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Abstract: Mobile learning has become an essential telematic tool to facilitate and compliment online
teaching and learning during the pandemic. This study investigates the change of behaviour and
acceptance of using mobile learning specifically for engineering undergraduates due to this shift.
The data collected pre-Covid19 (n = 326) and post-pandemic (n = 349) indicated an inclination for
utilizing laptops than smartphones, while Telegram prevails as a popular tool for communicating and
sharing information within the learning community. Next, while video conferencing tools and online
learning management systems utilization increased, educational games and reading behaviour via
mobile devices declined. Concurrently, behavioural intention post-pandemic were found to reduce
marginally as importance were also given towards establishing learning communities via social
influence compared to perceived usefulness. The outcome of this study contributes to the limited
body of literature on engineering education mobile learning acceptance, and recommendations are
provided for further investigation to ensure continuous sustainable use.

Keywords: mobile learning; engineering education; C-TAM-TPB; behavioral intention; post COVID19

1. Introduction

The technological affordance and the ubiquitous use of mobile devices have been
fundamental in its applicability in today’s education paradigm. While mobile devices
such as smartphones and laptops are seen as a valuable commodity in facilitating and
“connecting” learning environments, mobile learning refers to the use of portable devices
for learning and communicating in a learning environment. Accordingly, mobile learning
or m-learning is essential for the new millennium of education technology [1–3] where
teaching and learning methods advocate a blended approach of digital and face to face
classes. The capability of these devices to be used in and out of the classroom for higher ed-
ucation [4–6] has made it adaptable for multitasking [1] when using, acquiring, producing,
communicating and transforming learning contents [7] via technology and the internet [8]
primarily through instant messaging and social media [9]. Hence, undoubtfully these inter-
actions have transformed the traditional education dynamics by creating informal learning
communities that support learning through applications such as WhatsApp, Facebook,
and Telegram [10]. As such, the need to create these communities as off-the-record learning
support [11] that provides instant access to learning [12,13], flexibility and openness [14,15]
have accentuated the use of mobile devices for learning.

Conversely, smartphones have become one of the most used learning devices due
to their mobility and capability to facilitate informal learning outside the classroom [16].
Hence, this advantage has exponentially orchestrated their use during the pandemic [17].
Saikat et al. [18] explained that the pandemic shifted higher education institutions (HEIs)
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perception of m-learning as a vital tool for education delivery. Additionally, post COVID-19
pandemic, empirical evidence have indicated positive satisfaction and behaviour in re-
sponse to m-learning [8]. As the role of m-learning is mainly to complement but not
substitute existing learning practices [14], the shift was conditional to changes in trends
and technology [1]. All the same, while this is encouraging as HEIs struggled to adapt to
the new form of distance learning [19], undoubtfully, the move to fully online teaching and
learning mode radically escalated m-learning towards a new type of education system. Nev-
ertheless, undoubtedly, m-learning during the pandemic may have negative consequences.
By so, empirical evidence have indicated perceived usefulness and continuous use [20,21]
were found to influence emotions and attitude negatively [2]. Concomitantly, these emo-
tions may reduce the intention to use m-learning among HEI students [22]. On the other
hand, there is much unknown on these phenomena of reduced intention post-pandemic
due to scarce investigation on m- learning acceptance among HEIs students [19]. Hence,
such investigations are warranted to identify factors influencing its use [20] especially
post-pandemic. Furthermore, HEI students have indicated confidence in its value and the
innovative approach it may provide to different modes of learning post pandemic [8].

In hindsight, the understanding of m-learning in engineering education seems contra-
dictory [23], as scholars have indicated its value primarily for communicating, collaborating
and providing access to learning content [6,24]. All the same, it’s popularity due to affor-
dance and availability to facilitate learning [23,25], provides significant value that may
reflect engineering undergraduates intention to use m-learning [26]. However, acceptance
may differ based on engineering disciplines, as speculated by [7,10], which irrefutably
adds to the limited acceptance studies in this context. By so, in this study, we focus on
investigating the change of behaviour in regard to the acceptance of mobile learning pre
and post-pandemic by focusing primarily on electrical and electronic engineering students.
According to Loh et al. [22], there isa need to investigate m-learning acceptance based
on a longitudinal perspective, and we speculate that evaluating pre and post-pandemic
acceptance will provide insights into the shift that occurred due to the pandemic. Next,
we measured m-learning acceptance as a learning behaviour that is not defined by a par-
ticular technology, mobile application nor social media application. By so, a combined
Technology Acceptance Model (TAM) and Theory of Planned Behavior (TPB) was applied
as done in empirical studies in mobile learning by [27,28]. According to Gómez-Ramirez
et al. [28], while TPB explains behaviour based on beliefs about self-efficacy and subjective
norm towards attitude (ATT) and behavioural intention (BI), TAM reflects the ATT and BI
based on perceived ease of use (PE) and perceived usefulness (PU). Kumar, Bervell, et al. [10]
claims that the combined TAM and TPB, known as C-TAM-TPB [29], will provide insights
on continuous use of m-learning in HEI, and we gather as imperative in this study as we
investigate the change of behaviour post-pandemic. Hence, this study adds to the limited
literature as indicated by Lai [30], for engineering undergraduates m-learning acceptance
by exploring the shift in their behaviour due to the onset of the pandemic.

2. Hypotheses and Model Development

Empirical findings have indicated TAM to be substantial in investigating the accep-
tance of education technologies [19]. Nevertheless, according to Oke and Fernandes [31]
and Yang and Su [32] unitary theories such as TPB and TAM are not complex enough to
explain behavioural intention and adoption of technologies. C-TAM-TPB considers a direct
and indirect effect on behavioural intention [33] by considering experience [34], which
is a substantial factor in this study to explain the shift in learning due to the pandemic.
According to Al-Hamad et al. [20], the pandemic drove teaching and learning towards
embracing m-learning, thus predicting higher intentions of using m-learning. While the
relationships between PE, PU, ATT and BI for m-learning has been established in numerous
studies [8,12,35], Almaiah and Al Mulhem [5] suggest considering the role of self-efficacy
in predicting mobile learning adoption. Kumar, Bervell, et al. [10], in their study on engi-
neering undergraduates adoption of mobile learning, conducted pre COVID indicated that
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while the relationships of TAM were found to be significant, mobile learning self-efficacy
(MSE) did not influence PU but BI, ATT and PE while social norm (SN) influence ATT and
PU. SN and MSE were measured as the two constructs associated with BI based on TPB.

By so, this study defined self-efficacy as MSE to describe students perception of using
m-learning to perform learning activities via mobile devices [27]. Han and Yi [35] and
Moorthy et al. [36] claimed MSE strongly influences HEI students m-learning intentions,
whereas Alasmari and Zhang [37] and Briz-Ponce et al. [38] explained that SN may have
a significant impact on m-learning intention. However, when explicitly considering engi-
neering education, it has been reported otherwise for SN [10,26]. SN is usually defined as
learners perception of others in their learning community, such as instructors and peers in
performing a behaviour [27] or using a technology that supports learning. We theorized
that as there is a change in social dynamics during the pandemic, especially concerning
how learners communicate and collaborate in their learning community, this relationship
may differ. Nevertheless, by using the original C-TAM-TPB, we hypothesize a change in
these relationships as conceptualized in Figure 1:

Hypothesis 1 (H1): ATT will positively influence mobile learning BI.

Hypothesis 2 (H2): MSE will positively influence mobile learning BI.

Hypothesis 3 (H3): PE will positively influence mobile learning ATT.

Hypothesis 4 (H4): PE will positively influence mobile learning PU.

Hypothesis 5 (H5): PU will positively influence mobile learning ATT.

Hypothesis 6 (H6): PU will positively influence mobile learning BI.

Hypothesis 7 (H7): SN will positively influence mobile learning BI.

Figure 1. Hypothesized model based on C-TAM-TPB.

3. Research Design

The questionnaire used in this study consist of 20 items that were adapted from [27,39]
to reflect the factors of TAM and TPB. These constructs were measured using a 5-point Likert
scale ranging from “Strongly agree” to “Strongly disagree”. Furthermore, demographic
questions on gender, m-learning devices and m-learning communication and application
preference were also explored and compared.
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The survey was dispersed to the respondents of four polytechnics focusing on Electri-
cal and Electronic engineering undergraduates in Malaysia using Google Forms in 2018.
Whereas for post COVID, the data were collected between November and December 2021.
The response was voluntary, and the collection of data were observed for a duration of
three months. The extracted data from Google Forms were first downloaded and imported
to IBM SPSS version 27 for cleaning and were analyzed for normality using Kolmogorov-
Smirnova. All factors were found to be not normally distributed (p < 0.05), as reflected
in Table 1. The data in CSV format were exported to SmartPLS ver. 3.2.8 to be analyzed
using Partial Least Squares-Structural Equation Modelling (PLS-SEM) method. Analyses
conducted referring to pre-COVID feedback are labelled as Study1 whereas post-COVID as
Study2 respectively.

Table 1. Kolmogorov-Smirnov test of normality pre and post-COVID.

Study1 Study2

Statistic df Sig. Statistic df Sig.

Perceive ease of use (PE) 0.171 326 0.000 0.107 349 0.000
Perceive usefulness (PU) 0.127 326 0.000 0.114 349 0.000

Attitude (ATT) 0.153 326 0.000 0.142 349 0.000
Behavioural intention (BI) 0.166 326 0.000 0.147 349 0.000

Mobile learning self-efficacy (MSE) 0.170 326 0.000 0.143 349 0.000
Subjective norm (SN) 0.172 326 0.000 0.165 349 0.000

4. Results
4.1. Respondents Profile

The 326 respondents for the pre-COVID survey were majority male (n = 195, 59.8%),
while the balance 40.2% (n = 131) were female. Similarly, post-COVID respondents (n = 349)
also reflected a majority of male respondents (n = 223) at 63.90% (Table 2). The changes
observed in the type of device usually assimilated for mobile learning were reflected by
an increase in netbook/laptops use from 26.46% to 43.74% and a reduction in smartphone
use from 70.96% to 52.59%. Next, the applications frequently used for communicating with
peers pre-COVID were WhatsApp (34.26%), Telegram (15.86%), Facebook (15.39%) and
Short Messaging System (SMS) (15.63%) which transitioned into namely two applications
post-COVID WhatsApp (46.12%) and Telegram (35.03%). Similarly, the use of Telegram
increased from post-COVID as the application most frequently used to communicate with
lecturers (11.15% to 41.77%) and share information (15.37% to 41.77%) after WhatsApp.
In all cases, the use of Facebook as a teaching and learning platform was reduced. Next,
changes were observed in applications used for learning, namely only for online learning
platforms such as learning management system (LMS), reading and video conferencing
tools. Following, it was also observed that the use of personal data doubled (32.39–59.63%),
while the use of institution Wi-Fi public Wi-Fi reduced significantly.
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Table 2. Demographic profile m-learning preference of respondents pre and post pandemic.

Item Description Study1 Study2
n % n %

1.Gender
Male 195 59.8 223 63.9

Female 131 40.2 126 36.1

2. Mobile devices commonly
used for learning

Netbook/Laptop 113 26.46 262 43.74
Smart Phone 303 70.96 315 52.59

Tab 11 2.58 22 3.67
Others 0 0.00 0 0.00
Total 427 599

3. Mobile applications most
commonly used to
communicate with

learning peer

WhatsApp 296 34.26 345 46.12
Facebook 133 15.39 32 4.28
Telegram 137 15.86 262 35.03

Short Messaging System (SMS) 135 15.63 15 2.01
Google Hangout 83 9.61 28 3.74
IMO video chat 77 8.91 38 5.08

Others (WeChat, Instagram, Snapchat,
MS Teams, Discord) 3 0.35 28 3.74

Total 864 748

4. Mobile applications most
commonly used to

communicate with lecturers

WhatsApp 293 47.33 311 50.16
Facebook 58 9.37 5 0.81
Telegram 69 11.15 259 41.77

Short Messaging System (SMS) 89 14.38 2 0.32
Google Hangout 55 8.89 27 4.35
IMO video chat 34 5.49 5 0.81

Others (WeChat, MS Teams) 21 3.39 11 1.77
Total 619 620

5. Mobile applications most
commonly used to share
information/notes with

learning peers?

WhatsApp 299 40.68 340 51.83
Facebook 115 15.65 10 1.52
Telegram 113 15.37 274 41.77

Short Messaging System (SMS) 74 10.07 4 0.61
Google Hangout 79 10.75 16 2.44
IMO video chat 50 6.80 5 0.76

Others (WeChat, MS Teams) 5 0.68 7 1.07
Total 735 656

6. Mobile applications used
for learning

Email (e.g., Gmail, Yahoo Mail etc.) 258 14.60 214 16.58
Calendar (e.g., Google Calendar) 139 7.87 39 3.02

Cloud storage (e.g., Dropbox, Google
Drive etc.) 180 10.19 118 9.14

Creating and editing documents (e.g.,
Google docs, Mobile Office 365 etc.) 232 13.13 159 12.32

Educational games (e.g., Kahoot) 191 10.81 89 6.89
Online learning platforms (e.g., Moodle,

MOOC, CIDOS, Google Classroom) 256 14.49 272 21.07

Internet surfing for learning Contents (e.g.,
Chrome, Firefox, YouTube) 279 15.79 207 16.03

Reading (e.g., Adobe, Epub reader) 232 13.13 56 4.34
Video conferencing (WebEx, Zoom, etc.) 0 0.00 137 10.61

Total 1767 1291

7. Access to internet

Personal data plan 297 32.39 319 59.63
WIFI at the institution 261 28.46 57 10.65

WIFI at home 179 19.52 137 25.61
Public WIFI 180 19.63 22 4.11

Total 917 535

Note. Study 1 refers to pre-COVID and Study 2 to post COVID.
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4.2. Study Power

Measuring multivariate normality based on Mardia’s Test of multivariate normal-
ity [40] at using https://webpower.psychstat.org/wiki/tools/index (accessed on 2 January
2022) [41] indicated skewness (β = 98.730, p < 0.01) and kurtosis (β = 676.760, p < 0.01) for
pre-COVID and skewness (β = 129.372, p < 0.01) and kurtosis (β = 757.320, p < 0.01) for
post COVID which validates the use of partial least squares (PLS) technique. Next using,
GPower 3.1 with effect size f2 = 0.15, α error prob = 0.05 and power = 0.95. The minimum
sample size of 138 was determined with GPower 3.1, using effect size f2 = 0.15, α error
prob = 0.05 and power = 0.95. Therefore, the sample size for pre and post exceeded the
minimum requirement. Concurrently, the model was measured using the measurement
model for validating the constructs’ reliability and the structural model to evaluate the
hypotheses.

4.3. Measurement Model Analysis

Hair et al. [42] suggested that the model’s reliability and validity must be first ex-
amined, and we report the finding as presented in Table 3. The indicator reliability was
between 0.961 and 0.871, which was higher than 0.708 as suggested by [43], while composite
reliability were all above 0.90 [44] except for PU for both pre and post-pandemic and in
addition to ATT and PE for post-pandemic. However, as all rho_A values were >0.7 [45]
internal consistency was found to be acceptable. As for convergent validity, the average
variance extracted (AVE) were all above >0.5 as recommended by Hair et al. [44]. Lastly,
the Heterotrait-Monotrait (HTMT) (Table 4) were all <1 as recommended by Henseler
et al. [46], hence reflecting that the constructs could be distinguished accordingly. Therefore,
the validity and reliability of the model are found to be acceptable.

Table 3. Results of indicator reliability, composite reliability, and convergent validity analysis.

VAR Item
Study1 Study2

Loadings IR CR α rho_A AVE Loadings IR CR α rho_A AVE

ATT
ATT1 0.857 0.926

0.904 0.841 0.842 0.759
0.885 0.941

0.886 0.806 0.82 0.886ATT2 0.865 0.930 0.774 0.880
ATT3 0.891 0.944 0.885 0.941

BI
BI1 0.896 0.947

0.935 0.895 0.896 0.827
0.889 0.943

0.924 0.877 0.877 0.924BI2 0.918 0.958 0.907 0.952
BI3 0.913 0.956 0.890 0.943

MSE
MSE1 0.881 0.939

0.929 0.884 0.885 0.812
0.936 0.967

0.947 0.917 0.921 0.947MSE2 0.920 0.959 0.923 0.961
MSE3 0.902 0.950 0.918 0.958

PE

PE1 0.816 0.903

0.908 0.865 0.866 0.712

0.856 0.925

0.895 0.843 0.847 0.895
PE2 0.837 0.915 0.769 0.877
PE3 0.874 0.935 0.864 0.930
PE4 0.847 0.920 0.810 0.900

PU

PU1 0.832 0.912

0.891 0.836 0.844 0.672

0.835 0.914

0.890 0.834 0.841 0.890
PU2 0.788 0.888 0.792 0.890
PU3 0.893 0.945 0.880 0.938
PU4 0.759 0.871 0.760 0.872

SN
SN1 0.923 0.961

0.936 0.897 0.904 0.829
0.922 0.960

0.933 0.892 0.895 0.933SN2 0.911 0.954 0.923 0.961
SN3 0.898 0.948 0.876 0.936

Note. VAR: Variable; IR: Indicator Reliability; CR: Composite Reliability; ATT: Attitude; BI: Behavioral intention;
MSE: Mobile learning self-efficacy; PE: Perceive ease of use; PU: Perceive usefulness; SN: Social norm.

https://webpower.psychstat.org/wiki/tools/index
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Table 4. HTMT ratio of the studies.

Variables ATT BI MSE PE PU SN

Study1

Attitude (ATT) -
Behavioural intention (BI) 0.989 -
Mobile self-efficacy (MSE) 0.902 0.935 -
Perceive ease of use (PE) 0.926 0.873 0.807 -
Perceive usefulness (PU) 0.986 0.911 0.862 0.966 -

Subjective norm (SN) 0.836 0.814 0.86 0.782 0.84 -

Study2

Attitude (ATT) -
Behavioural intention (BI) 0.984 -
Mobile self-efficacy (MSE) 0.863 0.894 -
Perceive ease of use (PE) 0.949 0.858 0.785 -
Perceive usefulness (PU) 0.952 0.870 0.856 0.964 -

Subjective norm (SN) 0.856 0.851 0.830 0.819 0.854 -

4.4. Structural Model

Next, the structural model was analyzed to determine goodness of fit, multicollinearity,
path analysis (β), coefficient of determination (R2), effect size (f2) and predictive relevance
(Q2) [32,43]. First, the model fit was tested using Standardized Root Mean Residual (SRMR)
and Exact fit criteria (d_ULS and d_G) (Table 5) [44,48,49]. All three values were found to
be acceptable as the SRMR was below 0.08 [47], and d_ULS and d_G were found to be <95%
bootstrap quantile (HI95). Variance inflation factor (VIF) values measuring the collinearity
(Table 6) were found to be acceptable as they were all <5.0 [46].

Next, the path coefficients (β) determined the correlation between endogenous and
exogenous variables. Therefore, the t-statistics using bootstrapping resampling of 5000 [48]
were measured. The results for path coefficients (β), t-value, confidence intervals and effect
size (f2) are summarized in Table 6 and followed by coefficient determination (R2) (Table 7).

For Study1, ATT (0.720) and PU(0.682) are considered as moderate and BI(0.811) as
strong as categorised by [42] whereas Study2 ATT (0.678), BI (0.779) and PU(0.663) were
categorized as moderate. Next, results from the bootstrap for Study 1 revealed that ATT
(β = 0.443, t = 6.702, f2 = 0.262), MSE (β = 0.370, t = 5.255, f2 = 0.217) and PU (β = 0.122,
t = 2.043, f2 = 0.006) positively influences BI by explaining 81.1% of behavioural intention
to use mobile learning. Therefore, H1, H2 and H6 is supported whereas H7 (SN (β = 0.038,
t = 0.588, f2 = 0.003)) is rejected. As for ATT, 72.0% could be explained by PE (β = 0.370,
t = 5.255, f2 = 0.131) and PU (β = 0.826, t = 8.751, f2 = 0.338), hence accepting H3 and H5.
Lastly, H4 was also accepted (β = 0.826, t = 6.202, f2 = 2.140) as PE was able to predict
68.2%. As for post-pandemic, ATT (β = 0.443, t = 6.702, f2 = 0.279, p = 0.000), MSE (β = 0.312,
t = 5.608, f2 = 0.160, p = 0.000) and SN (β = 0.161, t = 2.818, f2 = 0.041, p = 0.005), positively
influences BI by explaining 77.9% of behavioural intention to use mobile learning. Hence,
H1, H2 and H7 were supported but H6 was rejected as opposed to pre-COVID findings as
PU (β = 0.033, t = 0.566, f2 = 0.001, p = 0.571) was found to be non-significant in determining
BI. Next, 67.8% of ATT were also explained by PE (β = 0.444, t = 7.292, f2 = 0.206, p = 0.000)
and PU (β = 0.420, t = 6.457, f2 = 0.184, p = 0.000) while also indicating that 66.3% of PU
could be determined by PE (β = 0.814, t = 41.986, f2 = 1.968, p = 0.000), thus accepting H3,
H4 and H5.

Next, using the blindfolding procedure of OD (omission distance) of 7, the predictive
relevance (Q2) (Table 8) pre-COVID for ATT (0.539) and BI (0.662) were determined as large
and PU (0.450) as medium [48]. Whereas post-COVID, ATT (0.482) and PU (0.439) were
medium and BI (0.616) large. As for out-of-sample predictive power (Q2

predict), the model’s
accuracy for new cases is predicted [49] by using PLSpredict procedures with settings of
k = 10, r = 10. The PLS Q2

predict for all indicators were > 0 (Table 9); nevertheless, some PLS
indicators reflected higher RMSE values than the Linear Model (LM) RMSE value. Based on



Sustainability 2022, 14, 3197 8 of 13

the suggestion of [50], both models have low predictive power as a minority of indicators
have lower PLS-SEM prediction errors compared to LM for pre pandemic (BI1, BI2, PU1)
and post pandemic (BI1, BI2).

Table 5. Model fit of the study.

Model

Study 1 Study 2

Saturated
Model HI95 Conclusion Saturated

Model HI95 Conclusion

SRMR 0.029 0.062 Supported 0.052 0.084 Supported
d_ULS 0.174 0.817 Supported 0.559 1.484 Supported

d_G 0.223 0.324 Supported 0.450 0.526 Supported

Table 6. Results for path analyses, corresponding t-value, VIF, confidence intervals and f 2.

Relationship
Study 1 Study 2

β Stdev t p CI
2.5%

CI
95% f 2 VIF β Stdev t p CI

2.5%
CI

95% f 2 VIF

H1:
ATT→ BI 0.443 0.066 6.702 0.000 0.311 0.571 0.262 3.961 0.443 0.064 6.898 0.000 0.313 0.562 0.279 3.177

H2:
MSE→ BI 0.370 0.070 5.255 0.000 0.236 0.512 0.217 3.320 0.329 0.059 5.608 0.000 0.220 0.445 0.160 3.082

H3:
PE→ ATT 0.340 0.065 5.258 0.000 0.210 0.470 0.131 3.140 0.444 0.061 7.292 0.000 0.323 0.559 0.206 2.968

H4:
PE→ PU 0.826 0.020 41.368 0.000 0.784 0.863 2.140 1.000 0.814 0.019 41.986 0.000 0.773 0.851 1.968 1.000

H5:
PU→ATT 0.546 0.062 8.751 0.000 0.420 0.668 0.338 3.140 0.420 0.065 6.457 0.000 0.295 0.549 0.184 2.968

H6:
PU→BI 0.122 0.060 2.043 0.041 0.006 0.241 0.022 3.636 0.033 0.058 0.566 0.571 -

0.081 0.147 0.001 3.297

H7:
SN→BI 0.038 0.065 0.588 0.557 -

0.089 0.167 0.003 2.903 0.161 0.057 2.818 0.005 0.052 0.280 0.041 2.860

Note. ATT: Attitude; BI: Behavioural intention; MSE: Mobile learning self-efficacy; PE: Perceive ease of use;
PU: Perceive usefulness; SN: Social norm.

Table 7. Coefficient determination (R2) of the model.

Variables
Study 1 Study 2

R2 R2 Adjusted R2 R2 Adjusted

ATT 0.720 0.718 0.678 0.676
BI 0.811 0.809 0.779 0.777
PU 0.682 0.681 0.663 0.662

Note. ATT: Attitude; BI: Behavioural intention; PU: Perceive usefulness.

Table 8. Predictive Relevance (Q2) of the model.

Variable
Study 1 Study 2

SSO SSE Q2 (1-SSE/SSO) SSO SSE Q2 (1-SSE/SSO)

ATT 978.000 451.195 0.539 1047.000 542.601 0.482
BI 978.000 330.339 0.662 1047.000 401.746 0.616

MSE 978.000 978.000 0.000 1047.000 1047.000 0.000
PE 1304.000 1304.000 0.000 1396.000 1396.000 0.000
PU 1304.000 716.554 0.450 1396.000 782.615 0.439

Note. ATT: Attitude; BI: Behavioural intention; MSE: Mobile learning self-efficacy; PE: Perceive ease of use;
PU: Perceive usefulness; SN: Social norm.
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Table 9. Out-of-sample predictive power (Q2
predict) of the model.

Variable Indicator

Study 1 Study 2

PLS LM a-b PLS LM a–b

RMSE
(a)

Q2

predict

RMSE
(b)

Q2

predict

RMSE
(a)

Q2

predict

RMSE
(b)

Q2

predict

ATT ATT1 0.504 0.557 0.499 0.565 0.005 0.641 0.536 0.613 0.575 0.028
ATT2 0.710 0.384 0.643 0.495 0.067 0.664 0.303 0.618 0.395 0.046
ATT3 0.591 0.465 0.554 0.531 0.037 0.643 0.483 0.622 0.517 0.021

BI BI1 0.536 0.578 0.543 0.567 −0.007 0.566 0.52 0.568 0.517 −0.002
BI2 0.506 0.606 0.507 0.604 −0.001 0.575 0.539 0.579 0.532 −0.004
BI3 0.498 0.638 0.491 0.648 0.007 0.562 0.638 0.541 0.666 0.021

PU PU1 0.689 0.357 0.698 0.340 −0.009 0.713 0.485 0.658 0.560 0.055
PU2 0.568 0.524 0.534 0.579 0.034 0.721 0.398 0.702 0.430 0.019
PU3 0.470 0.577 0.463 0.589 0.007 0.615 0.542 0.574 0.601 0.041
PU4 0.668 0.354 0.643 0.401 0.025 0.745 0.334 0.722 0.375 0.023

Note: RMSE: root mean squared error; PLS: partial least squares; LM: linear model; Q2: predictive relevance;
ATT: Attitude; BI: Behavioural intention; PU: Perceive usefulness.

Lastly, using the Importance Performance Map Analysis (IPMA) and setting the
target to construct as BI, the prioritized variable based on performance and total effects is
determined [50]. Based on the findings as shown in Table 10, it can be observed that PE
(0.514) followed by ATT (0.463) has the most important and SN (0.039) is the lease for BI.
As for performance, the highest is ATT (80.572), followed by PE (79.470), and the least is
SN (72.934). However, for post-COVID (Study 2), ATT (0.458) followed by PE (0.373) has
the most importance on BI while SN (0.152) remains the lease. As for performance ATT
(74.574) followed by PE (70.055) and PU (69.492) had the highest performance.

Table 10. Performance Index Values and Total Effects for BI.

Variable
Study 1 Study 2

Importance-
Total Effects

Performance-
Index Values

Importance- Total
Effects

Performance- Index
Values

Attitude (ATT) 0.463 80.572 0.458 74.574
Mobile self-efficacy (MSE) 0.372 73.096 0.300 64.756
Perceive ease of use (PE) 0.514 79.47 0.373 70.055
Perceive usefulness (PU) 0.411 77.14 0.221 69.492

Subjective norm (SN) 0.039 72.934 0.152 67.345

5. Discussion and Conclusions

The findings revelated that there is a shift in preference to using smartphones
(70.96%→ 59.59%) for m-leaning towards the use of laptops and notebooks (26.46% →
43.74%). While smartphones may facilitate some online learning activities, the increased
use of online learning platforms, namely LMS platforms such as Google Classroom, Moodle
and video conferencing tools requires higher level of interaction functionalities which is
often limited through smartphones and easier to perform using laptops. Moreover, it was
also indicated that the use of mobile devices for educational games (Kahoot etc.) and
reading activities have significantly reduced post pandemic. However, these behaviours
may be due to the challenges in multitasking numerous learning activities, especially in a
virtual classroom environment and the rise of video-based instructions as the main medium
of instruction. Nevertheless, this also questions how fully online virtual classes integrate
engaging active learning strategies besides educational games. Additionally, the use of
cloud storage, reading, creating and editing documents seem to also reduce. Next, we also
observed that while the use of WhatsApp increased post pandemic, it was not as significant
compared to the increased use of Telegram as a means for communication with peers
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(15.80% → 35.03%), lecturers (11.15% → 41.77%) and data sharing (15.37% →41.77%).
Besides, other applications such as Facebook and Short Messaging System (SMS) also por-
trayed a receding trend. As for internet access, personal data plans usage almost doubled
(32.39–59.39%) while showing a reduction in the use of public WIFI (19.63–4.11%) and WIFI
at the institute (28.46–10.65%).

Next, based on the findings as reflected in Figure 2, the overall intention (BI) to use
mobile learning reduced from 81.1%→ 77.9% yet the strength of the relationship remains
the same at β = 0.443 with ATT. According to Loh et al. [22], HEI students post-pandemic are
showing reduced intention in using m-learning due to technostress, exhaustion and other
issues faced in facilitating online teaching and learning. Furthermore, it was also observed
that pre-pandemic, SN were found not to predict BI, therefore, rejecting H7 and accepting
all other hypotheses. However, post-pandemic, this shifted as only PU was found to have
a non-significant relationship with BI, thus accepting all other hypotheses and rejecting
H6. Therefore, this outcome contradicts the finding of [19], indicating social influence lack
influence on m-learning BI post-pandemic. The importance of SN is even more evident
post-pandemic as PU’s non-significant effect indicates that m-learning essentialness to
facilitate teaching and learning is not only based on the effectiveness but also on how a
learning community defines its relevance in the context. However, PU still remains as an
important predictor for ATT.

Figure 2. Parameter estimates for Pre and Post pandemic for mobile learning acceptance.

Next, the variance of ATT (72.0% → 67.8%) and PU (68.2% →66.3%) also reduced
post-pandemic. Before the pandemic, PU had higher predicting strength on ATT than PE;
nevertheless, both had almost similar effects. Based on the IPMA results, pre-pandemic,
the importance in predicting BI was defined in order of PE, ATT, and PU, whereas post-
pandemic was ATT, PE and MSE. Even though [20] claimed that PE and PU of m-learning
are significant factors predicting intention as it suppresses fear in such technology, yet our
findings indicate that m-learning self-efficacy could also be an important factor to consider
in reducing fear. Eneje [23] added that for engineering education to embrace m-learning
based on affordance, the technology must facilitate visualization, high-speed processing,
and high control. By so, indicated the importance of PE. Alternatively, Kumar, Rajaman-
ickam, et al. [6] indicated such use are often unsupported, and m-learning for engineering
education mostly focuses as a means for non-formal learning activities. Lastly, we con-
clude that a shift indicates a marginal reduction in intention. Moreover, m-learning is not
solely determined by usefulness but also by the learning community defined under the
term subjective norm. Nevertheless, usefulness, directly and indirectly, affects ATT by
mediating through ease of use. Therefore, while we encourage the need for personalized m-
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learning platforms, the pandemic has forced us to re-evaluate the importance of a learning
community and how it is also vital in encouraging sustainable engineering education.

6. Limitations and Future Studies

This study, without hesitation, has limitations that should be addressed. Firstly,
the study only limits to undergraduates from Malaysian polytechnics focusing on electrical
engineering therefore, the outcome of this study could not be generalized to other engineer-
ing disciplines as the use of m-learning may be field-specific. Consequently, while there is
still a lack of studies of m-learning acceptance for engineering education where other factors
could also be considered to fulfil technical fit [24], effectiveness, efficiency [19], and usabil-
ity [10] to ensure robustness with the engineering discipline. Moreover, as post-pandemic
m-learning has become an essential instrument for telematic teaching, there is still a lack
of applications supporting the need for autonomous m-learning [25]. According to Ong
et al. [51], engineering students are often technologically inclined, thus prefer autonomous
learning with instructors guidance. They added the need for auto evaluating knowledge
that we perceive could be established through other mobile based interventions such as
chatbots [52] due to positive acceptance and opportunities to personalize learning [53].
Lastly, it is also crucial to consider a mixed-method approach to provide an in-depth under-
standing in investigating the occurrence of nonlinear relationships to evaluate the behavior
of engineering undergraduates.
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