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Summary

In this paper, a self-organizing map (SOM) scheme for mobile location estimation in a direct-sequence code

division multiple access (DS-CDMA) system is proposed. As a feedforward neural network with unsupervised or

supervised and competitive learning algorithm, the proposed scheme generates a number of virtual neurons over

the area covered by the corresponding base stations (BSs) and performs non-linear mapping between the measured

pilot signal strengths from nearby BSs and the user’s location. After the training is finished, the location estimation

procedure searches for the virtual sensor which has the minimum distance in the signal space with the estimated

mobile user. Analytical results on accuracy and measurement reliability show that the proposed scheme has the

advantages of robustness and scalability, and is easy for training and implementation. In addition, the scheme

exhibits superior performance in the non-line-of-sight (NLOS) situation. Numerical results under various

terrestrial environments are presented to demonstrate the feasibility of the proposed SOM scheme. Copyright

# 2006 John Wiley & Sons, Ltd.
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1. Introduction

Mobile location estimation in cellular networks is a

procedure to estimate the position of a mobile user

in the geographical area covered by the networks.

The location information is not only important to

network resource management, but is also a practical

requirement, for example Emergency 911 of the U.S.

Federal Communication Commission (FCC), which

requires the estimation reliability within an accuracy

of 125 m for 67% of the time [1] has been asked to

improve the accuracy to 40 m for 90% of the time

[11]. Moreover, as the data services are growing,

location-related applications and services, such as

mobile yellow pages, location-specific advertising,

traffic monitoring, and navigation service, are poten-

tial markets for service providers and operators in the

near future.
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Among many existing wireless positioning schemes,

the global positioning system (GPS) can give ade-

quate accuracy of estimation less than 50 m. The

network operators, however, prefer to consider solu-

tions based on the cellular network infrastructure in

terms of cost, complexity, power consumption of

handset, etc. In addition, the accuracy of GPS in an

urban area may not be as accurate as in a rural area

due to non-line-of-sight (NLOS) circumstance. The

existing cellular network-based location tracking ap-

proaches are based on the received signal strength

(RSS) [6–10], angle of arrival (AOA), time of arrival

(TOA) [4], time difference of arrival (TDOA) [3,11],

and hybrid TDOA/AOA [13]. In these approaches a

mobile station (MS) whose position is being tracked

basically interacts with several base stations (BSs).

The AOA-based approach may need two or more BSs

for measurement while TOA-, TDOA- or signal

strength-based solutions need three or more BSs.

The TOA or TDOA approaches can give more accu-

rate estimation in terms of line-of-site (LOS), how-

ever, they suffer from errors of synchronization or

time measurement. Approaches using the received

signal strength are based on the fact that the distance

between the transmitter and the receiver is a function

of path loss in the propagation. They are attractive

because of the low cost and the availability of many

practical path loss models. The methods in References

[6,7] estimate the mobile’s trajectory and speed using

a semi-Markov model. However, a model-based ap-

proach may lose accuracy due to the change of the

mobile movement pattern and terrestrial situation.

Other research works based on RSS include multi-

dimensional scaling [8,9], statistical modeling [10],

and mobility profile prediction using fuzzy logic [5].

For direct-sequence code division multiple access

(DS-CDMA) systems, the challenge for the measure-

ment-based approach comes from multi-path propa-

gation, shadowing, multi-access interference (MAI)

[1,2], and non-line-of-sight (NLOS) which is common

in urban. The effect of multi-path propagation can be

mitigated by using a smart coherent combiner (e.g.,

Rake receiver) [14]. As for shadowing, besides using

more precise models, as it is caused by large obstacles

in the propagation path and has high correlation, a

location-dependent correction term can be added to

the path loss function. The MAI includes both intra-

cell interference, which is caused by downlink signals

of an MS own cell, and inter-cell interference, which

is caused by signals from neighboring BSs. The intra-

cell interference can be effectively mitigated by using

orthogonal codes in the downlink and interference

cancellation (IC). To reduce the interference from

neighboring BSs, an idle time slot is inserted to the

spread sequence of the pilot channel in each BS so

that the BS can transmit pilot signal cyclically during

measurement time to improve the hear-ability of the

corresponding MS [11]. The effect of NLOS intro-

duces high bias to AOA, TOA, or TDOA, due to the

non-direct path measurements, and the variable at-

tenuation to RSS in different urban areas. How to

overcome the effect of NLOS is still an open issue.

In this paper, a novel location estimation scheme

based on self-organizing map (SOM) is proposed. As

a neural network model, the SOM sets up a set of

virtual sensors within the area covered by correspond-

ing BSs using a training course and performs a non-

linear mapping between the RSS from nearby BSs and

the mobile user’s location. To further reduce the

computational complexity, a two-layer hierarchical

SOM scheme is used, where the first layer SOM

roughly locates a mobile and the second layer SOM

provides accurate estimation. It is shown that the

SOM scheme has the advantages of robustness, flex-

ibility, and implementation, especially in NLOS situa-

tion. Numerical results under various terrestrial

environments are presented to demonstrate the feasi-

bility of the proposed scheme.

The rest of the paper is organized as following. In

Section 2, we describe the mobile estimation model

and the SOM algorithm. In Section 3, we present a

two-layer hierarchical SOM scheme for estimating the

mobile’s position in the CDMA cellular network. In

Section 4, the accuracy and feasibility of the proposed

scheme is discussed. Section 5 presents the simulation

results, followed by conclusions in Section 6.

2. System Model

2.1. Radio Network Model

Consider a cellular DS-CDMA network, where a

mobile station is connected through a wireless med-

ium to its host BS. The mobile switching center

(MSC) controls several BSs through a base station

controller (BSC) or radio network controller (RNC) in

a terrestrial area and conducts the task of wireless

network resource management, as shown in Figure 1.

At the downlink, each BS transmits a distinct pilot

signal for pseudo-random noise (PN) code and carrier

synchronization. The PN code and waveform of the

pilot signals from all BSs are the same, and they are

distinguished from one another by the phase or timing
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offsets of the pilot signals. The relative time-offsets

for neighboring BSs are either known beforehand or

broadcast to all MSs. In general, an MS receives pilot

signals broadcasted with constant levels from neigh-

boring BSs and maintains its pilot sets for possible

handoff based on the signal strengths and predefined

thresholds [15]. These pilot signals are measured at

the mobile end, and the received strength of each pilot

at one MS is reported back to the MSC, for conducting

soft handoff as well as location estimation.

Wireless channel in DS-CDMA networks will in-

troduce both long-term and short-term fading to signal

propagation. The long-term channel fading is a com-

bination of path loss, which is a function of distance

between the MS and the BS, and shadowing, which is

the effect of obstacles much larger than the wave-

length of transmitted signal. The overall propagation

loss can be expressed as [14,16]:

L ¼ 10
L0
10 � d

d0

� ���

�10
�

10 ð1Þ

where d is the distance between BS and MS, L0 is the

path loss (dB) at reference distance d0, � is the path

loss exponent, and � is the effect of shadowing with

Gaussian distribution Nð0; �2Þ. There are other em-

pirical path loss models in the literature [14], such as

the Hata–Okumura model and Cost 231 model which

are particularly suited for urban area. The short-term

fading (Rayleigh fading) is due to multi-path propa-

gation and is independent of the distance between the

transmitter and receiver. In addition, there is MAI for

CDMA systems. The local mean (after removing the

short-term fading) of the received pilot amplitude can

be modeled as:

S ¼ Ppilot � 10� L0
10 � d

d0

� ���

�10� �
10 þ I ð2Þ

where Ppilot is the constant pilot signal strength sent by

the BS and I is the MAI. According to the analysis in

Reference [18], the MAI to the received pilot signal at

the MS receiver can be modeled as a random variable

which has zero mean and variance of VarðIÞ ¼
EbPI=ð2WÞ; where Eb is the received pilot bit energy

at sampling time without interference, W is the chip

rate of PN code, and PI is the average power of

interference at the carrier frequency. Given MAI

suppression techniques [17] effectively mitigate the

MAI, the output of Rake receiver can be considered as

representative of local mean.

BS 1

BS 3

BS 2

Mobile  Switching Center

BS 5

BS 6

BS 4

BSC

BSC

Core Network

MS

Fig. 1. Cellular CDMA radio network.
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Let S ¼ ðS1; S2; :::; SMÞ represent the received pat-

tern from M BSs and s representing the normalized

vector of S . To estimate the mobile’s position, assume

a set of N virtual sensors generated within the area

of MSC by a training course, with each sensor

Ci ¼ ðwi; riÞ, i ¼ 1; :::;N, storing a weight vector wi

associated with the received pilot signals’ strengths

and an output vector ri as a location. Let e be the label

of the desired sensor, defined by:

e ¼ arg min
i

ðjjs� wijjÞ; i ¼ 1; :::;N ð3Þ

Then re gives the location estimation of the MS. Given

the terrestrial information of a cell, the crucial pro-

blem of how to determine a suitable configuration

and deployment of the set of sensors fCiðwi; riÞg,

motivates the employment of SOM.

2.2. Self-Organizing Map

SOM, also called Kohonen feature map, is a feedfor-

ward neural network with unsupervised or supervised

and competitive learning algorithm [20,21]. SOM is

capable of arranging complex and high-dimensional

data in such a way that similar inputs are mapped

close to each other. Such a mapping is useful in

detecting and visualizing characteristic features of

the input data, and ultimately in identifying patterns

in the original multi-dimensional inputs.

A SOM is formed of neurons (also referred as nodes

thereafter) located on a two-dimensional grid, whose

topology can be defined as rectangle, hexagonal or

irregular, as shown in Figure 2. Each neuron i of the

SOM is represented by an m-dimensional weight

wi ¼ ½wi1;wi2; :::;wim�T, where m is equal to the di-

mension of the input vectors. In the SOM training

algorithm, after random initialization, the weights are

updated during a training phase by making repeated

passes over the input data set until they converge. As

each input vector (data) is encountered, the weight

vector with smallest Euclidean distance (i.e., the

weight vector most similar to the current input vec-

tor), is allowed to adjust or ‘learn’ in such a way that it

more closely represents the input vector. Let

x ¼ fxjg 2 Rm be a stochastic vector of the normal-

ized training set. The Kohonen’s learning rule is given

as [20,21]:

jjx� ŵcjj ¼ min
i
fjjx� ŵijjg ðsimilarity matchingÞ

ð4Þ
where the neuron signified by the subscript c is the

‘winning neuron’ and

wij ¼
wk
ij þ �k½xkj � wk

ij� i 2 Nk
c ; ðupdatingÞ

wk
ij otherwise

(

ð5Þ

where i ¼ 1; . . . ; n; n is the number of neurons in the

SOM; j ¼ 1; . . . ;m; k is the step index of each training;

ŵi ¼ wi=jjwijj is the normalized weight vector; N
ðkÞ
c is

the neighborhood, as shown in Figure 2, of the

winning neuron c in step k and �ðkÞ is the learning

constant of step k. With this learning rule, updating of

the weights goes to the winning neuron as well as its

neighborhood. After training, the resultant weight

matrix W=ðŵ1; :::; ŵnÞ reflects the implicit similari-

ties inside the input set of training data.

An extension of Kohonen feature map is to add an

associate output layer to the output of SOM [21], as

shown in Figure 3. This output layer can be a two or

more dimensional space whose elements may repre-

sent a location in the space. While SOM training is

fully unsupervised, the training between SOM output

and the output layer can be supervised or unsuper-

vised. In case of the high-dimensional input, there will

be an increase in the computational complexity of the

SOM training. The hierarchical feature map is to

reduce the complexity by setting up multiple layers

where each layer consists of a number of independent

SOMs [23].

3. Mobile Location Estimation with SOM

Assume that a normalized vector fsg represents the

RSS from M BSs and the MS sends periodically the

measurement through its serving BS to the MSC

1iw 2iw imw

1x 2x mx

iy

Neighborhood CN

Fig. 2. Self-organizing map.
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which will decide the location estimation based on s.
The M-dimensional signal vector s is expected to be

mapped into a two-dimensional location in the se-

lected geographical area of the M BSs.|| As shown in

Figure 4, the area can be covered by a number of

neurons that construct a two-dimensional SOM. Each

neuron represents a virtual sensory unit, which can be

invoked by a passing mobile whose coordinate is

associated with the center of a small subarea within

the coverage by these BSs. Initially, the vector set fsg
is well prepared in suitably normalized range to fit the

SOM. Then the map is thoroughly trained by the

vector set to make the neurons evenly distributed to

cover the geographical area, and locked such that each

neuron with a particular weight may be associated

with a position in the corresponding area. Finally,

when the normalized vector of the measured signals of

an unknown MS is fed to the SOM, the fired neuron

gives the location estimation of this MS.

3.1. Two-Layer SOM

To reduce the computational complexity of deploying

too many nodes in a large area, a two-layer hierarch-

ical SOM is developed. The first layer, named as

macro-SOM, is the map covering a large area of M

BSs controlled by BSC or MSC, and the second layer,

named as micro-SOMs, includes all the segmented

triangular sub-areas within any three BSs in the

macro-SOM. The two-layer hierarchical SOM is

shown in Figure 5, where the first layer is the area

of seven cells covered by a BSC/MSC and the shaded

triangle is one of the micro-SOMs in the second layer.

Accordingly the macro and micro SOMs have up to

seven and three (or more) dimensional inputs of RSS,

respectively. The macro-SOM is expected to give a

bird’s eyeview of the mobile movement so that mobile

devices can be roughly located if the cell range is

small. The micro-SOM is expected to give a fine

estimation of the mobile’s location because an MS

can feasibly receive at most three strong pilots con-

tinuously. If the estimation in the macro-SOM falls in

the area of a micro-SOM, incorporated with the

judgment of three strongest pilot signal strengths

from three BSs, then a SOM in the second layer is

invoked and a better estimation can be expected. If the

1iw 2iw imw

1x 2x mx

Feature Map

Output Layer

Unsupervised
Learning

Supervised or Unsupervised
Learning

Fig. 3. Associated output layer of SOM.

Fig. 4. Two-dimensional SOM for the cellular network.

||A location is assumed to be geographically two-dimen-
sional although it can be three-dimensional.
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MS is slow, the mobile trajectory tracking can be

conducted continuously in micro-SOM, given the MS

is traced periodically in this triangle by the macro-

level SOM. The two-layer structure of SOM not only

gives a clear view of the mobile movement in the cells

for accurate estimation of its location, but also avoids

the real time computational complexity.

3.2. SOM Location Estimation Algorithm:
Training and Labeling

Training process includes the training on the macro-

level and micro-level of SOMs. As the dimension of

the input is high, training the large SOM is compli-

cated and time consuming. However, these trainings

can be carried out offline by simulation or field test

data. Both unsupervised and supervised learning can

be used for training macro-SOM; however, supervised

training is carried out for micro-SOM with thoroughly

abundant training data set (input-output pairs) so that

the micro-SOM provides more insight into the gran-

ularity of the location estimation in the triangular

areas. The SOM training is performed by the follow-

ing procedure.

Step 1: Generating training data. It is crucial to

generate a rich set of training data of the terrestrial

environment associated with three to seven BSs. A

suitable location distribution, typically uniform dis-

tribution, is selected for producing the training set.

Due to the signal attenuation by shadowing, multi-

path propagation and the dynamics of radio chan-

nels, the received signals at the MS are random in

nature. However, it is difficult, and may be cumber-

some, to acquire the characteristics of a huge

amount of random data. Two methods can be used

to obtain the training data. One is field testing, that

is, to obtain the location/signal pair by field mea-

surement. It is time consuming, but effective, espe-

cially in NLOS cases. The other is based on the

propagation model subject to the model accuracy

and the mitigation of multi-path fading and MAI,

presented in the following.

It is reasonable to build the training data set using

the local mean of long-term fading, plus a location-

dependent correction term of shadowing. So the

propagation loss function of Equation (1) can be

revised as:

L ¼ 10
L0ðx;yÞ

10 � d

d0

� ��ðx;yÞ
�10

�ðx;yÞ
10 ð6Þ

where L0ðx; yÞ and �ðx; yÞ are location-dependent

variables, �ðx; yÞ is the correction term of shadowing,

and ðx; yÞ is the location to generate training data.

Usually, when designing the radio cells, operators

acquired rich information about the related territories

and this makes it easy for them to predict the propaga-

tion loss. From Equations (2) and (6), the local mean

of RSS from the ith BS, i ¼ 1; :::;M, for generating

training data can be obtained as:

Si ¼ Ppilot=Li þ Ii ¼ Ppilot � 10� L0;iðx;yÞ
10 � di

d0

� �� �ðx;yÞ

�10� �iðx;yÞ
10 þ Ii; i ¼ 1; . . . ;M

ð7Þ

where M is the number of BSs, Li is the mean

propagation loss from ith BS to the MS, and Ii is the

interference to the pilot of BS i at the MS, which can

be averaged out over time in terms of slow fading.

Moreover, Ii can be balanced when the RSS vector is

normalized considering each of the pilots exposes

similar interference because interference at the down-

link mainly comes from all the neighboring BSs and

the effect of switching one BS is assumed to make

negligible difference.

Step 2: Determining the size of a SOM. SOM is

constructed with a suitable number of neurons, which

can properly represent the corresponding area with

acceptable resolution. This can be imagined as a mesh

that evenly covers the given area. The determination

of a suitable number of neurons in SOM depends on

the clear data pairs as well as the accuracy require-

ment of estimation.

Step 3: SOM training. Let the number of neurons be

N. After the first two steps, we have V ðV >> NÞ

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

Fig. 5. Hierarchical SOM: macro- and micro-SOM.
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training data pairs made up the training set

� ¼ fðsi; riÞg; where i ¼ 1; :::;V , si is the normalized

version of Si ¼ ðS1i; S2i; :::; SMiÞ; which is obtained

from Equation (7), and ri ¼ ðxi; yiÞ is the known two-

dimensional coordinate corresponding to si. The code-

book W of the SOM is a matrix made up of the weight

vectors of the neurons and is illustrated as

W ¼ ðw1; :::;wn). Training the map is conducted by

iteratively feeding the training data fsig as inputs to

the SOM by applying the Kohonen’s learning rule

expressed in Equations (4) and (5).

The neuron, which has the smallest distance to

an input, is called best matching unit (BMU) of this

input [22]. Similarly, the second BMU is the neuron

with second smallest distance, and so on. In each

training step, one sample vector from the input data

set is chosen randomly and a similarity measure is

calculated between this sample and all the weight

vectors of the map to find the BMU. After finding the

BMU, the weight vectors of the BMU and its neigh-

borhood are updated. The learning rate �ðkÞ of neigh-

boring nodes in Equation (5) can be modified by

multiplying a ‘Gaussian’ smoothing kernel [20], that

is,

�ðkÞ;new ¼ �ðkÞexpðð�jjhc � hjj2Þ=ð2H2ÞÞ ð8Þ

where hc is the position of current BMU, h is the

position of corresponding neighbor unit, H is the

certain radius, and both �ðkÞ and H shrink monotoni-

cally with time. The learning process ends when two

consecutive weight changes are small enough. As a

result of training, a planar neuron map is obtained

with weight matrix W coding the stationary prob-

ability density function of the pattern vectors used for

training.

Step 4: SOM labeling. Labeling the SOM is essen-

tially constructing a lookup table. For each neuron on

the map, the center of the sub-area that this node

represents can be decided. This leads to building a

lookup table which is actually the mapping between

the nodes on the map and physical locations. The table

is constructed by the following rules:

1. If a node is the BMU of one or more training

inputs, the average coordinates of the locations of

these inputs are taken as the center that this node

stands for. For example: if the input set �p � �,

and ðsi; riÞ � �p, where i ¼ 1; . . . ;P, P � V , and

all the elements in �p invoke a neuron E , then the

location associated with E is rE ¼
PP

i¼1 ri=P:

2. If a node is not fired as the BMU but as the second

best matching one, it can also be considered in the

same way as above.

3. If a node is never fired by any training data,

this node is considered as a null node. However,

when it is fired by a new measured input later,

a closest labeled neighboring node is invoked

instead.

After training and labeling, the SOM, that is, the

resultant codebook W of the weights, is locked. If a

new input, which is the pilot measurement by an MS,

is fed into the map, it will invoke a node that provides

the location estimation of this MS. If the terrestrial

environment changes, however, the training set and W

should be updated accordingly.

3.3. Smoothing RSS and Trajectory

The RSS experiences a composite of slow and fast

fading in the wireless channel. To obtain a smoothed

trajectory, it is necessary to ease the short-term fading

by using a Rake receiver or by averaging the signal

over a time period (or a distance range, assuming

constant velocity in this time period). When using the

Rake receiver, a sufficiently large sampling period

that is much larger than the fading spread (time span

of multipath arrivals) is preferred [18]. On the other

hand, more samples are needed to eliminate the effect

of MAI over a certain time. For the averaging method,

it can be expressed as [19]:

lðx0Þ ¼ 1

2b

Z x0þb

x0�b

sðxÞ dx ð9Þ

where x0 is the distance from the BS, lðx0Þ is the

estimated local mean, 2b is the sufficient distance to

calculate the local mean, and sðxÞ is the instantaneous

RSS within the range from x0 � b to x0 þ b. If 2b is too

long, lðx0Þ will not describe the feature of local mean;

however, if 2b is too short, some Rayleigh fading may

still exist. The determination of an adequate length of

2b is discussed in Reference [19].

For each MS, there also exists a strong correlation

among the estimations at adjacent time moments if the

product of the velocity and the time interval is small.

Well-designed smoothers can significantly increase

the accuracy of the estimation [8,9]. In our design,

linear regression smoother [8] is adopted.

Given the output estimations r̂k ¼ r̂ðTkÞ ¼ ðxk; ykÞ,
k ¼ 1; :::;K, Tk < Tkþ1, if the motion of the MS is

linear (at least locally) with constant speed vector a,

MOBILE LOCATION ESTIMATION USING SOM 291

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:285–298



and it is assumed that if T0 ¼ 0, then the true position

at time instant Tk is given by

rk ¼ Tkaþ b ð10Þ

where b is the position at time T0 ¼ 0. The parameters

a and b can be obtained by solving the least square

minimization

Min
XK
k¼1

jjr̂k � ðTkaþ bÞjj2 over a; b 2 R2 ð11Þ

The solution of (11) is

a ¼
PK

k¼1ðTk � TÞðr̂k � �rÞPK
k¼1ðTk � TÞ2

ð12Þ

b ¼ r� aT ð13Þ

with T ¼ ð1=KÞ �
PK

k¼1 Tk, and �r ¼ ð1=KÞ �
PK

k¼1 r̂k.

Given a and b, based on the last K estimates

including the one at the time TK , the new estimate at

TK by regression is given by Equation (10). Thus the

trace of rk provides the smoothed estimation track of

the mobile user’s movement. Note that K usually

takes small values (e.g., less than 10) because the

correlation time is normally short in practice.

4. Accuracy Analysis

In this section, the accuracy and the estimation relia-

bility of the proposed SOM algorithm are analyzed

with regard to the FCC requirement. We first intro-

duce the reliability index [24], and then use it to

explore estimation accuracy of the proposed SOM

scheme.

4.1. Second Moment Reliability Index

Consider a set of generalized random variables Z,

with mean EðZÞ and covariance CZ , and a set of

normalized and uncorrelated random variables X,

with mean EðXÞ ¼ 0 and covariance matrix CX ¼
CovðX;XTÞ ¼ I; where I is the identity matrix. Ac-

cording to matrix theory, there exists a unique lower-

triangular matrix A to transform Z to X , that is,

X ¼ AðZ � E½Z�Þ ð14Þ

such that E½X� ¼ 0 and Cov½X;XT� ¼ ACZA
T ¼ I.

Suppose there is a performance function gðzÞ separat-

ing Z space into two parts: successful part (gðzÞ > 0)

and unsuccessful part (gðzÞ < 0), where z 2 Z. The

function gðzÞ ¼ 0 is called the failed surface, denoted

as LZ , because it separates the successful part from the

unsuccessful part. Similarly, the failed surface of X is

LX . Then, the distance from the mean point to the

failed surface is given as

�ðxÞ ¼ ðxTxÞ1=2; x 2 LX ð15Þ

or equivalently,

�ðzÞ ¼ ½ðz� E½Z�ÞT
C�1
Z ðz� E½Z�Þ�1=2; z 2 LZ

ð16Þ

According to Reference [24], the smallest distance is

defined as the reliability index, that is,

��ðz�Þ ¼ min
z
f�ðzÞg; z 2 LZ ð17Þ

where z� is the reference point on the failure surface.

�� is also referred as second moment reliability index.

4.2. Accuracy Analysis

As a neural network model, SOM is a kind of non-

linear mapping between the input and output spaces.

The essence of SOM-based location estimation is the

non-linear mapping between a mean value in the signal

measurement space and a mean value in the location

space, which can be referred as the global mapping.

In Section 3, a number of nodes have been used to

represent the input hyperspace containing all the

training data, with each node representing one sepa-

rate subspace including data that invoke the node. We

further map the subspaces into equal size of small

areas in the horizontal region between several BSs.

Define the space of M-dimensional measurement

variables as S-space and the two-dimension horizontal

region between BSs as R-space. As a result, the

measurement vector S of a sub-space in S can be

mapped to the vector r of a corresponding subarea in

R. This mapping between two sub-spaces can be

referred as the local mapping. Since the measurement

vector S (dB) in S-space is Gaussian distributed, we

reasonably infer that its local mapping r in R-space is

also Gaussian.

Specifically, when a mean signal measurement

point S0 associated with its subspace in S-space is

mapped into a mean location point r0 associated with

its subarea in R-space, we obtain the following:

�ðSÞ ¼ ½ðS� S0ÞT
C�1
S ðS� S0Þ�1=2; S 2 LS ð18Þ
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where LS is the failure surface of the subspace

associated with S0 , and

�ðrÞ ¼ ½ðr � r0ÞT
C�1
R ðr � r0Þ�1=2; r 2 LR ð19Þ

where LR is the boundary of the sub-area associated

with r0. For simplicity, if there are enough nodes

dividing each of the S and R spaces, respectively,

into small subspaces of equal size, the signal subspace

centered by S0 is suitably formed as a hyper-sphere

with the same radius RS from S0 to LS, and LR is

simply a circle centered by r0 with radius Rr, as shown

in Figure 6. Therefore, all �ðSÞs are equal, so are the

�ðrÞs.

Let �S ¼ �ðSÞ and �R ¼ �ðrÞ, we then interpret

how Equation (19) can satisfy the listed FCC require-

ments. Basically, the reliability of the FCC require-

ment is the probability �ð�RÞ, where �ðxÞ ¼R x

0
ex=2 dx is of normal distribution, and the radius

Rr ¼ r � r0 is the error range. In case of two inde-

pendent coordinate variables, Equation (19) can be

rewritten as

�R ¼ ðR2
r�

�2
R Þ1=2 ¼ Rr=�R ð20Þ

where �R is the normalized radius. Thus, given relia-

bility requirement and range by FCC, we can obtain

the required variance �2
R with respect to mean r0, that

is, �R ¼ Rr=�R. Moreover, from Equations (18) and

(19), let �ðSÞ ¼ �ðrÞ, it follows

ðS� S0ÞT
C�1
S ðS� S0Þ ¼ ðr � r0ÞT

C�1
R ðr � r0Þ ð21Þ

Assuming CS ¼ �2
SI and CR ¼ �2

RI, then

�2
R ¼ ðr � r0ÞTðr � r0Þ

ðS� S0ÞTðS� S0Þ
�2
S ¼

R2
r

jjRSjj2
�2
S ð22Þ

where �2
S and �2

R are Gaussian variance of signals and

location measurement, respectively, and jjRSjj is the

Euclidean radius in the multi-dimensional hyper-

sphere centered by S0.

Note that Equations (18), (19), and (22) are mu-

tually dependent as the neural nodes separate the

R-space and S-space into same number of small

identical circles and identical hyper-spheres, respec-

tively. The R-space is the coverage of a few BSs and is

decided by the radius of a cell. Rr is decided by the

number of nodes in R-space. S-space is limited by

the transmit power as well as propagation loss. �2
S is

the variance of RSS, due to the randomness of fading.

From Equation (22), if no random fading, there is no

location estimation error. However, given the existing

�2
S, even if we pick small enough Rr, due to the

interdependency between R-space and S-space (i.e.,

Rr and jjRSjj are dependent), we might not be able

to get the �R satisfying �R ¼ Rr=�R. According to

Equation (22), the possible remedies of managing �2
S

and jjRSjj to obtain satisfied �R are:

� mitigating �2
S by all means;

� connecting to more BSs to enlarge the dimensions

of hyper-sphere, so that jjRSjj is enlarged;

� using small cell to shrink R-space;

� enlarge S-space;

� smoothing �2
R:

E(S)

Failure surface

1S

3S

2S

0r

SL

x

y

Failure surface RL

Sβ
Rβ

Fig. 6. Geometrical illustration of space mapping.
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Essentially, SOM constitutes the mean-to-mean

global mapping between the input (measurement)

space and the output (location estimation) space.

The number of neurons determines the resolution of

the output space. SOM-based global mapping is

suitable in terms of various terrains. On the other

hand, the analysis of the local mapping, which is the

mapping between two sets of random variables asso-

ciated with their mean values, indicates how the

measurement reliability can be assured. In the next

section, we will alleviate �2
S by averaging the signals,

using small cells, applying smoother and connecting

to more BSs, to improve the estimation accuracy and

reliability.

5. Simulation Results

In this section, simulation results are presented to

demonstrate the suitability of the proposed SOM loca-

tion estimator. The software package of SOM training

algorithm developed by T. Kohonen’s research group

[22] is used. Without loss of generality, training data

are obtained via the simulated propagation model.

5.1. Simulation Parameters

To evaluate the overall system performance, the char-

acteristics of environments are set for the simulation

with parameters shown in Table I. The propagation loss

is assumed to be bounded within [�120,�60] dB, so the

RSS can be suitably normalized in [0,1]; various path

loss exponent is selected to reflect the various physical

channel environment; the testing data are generated

assuming a mobile moving from one cell to another;

training is conducted to tune the weights of each node of

a 2000-node SOM; we consider the slow fading envir-

onment assuming the multi-path fading and MAI are

effectively mitigated.

5.2. Simulation Results

We define the average estimation error as: Average

error¼ 1
NE

PNE

i¼1 jjr̂i � rijj, where ri is the real location

and r̂i is its estimation and NE is the number of testing

data. The accuracy probability can be defined as

PrðError � �Þ

¼ The number of testing data such that jĵri � rijj � �

The total number of testing data

ð23Þ

with � a predefined threshold. We further define the

SOM resolution as the width of a small square area

(approximating a small circle) represented by each

node in the corresponding terrain, for example, given

2000 nodes, the resolution of the area of seven BSs

(macro-SOM) is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7000 � 7000=2000

p
¼ 156 m, and

that of the triangle area of three BSs (micro-SOM) is

31.6 m. In the simulation, we first present the results

for different terrestrial environments, and then show

the comparison with TDOA in NLOS urban condition.

Figure 7 shows the real track of an MS and its

estimation in the 7-BS macro-SOM terrain with

� ¼ 2:6 and standard deviation of RSS � ¼ 2. It is

observed that there is a tracking zone (non-smooth,

marked by ‘þ ’) following the mobile’s movement

and the smoothed trace is quite close to the real

trajectory. The SOM resolution is 156 m, average

location error is 74.3 m, and the estimation reliabil-

ity with 150 m is 87.94%. Figure 8 illustrates the

territorial variation in a 3-BS micro-SOM area,

where the shaded part has assumed � ¼ 3:5 and for

other places � ¼ 2:6. Figure 9 shows the real trajec-

tory and its smoothed estimation in terms of the

Table I. Simulation parameters.

Item Parameter Value

1 Cell radius (m) 1000
2 L0 (dB) 80
3 Pilot (w) 1
4 Power law 2.6/3.5
5 Size of SOM (node) 2000
6 Training data 20 000
7 Normalizing range [0,1]

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4
real track
estimation
smoothed estimation

Fig. 7. Macro-SOM level estimation (unit: km).
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movement in the micro-SOM of Figure 8. The

average estimation error is 24.3 m, and the reliability

within 40 m is 88.33%. Table II presents the effects

of standard deviation of RSS to the estimation

error, where the estimation error increases with the

standard deviation of RSS, and the areas with large

power law seem to have smaller estimation errors.

The results show the robustness of SOM in terms

of various terrains. They also show the estimation

accuracy improvement over References [8] and [9],

whose average mis-location errors are 70 m by

Kalman filter and 60 m by linear regression, respec-

tively, both with cell radius 1000 m.

Besides using three BSs in the triangle area, we

extend the RSS measurement by involving more BSs

in the near to far order, in terms of � ¼ 2:6 and

� ¼ 2. Table III shows the estimation results when

an MS receiving multiple pilots from neighboring

BSs. It can be seen that as the number of BSs

increase, the measurement reliability is improved;

however, when the amount of BSs reaches a certain

number (6 in our simulation), the estimation accu-

racy turn to decline. This is because when an

associate BS is too far, its pilot strength becomes

weaker at the MS, so the normalized variance

(caused by fading, etc.) turns to be larger, compared

to a closer BS.

The proposed scheme also exhibits better perfor-

mance, compared with the TDOA scheme when

there exists NLOS, shown in Figure 10 [11]. The

LOS cannot be ensured for any of the three BSs

due to the irregular layout of building blocks.

When a mobile user moves from A to B, he

experiences larger shadowing from either BS2 or

BS3 than that of BS1. In Figure 11, the estimated

trajectory of TDOA scheme by imitating [11] is

highly biased due to the time delay; however, after

taking into account the large shadowing in the

propagation paths from BS2 and BS3, SOM gives

much better estimation.

5.3. Discussion

From the simulation results, it can be observed: (1)

SOM has a robust property of global convergence in

training which is easy for implementation; (2) SOM

is more robust to the high dimensional input subject

to the variance of RSS; (3) when � increases, the

average error decreases. This is because larger �

−1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

1.5

2

2.5

3 mobile track

power law = 3.5 

power law = 2.6 

Fig. 8. Power law varies in different terrains (unit: km).
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1.2

1.4
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Fig. 9. Comparison of a mobile track and its estimation
(unit: km).

Table II. Results with various variations of RSS.

Terrain: three BSs Resolution Average Pr(Err <
(m) error (m) 40 m)

� ¼ 2:6=3:5; � ¼ 2 31.6 24.3 88:33%
� ¼ 2:6=3:5; � ¼ 3 31.6 34.5 69:17%
� ¼ 2:6=3:5; � ¼ 4 31.6 45.7 51:67%
� ¼ 2:6; � ¼ 2 31.6 29.8 83:06%
� ¼ 2:6; � ¼ 3 31.6 35.6 65:83%
� ¼ 2:6; � ¼ 4 31.6 52.3 40:83%

Table III. Results involving more BS.

Number of BSs 3 4 5 6

Average error 29.8 m 26.1 m 24.3 m 30.4 m
Pr(Err < 40 m) 83:06% 87:17% 90:47% 84:17%
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enlarges the path loss, thus expands the signal space.

In addition, SOM is tolerant to the noisy inputs.

In fact, if a measurement is corrupted by noise,

although it may not invoke the desired neuron, it

will invoke a neighbor of the desired one, because in

the training, nodes with similar weights are clus-

tered together. This feature shows another robust

characteristic of SOM.

Although regular hexagon cells and regular trian-

gular area are applied in the discussion, since they are

only used in training and testing, it means as long as

the training can be conducted the SOM algorithm

is applicable to any irregular shape of site or area

reachable by the pilots of corresponding BSs.

Depending on the design criteria, computing ability,

and training time, one can put more nodes in a small

area or fewer nodes in a large area. One can also

partition a large terrain into pieces and fix the number

of nodes in each piece.

While the proposed approach is essentially based

on RSS, an interesting fact elicited from Section 4 is

that we can easily extend this scheme to TDOA and

AOA. Equation (22) suggests that the increased di-

mension of measurement space may improve the

estimation reliability. An MS is feasibly able to

receive at most three pilots continuously, which can

however produce up to nine measurements consisting

of signal strength, time difference of arrival, and angle

of arrival. Thus the potential estimation accuracy

could be further improved.

6. Conclusions

A SOM scheme based on RSS for mobile location

estimation has been explored. It is demonstrated that

SOM constitutes a non-linear mapping between the

measurement of RSS and the mobile’s location. The

advantage of SOM is that it can be used not only as

the hybrid of unsupervised/supervised learning but

also to convert high-dimensional input into a two-

dimensional spot of a map. Moreover, the learning

process is fully autonomous given sufficient geogra-

phical information and can be conducted by simula-

tion or field practice. Simulation results have shown

that the SOM scheme can achieve accurate location

estimation, and is more robust in terms of various

terrains and NLOS. The SOM scheme is low-cost,

scalable, and easy to use since training is off-line and

no ruling is required for training.
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10. Roos T, Myllymäki P, Henry T. Statistical modeling approach
to location estimation. IEEE Transactions on Mobile Comput-
ing 2002; 1(1): 59–69.

11. Abrardo A, Benelli G, Maraffon C, Toccafondi A. Performance
of TDoA-based radiolocation techniques in CDMA urban
environments. In Proceedings of IEEE International Confer-
ence on Communications 2002; pp. 431–435.

12. Xiao C. Estimating velocity of mobiles in EDGE systems. In
Proceedings of IEEE International Conference on Communi-
cations 2002; pp. 3240–3244.

13. Cong L, Zhuang W. Hybrid TDOA/AOA mobile user location
for wideband CDMA cellular systems. IEEE Transactions on
Wireless Communication 2002; 1(3): 439–447.

14. Lee JS, Miller LE. CDMA Systems Engineering Handbook.
Artech House: Boston, MA, 1998.

15. Smith C, Collins D. 3G Wireless Networks. McGraw-Hill
Telecom: New York, 2002.

16. Mark JW, Zhuang W. Wireless Communications and Network-
ing. Prentice Hall: Upper Saddle River, NJ, 2003.

17. Glisic SG, Adaptive WCDMA : Theory and Practice. John
Wiley & Sons: Hoboken, NJ, 2003.

18. Proakis JG, Salehi M. Communication Systems Engineering.
Prentice Hall: Upper Saddle River, NJ, 1997.

19. Song HL. Automatic vehicle location in cellular communica-
tions systems. IEEE Transactions on Vehicular Technology
1994; 43(4): 902–908.

20. Kohonen T. Self-Organizing Maps. Springer: New York, 1997.
21. Lee CS, Lin CT. Neural Fuzzy Systems: A Neuron-Fuzzy Syner-

gism to Intelligent Systems. Prentice Hall: New York, 1996.
22. Kohonen T, Hynninen J, Kangas J, Laaksonen J. SOM PAK:

The Self-organizing Map Program Package. Report A31. Hel-
sinki University, Finland, 1996.

23. Koikkalainen P, Oja E. Self-organizing hierarchical feature
maps. In Proceedings of IEEE International Joint Conference
on Neural Networks (IJCNN) 1990; pp. 279–284.

24. Madson HO, Krenk S, Lind NC. Methods of Structural Safety.
Prentice Hall: Englewood Cliffs, NJ, 1986.

MOBILE LOCATION ESTIMATION USING SOM 297

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:285–298



Authors’ Biographies

Jun Xu received his B. Eng. from
Tsinghua University, China, in 1989,
and M.A.Sc. from University of
Waterloo, Canada, in 2002. He
is currently pursuing his Ph.D. degree
in Electrical and Computer Engineer-
ing, University of Waterloo, Canada.
His research interests include mobi-
lity, QoS performance analysis, and
resource management in wireless
communication networks.

Xuemin (Sherman) Shen (M’97-
SM’02) received his B.Sc. (1982)
degree from Dalian Maritime Uni-
versity, China, and his M.Sc. degree
(1987) and Ph.D. (1990) from
Rutgers University, New Jersey
(U.S.A.), all in Electrical Engineer-
ing. From September 1990 to Sep-
tember 1993, he was first with the
Howard University, Washington
D.C., and then the University of

Alberta, Edmonton, Canada. Since October 1993, he has
been with the Department of Electrical and Computer
Engineering, University of Waterloo, Canada, where he is
a professor and the associate chair for graduate studies.
Dr Shen’s research focuses on mobility and resource man-
agement in interconnected wireless/wireline networks,
UWB wireless communications systems, wireless security,
and ad hoc and sensor networks. He is a co-author of two
books, and has published more than 200 papers and book
chapters in wireless communications and networks,
control and filtering. Dr Shen serves as the Technical
Program Committee Chair for Qshine’05, Co-Chair for
IEEE Broadnet’05, WirelessCom’05, IFIP Networking’05,
ISPAN’04, IEEE Globecom’03 Symposium on Next Gen-
eration Networks and Internet. He also serves as an associate
editor for IEEE Transactions on Wireless Communications;
IEEE Transactions on Vehicular Technology; ACMWireless
Network; Computer Networks; Dynamics of Continuous,
Discrete and Impulsive—Series B: Applications and Algo-
rithms; Wireless Communications, and Mobile Computing
Wiley; International Journal Computer and Applications;
and the Guest Editor for IEEE JSAC, IEEE Wireless Com-
munications, and IEEE Communications Magazine. Dr Shen
received the Premier’s Research Excellence Award (PREA)
from the Province of Ontario, Canada for demonstrated
excellence of scientific and academic contributions in
2003, and the Distinguished Performance Award from the
Faculty of Engineering, University of Waterloo, for out-
standing contribution in teaching, scholarship and service
in 2002. Dr Shen is a registered Professional Engineer in
Ontario, Canada.

Jon W. Mark (M’62-SM’80-F’88-
LF’03) received his B.A.Sc. degree
from the University of Toronto,
Toronto, Ontario, Canada in 1962,
and his M.Eng. degree and Ph.D.
from McMaster University, Hamil-
ton, Ontario, Canada in 1968 and
1970, respectively, all in Electrical
Engineering. From 1962 to 1970, he
was an engineer and then senior

engineer at Canadian Westinghouse Co. Ltd., Hamilton,
Ontario, Canada. In September 1970, he joined the Depart-
ment of Electrical and Computer Engineering, University of
Waterloo, Waterloo, Ontario, Canada, where he is a distin-
guished professor emeritus. He served as the department
chairman during the period July 1984–June 1990. In 1996,
he established the Center for Wireless Communication
(CWC) at the University of Waterloo and is currently
serving as its founding director. Dr Mark has been on
sabbatical leave at the following places: IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, as a
visiting research scientist (1976–77); AT&T Bell Labora-
tories, Murray Hill, NJ, as a resident consultant (1982–83);
Laboratoire MASI, Universit Pierre et Marie Curie, Paris,
France, as an invite professor (1990–91); and Department of
Electrical Engineering, National University of Singapore, as
a visiting professor (1994–95). He has previously worked in
the areas of adaptive equalization, image and video coding,
spread spectrum communications, computer communica-
tion networks, ATM switches design, and traffic manage-
ment. His current research interests are in broadband and
wireless communication, resource and mobility manage-
ment, and cross domain interworking. He recently co-author
the text entitled Wireless Communications and Networking,
Prentice-Hall, 2003. A life fellow of IEEE, Dr Mark is the
recipient of the 2000 Canadian Award for Telecom-
munications Research and the 2000 Award of Merit of
the Education Foundation of the Federation of Chinese
Canadian Professionals. He has served as an editor of
IEEE Transactions on Communications (1983–1990), a
member of the Inter-Society Steering Committee of the
IEEE ACM Transactions on Networking (1992–2003), a
member of the IEEE Communications Society Awards
Committee (1995–1998), an editor of Wireless Networks
(1993–2004), and an associate editor of Telecommunication
Systems (1994–2004).

Jun Cai received his B. Eng.
degree (1996) in radio techniques
and the M. Eng. degree (1999) in
Communication and Information
Systems from Xi’an Jiaotong Uni-
versity, China, and his Ph.D.
(2004) in Electrical Engineering
from University of Waterloo,
Canada. He is currently doing
research as Postdoctoral Fellow in
Electrical and Computer Engineer-

ing, University of Waterloo, Canada. His research interests
include channel estimation, interference cancellation, and
resource management in wireless communication systems.

298 J. XU ET AL.

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:285–298


