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Abstract—In this paper, the optimal trajectory and deployment
of multiple unmanned aerial vehicles (UAVs), used as aerial
base stations to collect data from ground Internet of Things
(IoT) devices, is investigated. In particular, to enable reliable
uplink communications for IoT devices with a minimum energy
consumption, a new approach for optimal mobility of the UAVs
is proposed. First, given a fixed ground IoT network, the total
transmit power of the devices is minimized by properly clustering
the IoT devices with each cluster being served by one UAV. Next,
to maintain energy-efficient communications in time-varying
mobile IoT networks, the optimal trajectories of the UAVs are
determined by exploiting the framework of optimal transport
theory. Simulation results show that by using the proposed
approach, the total transmit power of IoT devices for reliable
uplink communications can be reduced by 56% compared to the
fixed Voronoi deployment method. Moreover, our results yield
the optimal paths that will be used by UAVs to serve the mobile
IoT devices with a minimum energy consumption.

I. INTRODUCTION

The use of unmanned aerial vehicles (UAVs) as flying
wireless communication platforms has received significant
attention recently [1]–[3]. On the one hand, UAVs can be
used as wireless relays for improving connectivity of ground
wireless devices and extending network coverage. On the other
hand, UAVs can act as mobile aerial base stations to provide
reliable downlink and uplink communications for ground
users, and boost the capacity of wireless networks [3] and
[4]. Compared to the terrestrial base stations, the advantage
of using UAV-based aerial base stations is their ability to
quickly and easily move. Furthermore, the high altitude of
UAVs can enable line-of-sight (LoS) communication links to
the ground users. Due to the adjustable altitude and mobility,
UAVs can move towards potential ground users and establish
reliable connections with a low transmit power. Hence, they
can provide a cost-effective and energy-efficient solution to
collect data from ground mobile users that are spread around
a geographical area with limited terrestrial infrastructure.

Indeed, UAVs can play a key role in the Internet of Things
(IoT) which is composed of small, battery-limited devices
such as sensors, and health monitors [5]–[7]. These devices
are typically unable to transmit over a long distance due to
their energy constraints [6]. In such IoT scenarios, UAVs
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can dynamically move towards IoT devices, collect the IoT
data, and transmit it to other devices which are out of the
communication ranges of the transmitting IoT devices [6].
In this case, the UAVs play the role of moving aggregators
for IoT networks. However, to effectively use UAVs for IoT
communications, several challenges must be addressed such
as optimal deployment and energy-efficient use of UAVs [1].

In [1], we investigated the optimal deployment and move-
ment of a single UAV for supporting downlink wireless
communications. However, this work was restricted to a single
UAV and focused on the downlink. The work in [8] analyzed
the optimal trajectory of UAVs to enhance connectivity of
ad-hoc networks. Nevertheless, this work did not study the
optimal movement of multiple UAVs acting as aerial base
stations. The work in [9] studied the optimal deployment of
UAVs and UAV-users association for static ground users with
the goal of meeting users’ rate requirements. In [10], the
authors used UAVs to efficiently collect data and recharge the
clusters’ head in a wireless sensor network which is partitioned
into multiple clusters. However, this work is limited to a
static sensor network and does not investigate the optimal
deployment of the UAVs. While the energy efficiency of
uplink data transmission in a machine-to-machine (M2M)
communication network was investigated in [11] and [12], the
presence of UAVs was not considered. In fact, none of the prior
studies [1]–[3], and [8]–[12], addressed the problem of optimal
deployment and mobility of UAVs for enabling reliable and
energy-efficient communications for mobile IoT devices.

The main contribution of this paper is to propose a novel
approach for deploying multiple, mobile UAVs for energy-
efficient uplink data collection from mobile, ground IoT
devices. First, to minimize the total transmit power of the
IoT devices, we create multiple clusters where each one
is served by one of the UAVs. Next, to guarantee energy-
efficient communications for the IoT devices in mobile and
time-varying networks, we determine the optimal paths of the
UAVs by exploiting dynamic clustering and optimal transport
theory [13]. Using the proposed method, the total transmit
power of the IoT devices required for successful transmissions
is minimized by the dynamic movement of the UAVs. In
addition, the proposed approach will minimize the total energy
needed for the UAVs to effectively move. The results show
that, using our proposed framework, the total transmit power
of the devices during the uplink transmissions can be reduced



by 56% compared to the fixed Voronoi deployment method.
Furthermore, given the optimal trajectories for UAVs, they
can serve the mobile IoT devices with a minimum energy
consumption.

The rest of this paper is organized as follows. In Section
II, we present the system model and problem formulation.
Section III presents the optimal devices’ clustering approach.
In Section IV, we address the mobility of the UAVs using dis-
crete transport theory. In Section V, we provide the simulation
results, and Section VI draws some conclusions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider an IoT system consisting of a set ℒ = {1, 2, ..., 𝐿}
of 𝐿 IoT devices deployed within a geographical area. In
this system, a set 𝒦 = {1, 2, ...,𝐾} of 𝐾 UAVs must be
deployed to collect the data from the ground devices in the
uplink. The locations of device 𝑖 ∈ ℒ and UAV 𝑗 ∈ 𝒦 are,
respectively, given by (𝑥𝑖, 𝑦𝑖) and (𝑥𝑢,𝑗 , 𝑦𝑢,𝑗 , ℎ𝑗) as shown in
Figure 1. We assume that devices transmit in the uplink using
orthogonal frequency division multiple access (OFDMA) and
UAV 𝑗 can support at most 𝑀𝑗 devices simultaneously. Note
that, we consider a centralized network in which the locations
of devices and UAVs are known to a control center such as
a central cloud server. The ground IoT devices can be mobile
(e.g. smart cars) and their data availability can be intermittent
(e.g. sensors). Therefore, to effectively respond to the net-
work mobility, it is essential that the UAVs optimally move
for establishing reliable and energy-efficient communications
with the devices. Note that, in our analysis, without loss of
generality any mobility model can be accommodated.

For ground-to-air communications, each device will typi-
cally have a LoS view towards a specific UAV with a given
probability. This LoS probability depends on the environment,
location of the device and the UAV, and the elevation angle
between the device and the UAV [2]. One suitable expression
for the LoS probability is given by [2]:

𝑃LoS =
1

1 + 𝜓 exp(−𝛽 [𝜃 − 𝜓])
, (1)

where 𝜓 and 𝛽 are constant values which depend on the carrier
frequency and type of environment such as rural, urban, or
dense urban, and 𝜃 is the elevation angle. Clearly, 𝜃 = 180

𝜋 ×
sin−1

(
ℎ𝑗
𝑑𝑖𝑗

)
, where 𝑑𝑖𝑗 =

√
(𝑥𝑖 − 𝑥𝑢,𝑗)2 + (𝑦𝑖 − 𝑦𝑢,𝑗)2 + ℎ2𝑗

is the distance between device 𝑖 and UAV 𝑗.
From (1), we can observe that by increasing the elevation

angle or increasing the UAV altitude, the LoS probability
increases. We assume that, the necessary condition for con-
necting a device to a UAV is to have a LoS probability greater
than a threshold (𝜖 close to 1). In other words, 𝑃LoS(𝜃) ≥ 𝜀,
and hence, 𝜃 ≥ 𝑃−1

LoS(𝜀) leading to:

𝑑𝑖𝑗 ≤ ℎ𝑗

sin
(
𝑃−1

LoS(𝜀)
) . (2)

Note that (2) shows the necessary condition for connecting
the device to the UAV. Therefore, a device will not be
assigned to UAVs which are located at distances greater than

ℎ𝑗

sin(𝑃−1
LoS (𝜀))

.

Now, considering the LoS link, the received signal power
at UAV 𝑗 from device 𝑖 is given by [2] (in dB):

𝑃 𝑖𝑗𝑟 = 𝑃𝑡,𝑖 − 10𝛼 log

(
4𝜋𝑓𝑐
𝑐

𝑑𝑖𝑗

)
− 𝜂, (3)

where 𝑃𝑡,𝑖 is the transmit power of device 𝑖 in dB, 𝑓𝑐 is the
carrier frequency, 𝛼 = 2 is the path loss exponent for LoS
propagation, 𝜂 is an excessive path loss added to the free space
propagation loss, and 𝑐 is the speed of light.

In our model, the transmit power of the devices must
satisfy the minimum signal-to-noise-ratio (SNR) required for
a successful decoding at UAVs. For quadrature phase shift
keying (QPSK) modulation, the minimum transmit power of
device 𝑖 needed to reach a bit error rate requirement of 𝛿 is:

𝑃 𝑖𝑗𝑡 =
[
𝑄−1 (𝛿)

]2𝑅𝑏𝑁𝑜
2

10𝜂/10
(
4𝜋𝑓𝑐𝑑𝑖𝑗

𝑐

)2

, (4)

where 𝑄−1(.) is the inverse 𝑄-function, 𝑁𝑜 is the noise power
spectral density, and 𝑅𝑏 is the transmission bit rate. Note that,
to derive (4) using (3), we use the bit error rate expression for

QPSK modulation as 𝑃𝑒 = 𝑄(
√

2𝑃 𝑖𝑗
𝑟

𝑅𝑏𝑁𝑜
) [14].

Our first goal is to optimally move and deploy the UAVs
in a way that the total transmit power of devices to reach the
minimum SNR requirement for a successful decoding at the
UAVs is minimized. In fact, the objective function is:

min
𝒞𝑗 ,𝝁𝑗

𝐾∑
𝑗=1

∑
𝑖∈𝒞𝑗

𝑃 𝑖𝑗𝑡 , 𝑗 ∈ 𝒦, (5)

where 𝑃 𝑖𝑗𝑡 is the transmit power of device 𝑖 to UAV 𝑗, and 𝐾
is the number of UAVs. Also, 𝒞𝑗 is the set of devices assigned
to UAV 𝑗, and 𝝁𝑗 is the 3D location of UAV 𝑗.

From (4), we can observe that the transmit power is directly
proportional to the distance squared. Hence, minimizing the
power is equivalent to minimizing the distance squared. Then,
using (2), (4), and (5), and considering the constraint on the
maximum number of devices that can connect to each UAV,
our optimization problem can be formulated as:{𝒞∗

𝑗 ,𝝁
∗
𝑗

}
= argmin

𝒞𝑗 ,𝝁𝑗

𝐾∑
𝑗=1

∑
𝑖∈𝒞𝑗

𝑑2𝑖𝑗 , 𝑗 ∈ 𝒦, (6)

s.t. 𝒞𝑗 ∩ 𝒞𝑚 = ∅, 𝑗 ∕= 𝑚, 𝑗,𝑚 ∈ 𝒦, (7)
𝐾∑
𝑗=1

∣𝒞𝑗 ∣ = 𝐿, (8)

𝑑𝑖𝑗 ≤ ℎ𝑗

sin
(
𝑃−1

LoS(𝜀)
) , (9)

∣𝒞𝑗 ∣ ≤𝑀𝑗 , (10)

where ∣𝒞𝑗 ∣ is the number of devices assigned to UAV 𝑗, 𝐿 is
the total number of devices, and 𝑀𝑗 is the maximum number
of devices that UAV 𝑗 can support. (7) and (8) guarantee that
each device connects to only one UAV.

Clearly, we can consider the set of devices which are
assigned to a UAV as a cluster, and place the corresponding
UAV at the center of the cluster. Placing a UAV at the cluster
center ensures that the UAV has a minimum total distance



Fig. 1: System model.

squared to all the cluster members. Hence, to solve problem
(6), we need to find 𝐿 clusters, and their centers which
effectively correspond to the locations of the UAVs. Note
that, in a time varying network in which the location of IoT
devices change, the clusters will also change. Consequently,
the location of UAVs as the center of the clusters must be
updated accordingly. However, moving these UAVs to the
center of the clusters should be done with a minimum energy
consumption. Therefore, in the mobile scenario, while finding
the optimal paths of UAVs, we need to determine which UAV
must go to which cluster center. Next, we present the IoT
devices’ clustering approach for minimizing the total transmit
of the IoT devices.

III. CLUSTERING IOT DEVICES

Our first step is to optimally cluster the devices and deploy
the UAVs at the center of the formed clusters so as to minimize
the transmit power of the ground IoT devices.

We solve the problem in (6) by exploiting the constrained
𝐾-mean clustering approach [15]. In the 𝐾-mean clustering
problem, given 𝐿 points in R𝑛, the goal is to partition the
points into 𝐾 disjoint clusters such that the sum of distances
squared of the points to their corresponding cluster center is
minimized. Hence, considering (5) and (6), the total transmit
power of devices is minimized by placing the UAVs in the
center of the optimal clusters. This problem can be solved in
two steps using an iterative process. The first step is related
to the assignment, and the second step is called update.

A. Assignment Step

In the assignment step, given the location of the clusters’
center (given all 𝝁𝒋), we find the optimal clusters for which
the total distance squared between the cluster members and
their center is minimized. Therefore, in our problem, given
the location of the UAVs, we will first determine the optimal
assignment of the devices to UAVs which can be written as:

min
𝐴𝑖𝑗

𝐾∑
𝑗=1

𝐿∑
𝑖=1

𝐴𝑖𝑗 ∣∣𝒗𝑖 − 𝝁𝑗 ∣∣2, (11)

s.t.
𝐿∑
𝑖=1

𝐴𝑖𝑗 ≤𝑀𝑗 , 𝑗 ∈ 𝒦, (12)

𝐾∑
𝑗=1

𝐴𝑖𝑗 = 1, 𝑖 ∈ ℒ, (13)

𝐴𝑖𝑗 ∣∣𝒗𝑖 − 𝝁𝑗 ∣∣ ≤
ℎ𝑗

sin
(
𝑃−1

LoS(𝜀)
) , (14)

𝐴𝑖𝑗 ∈ {0, 1}, (15)

where 𝒗𝑖 = (𝑥𝑖, 𝑦𝑖) is the two-dimensional location vector of
device 𝑖, and 𝐴𝑖𝑗 is equal to 1 if device 𝑖 is assigned to UAV
𝑗, otherwise 𝐴𝑖𝑗 will be equal to 0. The problem presented
in (11) is an integer linear programming which is solved by
using the cutting plane method [16].

B. Update Step

In the update step, given the clusters obtained in the
assignment step, we update the location of the UAVs which
is equivalent to updating the center of the clusters. Thus,
the update location of UAVs is the solution to the following
optimization problem:

min
(𝑥𝑢,𝑗 ,𝑦𝑢,𝑗 ,ℎ𝑗)

∑
𝑖∈𝒞𝑗

(𝑥𝑢,𝑗 − 𝑥𝑖)
2
+ (𝑦𝑢,𝑗 − 𝑦𝑖)

2
+ ℎ𝑗

2, (16)

s.t. (𝑥𝑢,𝑗 − 𝑥𝑖)
2 + (𝑦𝑢,𝑗 − 𝑦𝑖)

2 + ℎ2𝑗

(
1− 1

sin2
(
𝑃−1

LoS(𝜀)
)
)

≤ 0,

for all 𝑖 ∈ 𝒞𝑗 , and 𝑗 ∈ 𝒦. (17)

Theorem 1. The solution to (16) is 𝒔∗ = (𝑥∗𝑢,𝑗 , 𝑦
∗
𝑢,𝑗 , ℎ

∗
𝑗 ) =

−𝑷 (𝝀)
−1

𝑸(𝝀), with the vector 𝝀 that maximizes the fol-
lowing concave function:

max
𝝀

1

2
𝑸(𝝀)

𝑇
𝑷 (𝝀)

−1
𝑸(𝝀)+ 𝑟(𝝀), (18)

s.t. 𝝀 ≥ 0, (19)

where 𝑷 (𝝀) = 𝑷 𝑜 +
∑
𝑖

𝜆𝑖𝑃𝑖, 𝑸(𝝀) = 𝑸𝑜 +
∑
𝑖

𝜆𝑖𝑄𝑖 and

𝑟(𝝀) = 𝑟𝑜 +
∑
𝑖

𝜆𝑖𝑟𝑖, with 𝑷 𝑜, 𝑸𝑜, 𝑟𝑜, 𝑷 𝑖, 𝑸𝑖, and 𝑟𝑖 given

in the proof.

Proof: As we can see from (16), the optimization problem
is a quadratically constrained quadratic program (QCQP)
whose general form is given by:

min
𝒔

1

2
𝒔𝑇𝑷 𝑜𝒔+𝑸𝑇𝑜 𝒔+ 𝑟𝑜, (20)

s.t.
1

2
𝒔𝑇𝑷 𝑖𝒔+𝑸𝑇𝑖 𝒔+ 𝑟𝑖 ≤ 0, 𝑖 = 1, ..., ∣𝒞𝑗 ∣. (21)

Given (16) and (17), we have:

𝑷 𝑜 =

⎡
⎣ 2∣𝒞𝑗 ∣ 0 0

0 2∣𝒞𝑗 ∣ 0
0 0 2∣𝒞𝑗 ∣

⎤
⎦, 𝑷 𝑖 =

⎡
⎣ 2 0 0

0 2 0
0 0 𝜔

⎤
⎦,

𝜔 = 1− 1

sin2(𝑃−1
LoS (𝜀))

, 𝑸𝑜 =

[
−2

∣𝒞𝑗 ∣∑
𝑖=1

𝑥𝑖 −2
∣𝒞𝑗 ∣∑
𝑖=1

𝑦𝑖 0

]𝑇
,

𝑸𝑖 =
[ −2𝑥𝑖 −2𝑦𝑖 0

]𝑇
, 𝑟𝑜 =

∣𝒞𝑗 ∣∑
𝑖=1

𝑥2𝑖 +
∣𝒞𝑗 ∣∑
𝑖=1

𝑦2𝑖 , and

𝑟𝑖 = 𝑥2𝑖 + 𝑦2𝑖 . Note that, 𝑷 𝑜 and 𝑷 𝑖 are positive semidefinite
matrices, and, hence, the QCQP problem in (20) is convex.
Now, we write the Lagrange dual function as:

𝑓(𝜆) = inf
𝒔

[
1

2
𝒔𝑇𝑷 𝑜𝒔+𝑸𝑇𝑜 𝒔+ 𝑟𝑜



+
∑
𝑖

𝜆𝑖

(
1

2
𝒔𝑇𝑷 𝑖𝒔+𝑸𝑇𝑖 𝒔+ 𝑟𝑖

)]

= inf
𝒔

[
1

2
𝒔𝑇𝑷 (𝝀)𝒔+𝑸(𝝀)

𝑇
𝒔+ 𝑟(𝝀)

]
.

Clearly, by taking the gradient of the function inside the
infimum with respect to 𝑠, we find 𝒔∗ = −𝑷 (𝝀)

−1
𝑸(𝝀).

As a result, using 𝒔∗, 𝑓(𝝀) = 1
2𝑸(𝝀)

𝑇
𝑷 (𝝀)

−1
𝑸(𝝀)+𝑟(𝝀).

Finally, the dual of problem (20) or (16) will be:

max 𝑓(𝝀), s.t. 𝝀 ≥ 0, (22)

which proves Theorem 1.
The assignment and update steps are applied iteratively until

there is no change in the location update step. Clearly, at
each iteration, the total transmit power is reduced and the
objective function is monotonically decreasing. Hence, the
solution converges after several iterations.

In summary, for given locations of the ground IoT devices,
we determined the optimal locations of the UAVs (cluster
centers) for which the transmit power of the IoT devices
used for reliable uplink communications is minimized. In a
mobile IoT network, the UAVs must update their locations and
follow the cluster centers as they evolve due to time-varying
dynamics. Next, we investigate how to optimally move the
UAVs to the center of the clusters.

IV. MOBILITY OF UAVS: OPTIMAL TRANSPORT THEORY

Here, we find the optimal trajectory of the UAVs to
guarantee the reliable uplink transmissions of mobile IoT
devices. To move along the optimal trajectories, the UAVs
must spend a minimum total energy on their mobility so as
to remain operational for a longer time. In the considered
mobile ground IoT network, the location of the devices and
their availability might change, and hence, the clusters will
change. Consequently, the UAVs must frequently update their
locations accordingly. Now, given the location of the cluster
centers obtained in Section III, and initial locations of the
UAVs, we determine which UAV should fly to which cluster
center such that the total energy consumed for their mobility
is minimized. In other words, given ℐ and 𝒥 , the initial and
new sets of UAVs’ locations, one needs to find the optimal
mapping between these two sets in a way that the energy used
for transportations (between two sets) is minimized.

This problem can be modeled using discrete optimal trans-
port theory [13]. In its general form, optimal transport theory
deals with finding an optimal transportation plan between two
sets of points that leads to a minimum transportation cost
[13]. These sets can be either discrete or continuous, with
arbitrary distributions, and can have a general transportation
cost function. The optimal transport theory was originated
from the following Monge problem [13]. Given piles of sands
and holes with the same volume, find the best move (transport
map) to completely fill up the holes with the minimum
total transportation cost. In general, this problem does not
necessarily have a solution as each point must be mapped to
only one location. However, Kantorovich relaxed this problem

by using transport plans instead of maps, in which one point
can go to multiple points [13].

In our model, the UAVs need to move from initial locations
to the new destinations. The transportation cost for each
move is the energy used by each UAV for the mobility. We
model this problem based on the discrete Monge-Kantorovich
problem as follows [17]:

min
𝑍𝑘𝑙

∑
𝑙∈𝒥

∑
𝑘∈ℐ

𝐸𝑘𝑙𝑍𝑘𝑙, (23)

s.t.
∑
𝑙∈𝒥

𝑍𝑘𝑙 = 𝑚𝑘, (24)

∑
𝑘∈ℐ

𝑍𝑘𝑙 = 𝑚𝑙, (25)

𝑍𝑘𝑙 ∈ {0, 1}, (26)

where ℐ and 𝒥 , are the initial and new sets of UAVs’
locations. 𝒁 is the ∣𝒥 ∣ × ∣ℐ∣ transportation plan matrix with
each element 𝑍𝑘𝑙 being 1 if UAV 𝑘 is assigned to location 𝑙,
and 0 otherwise. 𝐸𝑘𝑙 is the energy used for moving a UAV
from its initial location with index 𝑘 ∈ ℐ to a new location
with index 𝑙 ∈ 𝒥 . 𝑚𝑙 and 𝑚𝑘 are the number of points (UAVs)
at the locations with indices 𝑙 and 𝑘. The energy consumption
of a UAV moving with a constant speed as a function of
distance is given by [18]:

𝐸(𝐷, 𝑣) =

𝑡=𝐷/𝑣∫
𝑡=0

𝑝(𝑣)𝑑𝑡 =
𝑝(𝑣)

𝑣
𝐷, (27)

where 𝐷 is the travel distance of the UAV, 𝑣 is the constant
speed, 𝑡 is the travel time, and 𝑝(𝑣) is the power consumption
as a function of speed. As we can see from (27), energy
consumption for mobility is linearly proportional to the travel
distance. Using the Kantorovich-duality, the discrete optimal
transport problem in (23) is equivalent to:

max
𝜑,𝜉

[∑
𝑘∈ℐ

𝜉(𝑘)−
∑
𝑙∈𝒥

𝜑(𝑙)

]
, (28)

s.t. 𝜑(𝑙)− 𝜉(𝑘) ≤ 𝐸𝑘𝑙, (29)

where 𝜉 : ℐ → R, and 𝜑 : 𝒥 → R are unknown
functions of the maximization problem. The dual problem in
(28) is used to solve the primal problem in (23) by applying
the complementary slackness theorem [13]. In this case, the
optimal solution including the optimal transport plan between
ℐ and 𝒥 is achieved when 𝜑(𝑙) − 𝜉(𝑘) = 𝐸𝑘𝑙 [13]. Here, to
find the optimal mapping between initial set of locations and
the destination set, we use the revised simplex method [19].
The result will be the transportation plan (𝒁) that optimally
assigns the UAVs to the destinations. Hence, the location
of the UAVs are updated according to the new destinations.
Subsequently, having the destinations of each UAV at different
time instances, we can find the optimal trajectory of the UAVs.
As a result, given the optimal paths, the UAVs are able to serve
the mobile IoT devices in an energy-efficient way.



Table I: Simulation parameters.

Parameter Description Value
𝑓𝑐 Carrier frequency 2 GHz
𝑣 UAV speed 10 m/s
𝛿 Bit error rate requirement 10−8

𝜖 𝑃LoS requirement 0.95
𝑁𝑜 Noise power spectral density -170 dBm/Hz
𝑅𝑏 Transmission data rate 200 Kbps
𝐵 Transmission bandwidth per device 200 KHz
𝜂 Additional path loss to free space 5 dB
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Fig. 2: Optimal clusters and UAVs’ locations in one snapshot.

V. SIMULATION RESULTS AND ANALYSIS

In our simulations, the IoT devices are deployed within a
geographical area of size 1.2 km× 1.2 km. We consider UAV-
based communications in an urban environment with 𝜓 =
11.95, and 𝛽 = 0.14 at 2 GHz carrier frequency [2]. Moreover,
we use the energy consumption model for UAVs’ mobility as
𝐸(𝐷, 𝑣) = 𝐷

(
0.95𝑣2 − 20.4𝑣 + 130

)
[18]. Furthermore, in a

time-varying network, to capture the mobility and availability
of the ground IoT devices, we generate the new devices’
locations by adding zero mean Gaussian random variables
to the initial devices’ locations. Table I lists the simulation
parameters. Note that, all statistical results are averaged over
a large number of independent runs.

Figure 2 shows a snapshot of the optimal devices’ clustering
as well as the optimal UAVs’ locations resulting from our pro-
posed approach. In this example, 5 UAVs are used to support
100 IoT devices. We assume that each UAV has a limited
number of resource blocks which can be allocated to at most
30 devices. Therefore, we have 5 clusters with a maximum
size of 30 devices and 5 cluster centers corresponding to the
locations of the UAVs. As we can see from Figure 2, the
location of IoT devices significantly impacts the number of
devices per cluster and also the optimal locations of the UAVs.
In this figure, the minimum and maximum cluster sizes are 3
and 27.

Figure 3 shows the total transmit power of devices versus
the number of UAVs averaged over multiple simulation runs.
In this figure, the performance of the proposed approach is
compared with the fixed Voronoi case which is known to be
a typical deployment method for static base stations. Note
that, for a fair comparison, we assume that the total number
of resource blocks is fixed (𝐿), and hence, the number of
resources per UAV is

⌈
𝐿
𝐾

⌉
. In other words, the maximum size

of each cluster will decrease as the number of UAVs increases.
In the Voronoi method, assuming a uniform distribution of
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Fig. 3: Average of total transmit power vs. number of UAVs.
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Fig. 4: Trajectory of a UAV in a mobile IoT network.

devices, we fix the location of UAVs at an altitude of 500 m,
and then, we assign each device to the closest UAV. However,
in the proposed clustering algorithm, we find the optimal
clusters and deploy the UAVs at the center of the clusters.
As shown in Figure 3, the proposed method outperforms the
classical Voronoi scheme as the UAVs can be placed closer
to the devices. As expected, increasing the number of UAVs
reduces the total transmit power of IoT devices. For instance,
when the number of UAVs increases from 4 to 8, the total
transmit power decreases from 77 mW to 38 mW for the
proposed method, and from 115 mW to 95 mW for the Voronoi
case. Figure 3 shows that our approach results in about 56%
reduction in the transmit power of the IoT devices.

Figure 4 shows the trajectory of one of the UAVs in a
mobile IoT scenario derived from optimal transport theory.
Here, we consider 8 UAVs, and 400 devices whose locations
are updated at each time by adding a Gaussian random variable
with 𝑁(0, 50m) to the previous locations. Clearly, since the
locations of the devices may change over time, the optimal
clusters must be updated accordingly. In Figure 4, the red dots
correspond to the optimal destinations of the UAV at different
times. In fact, as the clusters are changing over time, the UAV
uses the proposed scheme to optimally move to one of the
new cluster centers.

Figure 5 shows the energy consumed by each UAV during
its mobility. In this case, we use 8 UAVs for supporting
400 ground IoT devices. We consider the network at 10
time instances during which the UAVs move at a speed of
10 m/s while updating their locations. As shown in Figure
5, for the given scenario, the total amount of energy that
UAVs use for mobility is around 106 kJ. Note that, this is the
minimum total energy consumption that can be achieved via
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Fig. 6: Energy consumption vs. number of battery depleted UAVs.

the optimal transport of the UAVs. As shown, different UAVs
spend different amount of energy on the mobility. Depending
on the optimal clustering of devices over time, different UAVs
might have different travel distances to the cluster centers. For
instance, UAV 1 consumes 1.8 times more energy than UAV
3. Hence, the number of UAVs may also change over time.

Figure 6 shows the energy consumption per UAV when
the number of UAVs changes. Here, we assume that, initially
the UAVs are optimally deployed for a given IoT system,
however, after a while some of the UAVs (𝑞 UAVs) will not
be operational due to the lack of battery. Consequently, the
number of UAVs decreases and the remaining UAVs must
update their locations to maintain the power efficiency of the
ground devices. In Figure 6, for the average case, we take the
average of energy over all possible combinations of removing
𝑞 UAVs among the total UAVs. However, in the worst-case
scenario, we remove the 𝑞 UAVs whose loss leads to the
highest energy consumption for the remaining UAVs. Clearly,
as more UAVs become inoperational, the energy consumption
of the functioning UAVs will increase. For example, when the
number of lost UAVs increases from 2 to 4, the average energy
consumption per UAV increases from 1520 J to 2510 J.

VI. CONCLUSIONS

In this paper, we have proposed a novel framework for
efficiently deploying and moving UAVs to collect data from
ground IoT devices. In particular, we have determined the
optimal clustering of IoT devices as well as the optimal
deployment and mobility of the UAVs such that the total
transmit power of IoT devices is minimized while meeting
a required bit error rate. To perform clustering given the
limited capacity of each UAV, we have adopted the constrained
size clustering approach. Furthermore, we have obtained the
optimal trajectories that are used by the UAVs to serve the

mobile IoT devices with a minimum energy consumption. The
results have shown that by carefully clustering the devices and
deploying the UAVs, the total transmit power of devices sig-
nificantly decreases compared to the classical Voronoi-based
deployment. Moreover, we have shown that, by intelligently
moving the UAVs, they can remain operational for a longer
time while serving the ground devices.
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