborne Pathogen Transmission

In this section, we present a framework with commu-
nication engineering perspective to model the spread of
infectious diseases through airborne pathogen transmission.
Furthermore, open research issues are given.

As shown in Fig. 2, the proposed framework merges
all of the multiscale research efforts in various disciplines
such as fluid dynamics, biology, medicine, and epidemi-
ology under the umbrella of communication engineering.
MC emerges as the key paradigm that connects the stud-
ies among different disciplines in macro- and microscales.
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Figure 2: Communication engineering framework to model the spread of infectious diseases through airborne pathogen transmission and the
layered MoHANET architecture.

First, the MoHANET is introduced through a layered ar-
chitecture as depicted in Fig. 2. Layers are associated
with different disciplines from µm to km scale in this ar-
chitecture where each layer sends its output to an upper
layer. The first layer is defined as the physical layer where
the infectious human (TX) emits pathogen-laden droplets
through the communication channel (air) as illustrated in
Fig. 1. The next layer is the reception layer which takes
place at the susceptible human (RX) and includes two sub-
layers, that is, outer and inner reception sub-layers. The
outer reception sub-layer comprises the interactions of the
facial sensory organs with the droplets and inner reception
sub-layer provides the details about the interactions of
pathogens with the biological cells in the human body. The
networking layer where infectious diseases spread among
different people is given at the top of the MoHANET ar-
chitecture where methods from mobile telecommunication
networks literature and epidemiology are exploited and the
outputs of the lower layers are employed.

Here, we note that there is not a one-to-one correspon-
dence between the layers of a MoHANET and the layers of
a conventional telecommunication (or computer) network.
The physical layer is defined in a slightly different way from
the physical layer of a conventional network, since the re-
ception of molecular signals is not included in the physical
layer of the MoHANET and information is transferred via
pathogen-laden droplets instead of electromagnetic waves.
The usage of the proposed layered architecture of the Mo-

HANET is utilized to understand the phenomenon of in-
fectious disease spread instead of designing an efficient,
high data rate and reliable telecommunication network.
The details of this layered architecture are introduced as
follows.

3.1. Physical Layer
3.1.1. Transmitter

In a MoHANET, an infected person is considered as
a TX and her/his respiratory activities determine the TX
parameters such as initial droplet velocities and droplet
size distribution [4]. The respiratory activities which are
mentioned earlier can be classified as impulsive (sneezing
and coughing) and continuous (breathing and speaking)
emission signals. For continuous emissions, the respiration
rate is an influential factor for the transmission models.
In addition, the respiratory organs such as nose or mouth
affect the direction of the emitted signals. For example,
the infection risk increases, when the TX uses the mouth
instead of nose [18]. Furthermore, the convective boundary
layer (CBL) of the human body, posture and relative orien-
tation should be taken into account for accurate TX models.
In addition, the load of pathogens in an exhaled breath or
cough/sneeze, which can change according to the droplet
size, temperature and RH, can affect the transmission of
a disease, i.e., infectivity [19]. On the other hand, the
infectivity of a pathogen can increase during its evolution
in an epidemic and can bring about super spreading events
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[22]. In this work, the transmitted pathogens are assumed
identical and the inclusion of this infectivity, which can
be estimated via a phylogenetic analysis, droplet size and
environmental factors, into the model is left as an open
research issue.

3.1.2. Channel
The channel is the physical medium between the TX

and RX including the boundary conditions. As shown in
Fig. 2, channel modeling in the physical layer requires
knowledge from fluid dynamics and biology due to the air-
droplet interaction and survival of pathogens, respectively.
The propagation dynamics of droplets can be examined
under two subheadings depending on whether there is an
external airflow or not.

Still Air. In indoor environments such as residential build-
ings, it is generally assumed that there is no airflow, if
there is not any ventilation system. After the emission of
pathogen-laden droplets with an initial velocity, they are
subject to Newtonian mechanics during their interactions
with the air. Emitted droplets can be modeled as a cloud
consisting of droplets and air particles [7, 23]. The move-
ment of this cloud can be defined as a two-phase flow where
these phases represent the gaseous state of air and liquid
state of droplets [24, 25]. Due to gravity, large droplets
may fall earlier to the ground with respect to aerosols and
evaporation can shrink the size of droplets. As mentioned
earlier, the temperature of air and evaporation influence
the survival rates of pathogens. For continuous emissions,
this fact can affect the channel memory, which is crucial
for channel modeling. Furthermore, initial velocities of
droplets determined by respiratory activities can give rise
to laminar and turbulent flows which fade out as the dis-
tance between the TX and RX increases [26].

Windy Air. For windy outdoor environments and indoor
environments with airflows such as ventilation or wind aris-
ing from the open doors and windows, airflows dominate
the propagation of droplets rather than other factors given
for still air environments. The airflow which carries the
pathogen-laden droplets can be examined by advection and
dispersion (turbulent diffusion) mechanisms. Briefly, advec-
tion results from the airflow velocity and dispersion depends
on the turbulent eddies during the mass transfer [27]. It
should be noted that molecular diffusion related with the
thermal energy of molecules is negligible in macroscale. In
order to calculate the concentration of droplets in time and
space, deterministic and stochastic approaches which are
based on differential Navier-Stokes and continuity equa-
tions are employed. In addition, indoor ventilation types
such as under floor air distribution, mixing, displacement,
and downward ventilation should be incorporated into these
airflow models. For example, downward ventilation can re-
duce the infection risk by diluting the dispersion of droplets
[18].

Outer
Reception
Sub-Layer

Inner
Reception
Sub-Layer

Infection
state

Pathogen-
laden droplets

around the
human body

RECEIVER

Virus
DNA Human

Cell

Virus

Receptor

Figure 3: Two-layered receiver.

3.2. Reception Layer
A human gets infected, when the transmitted pathogens

are received into the body. As shown in Fig. 2, the recep-
tion layer covers the issues related to biology and medicine
in microscale where MC is utilized for the interactions
of pathogens with human body. The reception of these
pathogens by the exposed human (RX) have not been well
investigated, although there are myriads of theoretical,
experimental and clinical studies for the propagation of
pathogens. To this end, we propose a two-layered RX as
shown in Fig. 3 and detailed below.

3.2.1. Outer Reception Layer
The reception of pathogen-laden droplets occur in the

eyes, mouth and nose for many pathogens such as influenza
virus [19]. Hence, we define the first step of reception as
the outer layer sensing for the reception via facial sensory
organs as illustrated in Fig. 3. The whole surface of the
human face is also important for the reception, since an
infection may occur by touching the face contaminated
with pathogens and these organs consecutively.

Pathogen-laden droplets emitted via a respiratory ac-
tivity propagate as a mixture of droplets and air particles,
which can be represented as a spherical cloud [7, 23]. This
cloud is affected by the momentum due to the initial ve-
locity of droplets, gravity and buoyancy stemming from
the temperature difference of the mouth and ambient air.
According to the model detailed in [7], Fig. 4 gives the
change of the number of droplets in the cloud by taking set-
tling and reception of droplets into account for a coughing
TX in still air as illustrated in Fig. 1. The cross-section of
the RX is assumed to cover a circular area including eyes,
mouth and nose at the outer layer as shown in Fig. 3. At
this point, an analogy with the communication systems can
be established by considering the infected state of the RX
as symbol 1 and no infection as symbol 0. This reception
is accomplished by a detection according to a threshold
value (γ = 80) indicating the number of droplets required
to become infected, as given in Fig. 4. γ is a critical
parameter, since it depends on the strength of human’s

5



0 1 2 3 4 5 6 7 8 9 10

Time (s)

2500

3000

3500

4000

4500

5000

5500

6000

N
um

be
r 

of
 d

ro
pl

et
s 

in
 th

e 
cl

ou
d

0

20

40

60

80

100

120

140

160

180

200

N
um

be
r 

of
 r

ec
ei

ve
d 

dr
op

le
ts

 a
nd

 T
hr

es
ho

ld

xR = 1.5 m,  = 80

Number of droplets in the cloud
Number of received droplets
Threshold ( )

Figure 4: The mean number of droplets in the cloud and their
reception by the RX.

immune system. To this end, biomedical data of humans
such as body mass index, glucose level and whether or
not having chronic diseases can be employed to estimate γ.
Moreover, γ can be effective to determine the number of
infected people in an epidemic as given in Section 3.3.

In addition to these issues in the outer layer, the pos-
ture, relative orientation and CBL should be considered
for an accurate RX model as considered for the TX. Fur-
thermore, the reception of pathogen-laden droplets at the
outer layer with different types of masks is an open issue
to be investigated.

3.2.2. Inner Reception Layer
As shown in Fig. 3, pathogens actually enter human

body at the cellular level and increase their population.
For example, viruses replicate themselves by inserting their
genetic material (DNA or RNA) into human cells in two
ways: They can bind their fusion (or spike) protein on
specific receptor sites on the human cell or they can en-
ter by using endosomes like a Trojan horse [15]. Their
binding sites can have different concentrations in different
parts of the body. For instance, severe acute respiratory
syndrome coronavirus-2, which causes COVID-19, binds
to angiotensin converting enzyme-2 receptors which are
mostly found at upper respiratory tract [28]. While large
droplets are effective in upper respiratory tract, aerosols
can reach down to alveoli in lower respiratory tract. Hence,
the droplet size can be effective to determine the infection
risk according to the type of the disease. Moreover, the
viruses diffuse among human cells, bind to receptors and
copy their genetic material in a random way. All of these
issues at the inter- and intracellular level need to be mod-
eled for an accurate transmission model for the spread of
infectious diseases in MoHANETs. These modeling efforts
can also contribute to drug and vaccine developments. By
using the models at physical and reception layers, the in-
fection rate can be derived to be used in the networking

layer as given in the next part.

3.3. Networking Layer
What we examine up to here in lower layers of the Mo-

HANET architecture is about the transmission of infectious
diseases between two humans. However, these transmis-
sions occur many times in an epidemic, which requires a
perspective to handle the population as a connected group,
that is, a network. In the networking layer, the details
of the MoHANET architecture are presented in order to
model the spread of infectious diseases at a large scale (km)
within the communication engineering framework as shown
in Fig. 2.

For indoor airborne transmission, various versions of
Wells-Riley model are widely employed in the literature.
These models quantify the average number of pathogens
by using exposure time, pulmonary and room ventilation
rates in a well-mixed room with pathogens [19]. Although
these models are useful to determine the guidelines for
indoor places in an epidemic [29], they lack the capability
to estimate the number of infected humans over a long
term for larger areas. Therefore, a different approach is
adopted for long term estimations of an epidemic, which is
detailed as follows.

In epidemiology literature, each human, i.e., a node, can
be represented as susceptible (S), exposed (E), infectious
(I) or recovered (R) according to the SEIR-based models
[16]. Based on the disease type, different combinations of
these node types can be employed for the models such as
SIR or SIRS. By utilizing the widespread SIR model, a
MoHANET is given in Fig. 5 which gives both the spatial
and temporal changes. As the time elapses, the number of
nodes may alter and nodes can make transitions between
states such as S, I or R. For example, a susceptible node
can become infected, if it is in the transmission range of
an infectious node or an infectious node can recover after
a certain period. By using a communication engineering
perspective, the transmission among the nodes can be
classified as given next.

3.3.1. Transmission Types in MoHANETs
As illustrated in Fig. 5, three transmission types are

defined for the propagation of pathogen-laden droplets from
the infectious nodes to the susceptible nodes as follows:

• Point-to-Point Transmission includes the com-
munication between two nodes where the infectious
and susceptible nodes are the TX and RX, respec-
tively.

• Multicast Transmission is the scheme that one
infectious node spreads the disease to more than one
node within its communication range.

• Multiple-Access Transmission comprises the sce-
nario where a susceptible node is exposed to pathogen-
laden droplets from multiple infectious nodes.
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In this paper, multicast transmission scheme is em-
ployed in the networking layer as detailed in Section 4.1.

3.3.2. Epidemiological Models
The numbers of the nodes as illustrated in Fig. 5

are modeled in SEIR-based models by ordinary differen-
tial equations where these numbers can be deterministic
or stochastic processes. The transition among different
types of nodes are defined with certain rates which are
obtained by fitting statistical epidemic data in epidemio-
logical studies [16, 17]. In experimental studies, these data
are obtained by oral surveys or exploiting wireless sensor
network technology [16]. On the other hand, agent-based
modeling (ABM) which uses agents possessing individual
contact patterns and behaviors is applied in epidemiology
[30]. Although ABM has the advantage of fine-grained
results, it requires high computational power for the sim-
ulation of millions of agents, which makes it challenging
[30]. Therefore, the standard SIR model is adopted in this
paper.

The transition between the states in the SIR model are
defined via the transition rates λ1(t) and β2 as given by

S λ1(t)−−−→ I β2−−→ R, (1)

where λ1(t) = β1I(t)/N , β1 is the effective contact rate,
I(t) is the number of infected humans at time t, N is the
number of total population and β2 is the recovery rate.
The number of these node types are modeled by ordinary

nonlinear differential equations as given by [31]
dS(t)
dt

= −β1S(t)I(t)
N

, (2)

dI(t)
dt

= β1S(t)I(t)
N

− β2I(t), (3)

dR(t)
dt

= β2I(t), (4)

where S(t) and R(t) are the numbers of the susceptible and
recovered humans at time t, respectively. Here, we assume
that N is constant during the epidemic so that there is not
any death or birth.

The solution of this equation system is generally calcu-
lated numerically. However, analytical solutions also exist
as given by [32]

S(t) = S(0)e−ε(t), (5)

R(t) = R(0) + β2N

β1
ε(t), (6)

I(t) = N − S(t)−R(t) (7)

where ε(t) is defined as the expected number of transmis-
sions at time t and derived as

ε(t) = β1

N

∫ t

0
I(t∗)dt∗. (8)

This solution requires a numerical integration for ε(t)
which is very similar to the solution in [33]. Furthermore,
the final values of S(t), I(t) and R(t) is derived analytically
in [34]. This standard SIR model is employed as shown
with the proof of concept study in Section 4.

3.3.3. Routing and Mobility in MoHANETs
Humans are susceptible to infectious diseases in indoor

places. However, this is not the case that is encountered
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continuously. Instead, the risk to get infected is intermit-
tent due to the mobility of humans. As people displace,
their smart phones can communicate opportunistically with
each other as they are in the communication range. The
same type of networking is also used in many applications
such as wireless sensor, vehicular, and flying ad hoc net-
works. These dynamically changing structures defined as
mobile ad hoc networks (MANETs) enable communication
using the infrastructure at their location without a dedi-
cated router. Therefore, a MoHANET can be resembled
as a specific type of MANET, that is, a delay tolerant
network (DTN) in which an end-to-end link among the
nodes may not always exist. The nodes in a DTN store
their data and wait until they find a suitable connection.
By considering this waiting delay, routing algorithms in
DTNs provide the path to the desired user. Similarly, an
infected human can only infect via airborne transmission
once it has a susceptible human within the coverage area
of transmission as shown in Fig. 5. Hence, opportunistic
routing protocols such as epidemic or spray and wait can
be adopted to model the spread of the infectious diseases.
Interestingly, epidemic routing protocol which is a refer-
ence method for routing in MANETs was already inspired
by the mechanism of infectious disease spread during an
epidemic [35]. Furthermore, the mobility models employed
for MANETs can be utilized to model the spread of an
infectious disease in a MoHANET as given in the next part.

4. Proof of Concept for the MoHANET Architec-
ture

4.1. Omnidirectional Multicast Transmission Algorithm
In the SIR model, the effective contact rate (β1) is

employed to find the rate of transitions from state S to
state I which is generally estimated by epidemic data [31].
β1 is defined as the multiplication of the number of contacts
per unit time (ke) and the probability of infection when
there is a contact between an infectious and a susceptible
human (β0) as given by [31, 36]

β1 = keβ0. (9)

By using mobility models as applied in MANETs, the
average contact rate of humans (N̄c), which corresponds
to ke, can be determined via mobility models. As given in
the literature about the human mobility at different scales,
humans follow a Lévy walk pattern [37]. In this pattern,
the flight is defined as the longest distance in a straight line
between two points. During their movement, humans also
stop moving for several reasons such as staying at home,
or working in the office. These walks are characterized by
heavy-tailed distributions such as Lévy alpha-stable (or
hereafter called Lévy), lognormal or power-law for the flight
lengths and pause times [38].

In this paper, the truncated Lévy walk (TLW) model
is employed for the mobility of humans, since this model
relies on real location data of humans and also has the

applicability advantage of a random walk for an ad hoc
network [39]. In TLW, each node follows a Lévy walk
pattern. After each flight, a node stops for a certain pause
time (∆tp). The flight time (∆tf ) is calculated according
to the relation based on the GPS traces as given by [39]

∆tf =
{

30.55 ∆r0.11, ∆r < 500 m (10a)
0.76 ∆r0.72, ∆r ≥ 500 m , (10b)

where ∆r is the flight length. Here, ∆r and ∆tp are
random variables which have Lévy distributions having
the probability density function (pdf) with respect to the
inverse Fourier transform of its characteristic function as
given by [40]

fX(x;α, c) = 1
2π

∫ ∞
−∞

exp(−jtx− |ct|α)dt, (11)

where c and α are scale and shape parameters, respectively.
In TLW, Lévy distributions

(
S(αt, ct) and S(αr, cr)

)
are

truncated with an interval 0 ≤ ∆tp < τp and 0 ≤ ∆r < r1
for pause time and flight length, respectively.

In addition, the average probability of infection P̄inf can
be derived by considering the propagation and reception of
pathogen-laden droplets in physical and reception layers of
the MoHANET. By using the system model in [7] whose
results are given in Fig. 4, P̄inf is given by [7]

P̄inf = P (N̄R > γ) = Q

(
γ − µR
σR

)
(12)

where N̄R is the average received number of droplets with
N (µR, σ2

R) and γ is the detection threshold as defined in
Section 3.2. Here, µR and σR depend on the physical layer
parameters such as densities of droplets and air, dynamic
viscosity of air, distance, initial velocity and size distribu-
tion of droplets and reception layer parameters such as the
dimensions of the human face. Here, the infection range
(dinf ) which defines the radius of the circular coverage
area of airborne transmission as illustrated in Fig. 5 is
introduced as a new parameter. Within this coverage area,
it is assumed that P̄inf does not change according to the
distance between the TX and RX.

P̄inf given in (12) corresponds to the parameter β0
given in (9) in the SIR model. Thus, by using (12) and N̄c
computed via TLW, we propose that the effective contact
rate to be employed in the SIR model can be derived by

β1 = N̄cP̄inf . (13)

It is important to note that (12) is derived for a chan-
nel with still air and a receiver with only outer reception
layer. Therefore, the inclusion of different transmission
mechanisms such as survival of pathogens or thermofluidic
boundary conditions and also inner reception layer issues
are left as open research issues. In addition, it should be
underlined that (13) and (12) provide the connection be-
tween the airborne transmission and epidemiology studies
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by using communication engineering within the MoHANET
architecture. The following describes the method of how
this connection is established.

In order to calculate the effective contact rate based on
the mobility and airborne transmission, an omnidirectional
multicast transmission (OMT) algorithm is proposed as
given in Algorithm 1. In the first step of this algorithm, the

Algorithm 1 Omnidirectional Multicast Transmission Al-
gorithm
1: Input: tsim, τ , N , xmax, ymax, dinf , αr, cr, r1, αt, ct,
τp, µR, σR, γ

2: Determine the initial x and y positions of the nodes
with U(0, xmax) and U(0, ymax), respectively

3: . Step 1: Truncated Lévy Walk
4: Ns = tsim/τ . Number of time steps
5: for i = 1 : 1 : N do
6: k = 1
7: while k ≤ Ns do
8: Generate φ ∼ U(0, 2π)
9: Generate ∆r ∼ S(αr, cr) with 0 ≤ ∆r < r1
10: Generate ∆tp ∼ S(αt, ct) with 0 ≤ ∆tp < τp
11: ∆x = ∆r cos(φ); ∆y = ∆r sin(φ)
12: Calculate ∆tf by (10a)-(10b)
13: nf = b∆tf

τ + 1
2c

14: x(i, k + 1 : k + nf ) = x(i, k) + (∆x
nf

: ∆x
nf

: ∆x)
15: y(i, k + 1 : k + nf ) = y(i, k) + (∆y

nf
: ∆y
nf

: ∆y)
16: np = b∆tp

τ + 1
2c

17: x(i, k + 1 + nf : k + nf + np) = x(i, k + nf )
18: y(i, k + 1 + nf : k + nf + np) = y(i, k + nf )
19: if ith node is out of borders then
20: Bounce the node back from the border
21: end if
22: k = k + nf + np
23: end while
24: end for
25: . Step 2: Omnidirectional Transmission
26: Nc(1, :) = 1 . One infected node initially
27: for k = 1 : 1 : Ns do
28: for ix = 1 : 1 : N do
29: if Nc(ix, k) == 1 then
30: for i = 1 : 1 : N do
31: if d < dinf and i 6= ix then
32: Nc(i, k : end) = 1
33: end if
34: end for
35: end if
36: end for
37: end for
38: Nct =

∑N
i=1Nc(i, :)

39: N̄c = 1
Nstsim

∑Ns

k=1Nct(k)
40: P̄inf = Q

(
γ−µR

σR

)
41: β1 = N̄cP̄inf

2-D positions of the nodes in a MoHANET is determined via
the aforementioned TLW. At the start of the simulation, the
nodes are uniformly distributed in a 2-D rectangular area
which has limits (xmax, ymax). For each flight, the nodes
choose a random direction from a uniform distribution
U(0, 2π). At each flight, the positions of the nodes are
checked so that they do not go outside the defined borders.
If they reach the border, then the nodes bounce back to
the simulation zone.

In the second step of the OMT algorithm, the time
course of the disease spread is evaluated. For each node at
each time step, the contact state is checked according to
the distance between the infectious and susceptible nodes.
Here, it is assumed that both the infectious node emits and
the susceptible node receives the pathogen-laden droplets
in an omnidirectional way. Hence, if the distance between
these nodes is smaller than dinf , then the susceptible node
is assumed to be contacted and "potentially infected". The
actual infection state of the population is determined ac-
cording to the probability of infection, since a contact does
not necessarily lead to an infection. Then, the average
number of contacts of the nodes (Nct) is calculated by
summing the number of contacts of the nodes for each time
step to distinguish the difference of the contact states with
respect to time. Next, the average contact rate of the nodes
(N̄c) is determined by taking the average value of Nct over
time and dividing it to the simulation time (tsim). Finally,
the effective contact rate (β1) is found by using (13) which
is employed in the SIR model defined in (2)-(4). The idea
behind the OMT algorithm is to find β1 for a short period,
e.g., half day, and exploit this contact pattern for long-
term estimation of the infectious disease spread. In terms
of epidemiological models, the proposed OMT algorithm
stands between the SEIR-based and agent-based models.
While contact patterns are determined similar to ABM,
the long term time course of the epidemic is estimated by
using a SEIR-based model. Next, numerical results for the
OMT algorithm are given.

4.2. Numerical Results
In this part, numerical results are obtained by employ-

ing the SIR model which uses the effective contact rate via

Parameter Value Parameter Value
tsim 12 h τ 10 s
N 1000 dinf 1 m
xmax 2000 m ymax 2000 m
αr 1.6 cr 10
αt 0.8 ct 1
r1 1000 m τp 1000 s
µR 120 σR 10
γ 140 β2 0.037
I(0) 1 S(0) 999

Table 1: Simulation parameters
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Figure 6: Number of infected humans (nodes) in a MoHANET
with γ = 142.4, β2 = 0.037 and the COVID-19 data of Italy for the
first 150 days (31 January 2020-28 June 2020) at the beginning of
the pandemic. The root mean square error between these curves is
5110.2.

the proposed OMT algorithm. The simulation parameters
are given in Table 1. In the OMT algorithm, N̄c is deter-
mined via Monte Carlo simulation for a time period (tsim)
of half day assuming that humans stay at their homes for
the rest of the day. The values of the shape and scale
parameters for flight and pause time distributions in TLW,
i.e., αr, cr, αt, ct, and their truncation values, i.e., r1, τp,
are chosen according to values based on real location data
in [39] for a 2000 m × 2000 m area. In the simulation of
the SIR model, it is initially assumed that there is only
one infected human in the MoHANET, other nodes are
susceptible. In addition, it is assumed that the number of
people does not change due to death, birth, etc. during
the simulation due to the constant population density of
Italy [41]. The idea of the OMT algorithm is to find an
average contact rate for a limited population in a limited
area with a realistic mobility pattern and to apply it by
scaling to a larger area and population. The parameters of
physical and reception layers such as µR, σR, γ and dinf
are determined in accordance with the values in [7]. In
addition, please note that β1 value is converted from the
unit s−1 to day−1 to be used in the SIR simulations.

In Fig. 6, the results obtained with the MoHANET
architecture are validated by the active infected cases of
the COVID-19 outbreak in Italy for the first 150 days
(31 January 2020-28 June 2020) by using the data set in
[42]. The start date of the data is the first day an ac-
tive case was recorded. In this data set, the number of
actively infected cases (Id(t)) are calculated by subtract-
ing the number of recovered and death humans from the
number of total confirmed cases. The number of deaths
are omitted in the SIR model, since it is negligible with
respect to the population of Italy (u 6× 107). In addition,
the estimated number of infectious humans is scaled via

multiplying I(t) by max(Id(t))/max(I(t)) where max(.)
shows the peak value, as also applied in [43]. In order to
visually fit the COVID-19 data, γ and β2 values, which are
given in the caption of Fig. 6, are arranged manually in
order to fit the empirical data visually and having a root
mean square error as small as possible. The chosen value
of β2 is also in agreement with a similar SIR modeling
study for COVID-19 [43]. This figure shows that airborne
transmission issues and mobility can be combined with
the SIR model within the MoHANET architecture. Here,
N̄R depends on the parameters such as the velocity and
size distribution of droplets, air-droplet interaction and
receiver geometry. Thus, this modeling approach gives the
opportunity to include the parameters of the physical and
reception layers in the networking layer of the MoHANET.
For convenience, β2 for the transitions from state I to state
R is taken as a constant value. However, β2 can be esti-
mated at the reception layer by using human’s immune
system response or drug-human interaction at the cellular
level.

Surely, the empirical data set includes situations such
as people with and without masks or limited mobility
due to lockdown which lasted from 9 March 2020 until
18 May 2020 in Italy. Furthermore, the population is
not stationary even in a lockdown. However, the results
obtained with the MoHANET architecture aim to give an
average estimate for an epidemic as also applied in the
epidemiology literature with the SIR based models. The
effects of different scenarios are included in the proposed
model via arranging the parameters in (12) for airborne
transmission issues and TLW parameters for mobility issues
as also given in Figs. 8 and 9. In the rest of this section,
the results are obtained for the parameters given in Table 1
without scaling and for a generic scenario to show the effects
of the different layers of the MoHANET on an epidemic.

The results given in Fig. 7 depicts the effect of reception
layer issues on the time course of the epidemic. Here, it

0 50 100 150 200 250 300

Time (days)

0

100

200

300

400

500

600

700

800

900

T
ot

al
 n

um
be

r 
of

 a
ct

iv
el

y 
in

fe
ct

ed
 h

um
an

s

 = 135
 = 140
 = 145

Figure 7: Total number of actively infected humans (nodes) in a
MoHANET for different threshold values.
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Figure 8: Effect of the received number of droplets on infectious
disease spread through airborne transmission.

is shown that the rate of an epidemic reduces as γ which
depends on the average strength of the humans’ immune
system increases. This actually corresponds to the fact
that people in a society can reduce the impact of epidemics
by preferring a healthier lifestyle that includes practices
such as following a balanced diet, living in a less stressful
way or exercising regularly. Here, it can be observed that
a small change in γ can affect the course of the epidemic
dramatically. This shows that health authorities should
promote and support to boost the immune system strength
of the population constantly as well as supporting vaccine
development for infectious diseases.

In Fig. 8, the effect of the mean received number of
droplets (µR) during the airborne pathogen transmission
on an epidemic is shown. In case of a longer stay in an
indoor place, a more violent respiratory event, a closer
distance to an infectious human or not wearing a mask,
µR of a susceptible human can increase. Hence, Fig. 8
can be interpreted as the effect of social distance rules
such as wearing masks in an epidemic. If these rules are
followed, i.e., µR is decreased, the curve can be flattened
in an epidemic. In addition, Fig. 8 can also be considered
as the effect of different types of masks. As the filtering
capacity of the mask used in the population increases, e.g.,
FFP-2 mask, the epidemic has a milder course. On the
other hand, the increased infectivity of a pathogen along
the different stages of an epidemic due to its evolution can
be simulated by increasing µR as shown in Fig. 8.

Fig. 9 depicts the time course of the infectious disease
spread for different pause time distributions of the nodes.
As αt decreases, the nodes in the MoHANET have shorter
pause times at their locations. Hence, their contact rate
decreases. This also corresponds to the situation where
people avoid long visits to each other and less people get
infected. Here, αt = 2 corresponds to a normal distribution
which severely differs from TLW with the realistic value
αt = 0.8. Thus, these results show that the mobility

0 50 100 150 200 250 300

Time (days)

0

100

200

300

400

500

600

700

800

900

1000

T
ot

al
 n

um
be

r 
of

 a
ct

iv
el

y 
in

fe
ct

ed
 h

um
an

s

t
 = 0.8

t
 = 1

t
 = 2

Figure 9: Effect of different pause time distributions on infectious
disease spread through airborne transmission for dinf = 1 m and
γ = 140.

parameters should be chosen carefully according to the
scenario so that they affect the estimations of the time
course of an epidemic. In addition, these results can also
be considered as the effect of a lockdown in an epidemic. As
αt decreases, the degree of mobility decreases. Hence, it is
shown that the lockdown can help to decrease the number
of infected people. For realistic results on the effect of
airborne transmission, several experimental methods can
be employed, which is discussed in the next section.

5. A Discussion on Experimental Techniques and
Simulations for MoHANETs

In order to observe and model the airborne transmis-
sion mechanisms among humans, experimental setups and
computer simulations can be employed. In this section, we
present and discuss how the performance of the proposed
methods in different layers of the MoHANET architecture
can be evaluated.

In physical and reception layers, the emulation of breath-
ing, coughing and sneezing in experimental setups are real-
ized by respiratory machines or thermal manikins which
can be heated to change their temperature. These devices
emit tracer gases including droplets. The concentration of
droplets is measured by air samplers or via imaging tech-
niques such as particle image velocimetry which gives the
velocity and directions of droplets [18]. Moreover, sprayer-
based MC systems can also be used instead of respiratory
machines, manikins and air samplers [24, 25].

Albeit reliable results can be obtained by physical exper-
iments regarding the consideration of droplet-air interaction
and airflows, collected data have a low-resolution in space
and time and experimental devices are expensive. There-
fore, computational fluid dynamics (CFD) simulations are
employed to evaluate the airborne transmission mechanisms
with a high spatiotemporal resolution and less cost [18].
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However, the simulation software programs are based on
Navier-Stokes equations which lack the capability to model
all of the effects during the transmission realistically.

These experimental techniques and CFD simulations
can be employed in physical and reception layers [26, 44].
In the networking layer, it is essential to model the spread
of infectious diseases with an approach that takes into
account the interaction of people and their mobility in
both time and space. The movement patterns of humans
can be simulated by synthetic models or trace-based models
which rely on real mobility data of mobile nodes [45]. The
adapted routing protocols for MoHANETs can also be
evaluated in time and space by employing these mobility
models according to the scenario via network simulation
software. With a holistic perspective, new software is
needed to model all of the issues at different layers of the
MoHANET in a single platform.

6. Conclusion

This paper presents a framework to model airborne
pathogen transmission with a communication engineer-
ing perspective. First, airborne pathogen transmission
mechanisms are reviewed and MC is utilized to model
the propagation and reception of this transmission. The
concept of MoHANET is proposed to handle the infec-
tious disease spread modeling problem by using a layered
structure in macro- and microscales. Furthermore, a proof-
of-concept study is given about the MoHANET architecture
via the proposed OMT algorithm. The holistic viewpoint of
communication engineering can bring different disciplines
such as fluid dynamics, medicine, biology and epidemiol-
ogy together for accurate predictions about the spread of
infectious diseases. Numerical results confirm that preven-
tion measures that reduce the number of pathogen-laden
droplets received by individuals or a healthier population,
i.e., people with stronger immune systems, can flatten the
curve in an epidemic.
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