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Abstract

This article presents the hardware design and software algorithms of RoboSimian, a statically
stable quadrupedal robot capable of both dexterous manipulation and versatile mobility in
difficult terrain. The robot has generalized limbs and hands capable of mobility and manip-
ulation, along with almost fully hemispherical 3D sensing with passive stereo cameras. The
system is semi-autonomous, enabling low-bandwidth, high latency control operated from a
standard laptop. Because limbs are used for mobility and manipulation, a single unified
mobile manipulation planner is used to generate autonomous behaviors, including walking,
sitting, climbing, grasping, and manipulating. The remote operator interface is optimized to
designate, parameterize, sequence, and preview behaviors, which are then executed by the
robot. RoboSimian placed fifth in the DARPA Robotics Challenge (DRC) Trials, demon-
strating its ability to perform disaster recovery tasks in degraded human environments.

1 Introduction

One goal of the DARPA Robotics Challenge (DRC) was to develop robots that can operate in a degraded
human environment and perform tasks normally performed by a human. While most teams developed robots
with a bipedal human form-factor, JPL’s RoboSimian robot was designed with the philosophy that a passively
stable, deliberate robot would be safer, more robust, and sufficiently fast for performing disaster response
tasks. RoboSimian has four general purpose limbs and hands, capable of both mobility and manipulation,
two active wheels on its body, and two passive caster wheels on its limbs, all of which are used to achieve
passively stable postures, while remaining highly mobile and dexterous. The robot uses multiple stereo
cameras to achieve nearly full 360 degree passive, low-power 3D sensing. It has four identical limbs, with
each joint within the limb using an identical electric rotary drivetrain, minimizing cost and complexity, and
simplifying maintenance. The under-actuated hands are significantly less complex than a human hand with
fewer digits and active degrees of freedom, but can accomplish the set of grasps needed for effective operation
in disaster scenarios. They are robust to damage and also serve as the robot’s feet. An operator controls the
robot by issuing high level commands based on images and 3D data sent back by the robot. The operator
uses standard input devices (mouse and keyboard) to designate parameterized behaviors. Given a desired



behavior, the robot plans safe motions, and after the operator reviews and approves the plan, executes the
behavior.

Enabling practical, safe, and robust highly capable mobility and dexterous manipulation with low-bandwidth
operator interactions required several innovations. RoboSimian’s unique common joint, common limb design
results in an extremely versatile but high performance mechanism. It merges 360 degree passive sensing to
maintain its pose and create 3D maps and situational awareness, even when some cameras are occluded. It
uses a single, unified mobile manipulation planner for mobility and manipulation, enabling it to walk, climb,
sit, and manipulate. To enable an operator to control the robot with only high level commands, a framework
for developing, paramaterizing, and executing behavior sequences was developed. Finally, a remote operator
interface designed around efficiently commanding these behaviors based on objects detected by the robot
was created.

(a) RoboSimian traversing the Terrain task. (b) RoboSimian turning the second valve at the Valve
task.

Figure 1: RoboSimian competing at the DARPA Robotics Challenge (DRC) in the Terrain task (a) and the
Valve task (b).

This paper describes RoboSimian’s first robotic platform (named Clyde), its hardware design, and its software
algorithms. RoboSimian was designed, built and programmed by engineers and researchers at the Jet
Propulsion Laboratory, the University of California at Santa Barbara, Stanford University, and the California
Institute of Technology. Section 2 describes the design and build of RoboSimian, including the joints, limbs,
body, and hand, along with the system architecture. Section 3 describes the software architecture and
algorithms. Section 3.8 describes ongoing research, and Section 4 describes and discusses RoboSimian’s
performance at the DRC trials.

2 Hardware Design

In order to conserve mass, volume, complexity, and operational efficiency while retaining broad operational
flexibility, RoboSimian has generalized limbs capable of both mobility and manipulation arranged in an
axi-symmetric fashion. In order to achieve the stability and robustness that drives the RoboSimian design,
the robot must be capable of at least three points of contact while still being able to manipulate an object,
thus requiring a minimum of four limbs. Traditional anthropomorphic robotic design dictates that robotic
joints be larger in the proximal location and decrease in size and torque capacity towards the distal end.
This is reasonable because moment loads generated by an outstretched limb or iron cross are greatest at the
proximal joints and decrease towards the distal end. Once a robot grasps a rigid object (such as a ladder or



vehicle roll cage) with multiple limbs, the forces imparted to the robots limbs become symmetric. Loads at
the distal joints and proximal joints can be equally large and damaging. Thus RoboSimian uses the same
lightweight, high-torque actuator design for each of its 28 joints. There are several advantages to this design:
1) engineering resources can be focused on designing a single high performance actuator; 2) economies of
scale resulting from larger quantities of machined parts and commercial off-the-shelf (COTS) components
lead to lower production costs as items are ordered in bulk quantities; 3) Field support becomes easier as
there is only a single actuator unit to swap out. Repairs are also simplified as spare components only need
to be stocked for one design.

2.1 Actuator Design

(a) RoboSimian actuator showing the output side
with power and communications cables running
through the actuator for ‘daisy-chaining’.

(b) RoboSimian actuator showing the custom
motherboard hosting the Elmo Whistle Gold and
microcontroller.

Figure 2: RoboSimian actuators illustrating the motherboard, Elmo Whistle Gold, the microcontroller and
the output side of the actuator with power and communication cables.

The RoboSimian actuator consists of COTS drivetrain components mounted and housed by custom machined
aluminum parts. A frameless DC brushless motor directly drives a 160:1 harmonic drive, with the output
supported by a crossed-roller bearing. A power-on-to-disengage magnetic safety brake is included on the
motor rotor and is able to hold a torque at the output side, shown in Figure 2a with all power removed.
This is critical to the operations strategy of RoboSimian, where the robot may have to hold limb poses for
long periods of time. Two position sensors are included: an optical incremental encoder on the motor rotor
and a capacitive absolute position sensor on the actuator output.

Actuator electronics are mounted on the back side of the actuator and together with the mechanical compo-
nents form the actuator assembly (Figure 2b), the building block of the RoboSimian limb. The electronics
consist of a custom motherboard which hosts an Elmo Whistle Gold servo drive for the drive electronics
and a microcontroller to handle the brakes and actuator health monitoring. The servo drive and microcon-
troller communicate with the upstream electronics on EtherCAT and RS-485 networks respectively. The
motherboard also has connectors to allow daisy-chaining of the power and communications harnessing.

2.2 Limb Design

Each RoboSimian limb has 7 degrees of freedom and can be broken down into simple subcomponents. A
limb consists of 3 elbow assemblies and an azimuth actuator connected to the body. An elbow contains



Figure 3: RoboSimian’s limbs extended with inset showing a compact folded limb.

two actuators paired orthogonally with connecting structure. Elbows are linked together with additional
structure. Non-structural elbow caps cover the actuator electronics and allow easy access to the motor
controllers. The caps have molded rubber inserts (elbow pads) to protect the structure from scrapes and
scratches. Harnessing is run through the centerbore of the each actuator and down the limb, breaking off at
each distributed motor controller. The limb design terminates in a 6-axis force/torque sensor which serves as
an interface to end-effectors. The mechanical configuration of the limb has the actuators offset in a manner
that allows greater than 360◦ rotation, limited only by harness twist. This affords the limb greater flexibility
and increases the solution set for a given motion. As pictured in Figure 3, the offset actuators also allow for
compact limb storage.

2.3 Body Design

Much like the other RoboSimian hardware, the body design was centered around symmetry and simplicity
while leaving ample room for ease of access to necessary internal components. Following this approach,
mass and volumetric savings were achieved by using a monolithic aluminum structure. This structure was
able to serve as the component deck to which all internal components and limbs could be mounted with no
additional structural elements.

Following the spirit of the DRC challenge and urban disaster relief, the body shape and size was designed
to fit into and through confined spaces. This drove the body aspect ratio to be slightly rectangular in order
to fit the required internal components. At the center of the chassis, a custom battery was designed to
keep mass low, centralized, and to fit within the body shell. This battery is swappable and can be easily
accessed by releasing four over-center latches which hold the upper body shell on. Upon removing the upper
body shell, virtually all internal components can be accessed, diagnosed or swapped with the removal of a
few small fasteners at most. The body shell itself was rapid prototyped for cost savings, then coated with
high strength enamel to give it structural rigidity and tolerance to high impact events without fracturing.
Figure 4 shows the removal of the body shell and quick access to internal components. In addition to the
body shell, a few smaller carbon filled rapid prototyped pieces were added to give protection to the array
of cameras which are mounted just outside of the aluminum chassis. Note that the RoboSimian chassis and
internal components can all be assembled and tested on a table top. Limbs, cameras, and any other external
components can also be easily accessed or swapped with the removal of the body shell. This design allows
RoboSimian to be a highly versatile multiple sub-system robot which can be quickly changed, re-configured
or added to at any time.



(a)

Figure 4: RoboSimian’s body shell removed showing the quick latches and easy access to internal components.

2.4 Hand Design

(a) RoboSimian hand with
drive gears exposed. Note the
staggered opposing fingers.

(b) RoboSimian hand with tendon spool exposed. Note the shape of the
palm to maximize contact with a tool such as the drill.

Figure 5: RoboSimian hand with tendon spool exposed and the drive gear system exposed.

Similar to its namesakes, RoboSimian uses all of its extremities for both mobility and manipulation. The
RoboSimian hand was designed to be walked on in addition to being the main interface to the DRC tasks.
The body of the hand is a monolithic aluminum part that houses the mechanisms and drive electronics for
the fingers, as well as providing structural rigidity for the full weight of the robot while walking. The palm
is constructed from a high-durometer molded polyurethane that is both robust for walking and conformable
and tacky for manipulation. The palm also accommodates a USB web camera to assist with teleoperation,
but this feature was left out for the competition hands.

The hand has three under-actuated fingers, each with a braided Dyneema R© tendon wrapped around pulleys
at each of the three joints. The tendons are wrapped on a cable spool (Figure 5b), which is driven by a
DC brushed motor through multiple gear reductions (Figure 5a). The closing order of the fingers is tuned



via pulley diameter and return springs, the latter of which serve double-duty to pull the fingers back along
the body of the hand for walking on the palm. This hyperextension toward the wrist protects the fingers
and exposes the palm for making solid contact with the ground, similar to the hoof of an animal. The fixed
layout of the fingers (two opposed with the third to the side) allows for wrap grasps with holding forces in
excess of 500N, pinch grasps with forces in excess of 10N, and trigger grasps capable of power tool actuation.
The tendon actuators are non-backdriveable such that all grips can be maintained with no power.

The electronics for the fingers reside on a single custom PCB which hosts a DC/DC power converter, three H-
bridge drivers, and a single microcontroller with custom motor control software. Analog to digital converters
are also included for position sensors on each of the finger joints and tension sensors for each of the tendons,
but due to schedule and integration constraints, these sensors were not included in the competition hands.

A set of stumps with the same form as the hands but without fingers was also fabricated. For the competition,
which allowed changing end-effectors between events, RoboSimian switched between hands and stumps, with
the set not in use stored inside the body shell.

2.5 System Design
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Figure 6: Communication pathways to different hardware interfaces on RoboSimian.

The communication pathways in RoboSimian are described and laid out in Figure 6. The low-brain and high-
brain computers are networked via a GigE Ethernet switch located in RoboSimian. The remote computer
(i.e. the operator machine) is on the same network but connected to a low-bandwidth/high-latency filter
(provided by DARPA to simulate impaired communications) external to the robot which is then connected
to the internal robot switch.

The low-brain connects and communicates to each limb through an Ethernet physical layer link. Control and
communication to each limb as well as the differential drive is achieved through the EtherCAT R© protocol.
Using a tree topology of the EtherCAT R© network, each limb is a segment of the network and each joint
in the limb is a slave along the network segment. The low-brain also communicates to four ATI Industrial
Automation force-torque sensors that are placed at the end of each limb just before each hand. These sensors
communicate to the low-brain via RS-485 as the physical layer of a half-duplex serial protocol using a twisted
pair down each limb. The hand controllers also communicate via RS-485 to the low-brain. These sensors
communicate to the low-brain via RS-485 as the physical layer of the Modbus protocol using a twisted pair
down each limb. The Internal Measurement Unit (IMU), a VectorNav VN-200 Rugged inertial navigation
system (INS), is also connected via USB to the low-brain.



The high-brain computer’s main connectivity is with the cameras. The high-brain uses a PCI express splitter
which connects multiple Point Grey Research IEEE 1394b PCI express cards, with each card having two
IEEE 1394b ports. Each port is then connected to a Point Grey Research 5 port IEEE 1394b hub connecting
the Point Grey Research Flea2 cameras. Each stereo pair is externally triggered via a signal generator that
emits a 10Hz square wave signal.

Table 1: Specifications of the RoboSimian power and battery system.

Trials Implementation Intended Finals Configuration

Configuration 24S4P 46S2P

Voltage 88.8 V 170.2 V

Capacity 1.95 kWh 1.87 kWh

Power (continuous) 37.4 kW 18.7 kW

Power (peak) 74.8 kW 37.4 kW

Charge Time 2 hours 2 hours

Mass 12.5 kg 12.5 kg

As with the other elements of the robot, the as-designed power system is predicated on an assumption of
operations of much greater duration than a run in the DRC Finals. To this end, the robot is designed
to carry a lithium-ion battery that enables an estimated operation time of many hours. At a continuous
average power of around 200W, the robot could operate for about 10 hours. However, in practice we expect
that the average power draw to be lower due to the percentage of the time waiting on instructions from
the operators. While waiting, the power draw could drop into the tens of watts, significantly extending the
estimated operation time.

In order to slow the robot down and simplify the electronics, an initial implementation of the battery was
chosen for the DRC Trials. This version has a voltage of approximately 90V depending on state of charge.
Despite the availability of the DRC Trials battery, the decision was made to further simplify the power system
to a remote tethered supply because the mobility penalty was already being paid due to the requirement
for tethered communications and emergency stop functions. If the rules for the DRC Finals dispense with
tethers, a new battery design may be implemented that will push the voltage up to approximately 170V,
which will roughly double the upper end joint velocity. Table 1 shows the specifications of the power system
for the DRC Trials implementation and the intended DRC Finals configuration.

3 Software Algorithms

RoboSimian’s software architecture and algorithms are designed to enable low-bandwidth, high latency
control of a highly capable robot. The robot is capable of performing basic behaviors, such as walking to a
designated location, grasping an object, or performing manipulation tasks autonomously. The operator is
responsible for designating and sequencing the behaviors to perform more complex tasks, such as turning
a door handle, opening the door, and traversing through the doorway. We expect an operator to be at
a standoff location, without line-of-sight to the robot, and without a high bandwidth connection to either
the robot or to a central command center. Therefore, we limited the amount of processing on the operator
control unit (OCU) to a single standard laptop computer, and had the robot provide sufficient situational
awareness to the operator to perform complex tasks.
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Figure 7: The RoboSimian software architecture. Each light-gray colored block represents a separate software
module/process and each arrow indicates the flow of data between each module. Solid, dashed and dotted
lines represent TCP, UDP and shared-memory communications, respectively. Each dark-gray colored block
represent which machine these processes run. The block number corresponds to a section in this paper.

3.1 Software Architecture

The software of RoboSimian, like other JPL autonomous systems, is model-based and data driven. The
software consists of multiple processes running simultaneously across two computers inside RoboSimian
as well as one remote operator machine. The two RoboSimian computers commmunicate over a Gigabit
Ethernet link. Each RoboSimian computer, the high-brain and low-brain machines, runs 12.04 Ubuntu LTS
on an Intel Quad-Core i7 with 16GB of memory. The low-brain machine runs a low-latency (soft real-time)
kernel and the EtherLab R© open-source real-time kernel module, which runs low level processes such as limb
and control processes. The high-brain machine is responsible for higher level processes not concerned with
real-time execution but rather higher throughput. Table 2 describes the processes and which RoboSimian
machine hosts that process.

Process Computer Description

launch-server remote Starts/Stops individual processes. Initializes limbs.

remote-server remote Remote robot operation and interface to processes on robot.

cam-server high-brain Captures imagery. Computes stereo, visual odometry and pose.

prcp-server high-brain Produces manipulation and walking maps from multiple stereo cameras.

plan-server high-brain Generalized mobility and manipulation planner.

ctrl-server low-brain Communicates with the limbs, executes behaviors and motion specifications.

limb-server(1-4 and dd1) low-brain Responsible for low-level motion commands and monitors limb health.

Table 2: Description and location of the processes running on RoboSimian computers used for the DRC.

Processes communicate with each other via shared-memory and/or inter-process communication (IPC) either
through TCP or UDP. With IPC communication, each module subscribes to other modules’ messages, which
are sent asynchronously. Messages and data that can be sent as a constant stream are sent via UDP while
one-off messages or messages requiring receipt confirmation are sent via TCP. Data products that are both
large in size and sent as a stream are sent via shared-memory. Imagery and stereo data are sent via shared-
memory.

The modules consist of the following and are described in further detail in the following sections. The



mechanics modeling (model) module provides the infrastructure to create, modify, and query a model
of the world and robot, and is used in almost all of RoboSimian’s modules. The camera (cam) module
acquires imagery from the stereo cameras, computes stereo range images, and performs visual odometry.
The perception (prcp) modules takes the image data and produces map and scene information. The plan

module produces feasible mobility and manipulation plans. The control (ctrl) module executes the generated
plans and behaviors by commanding the limbs through the limb modules. Lastly, the remote module is
the remote user-interace that views robot data and commands the robot. Figure 7 graphically illustrates the
processes and where they run, as well as the data they share and how they share it.

3.2 Mechanics Modeling

The modeling modules (also known as the “model manager”) maintains the kinematic, geometric, and other
physical properties of the robot, objects, and environment. The model data structure allows for fast (constant
time) insertion, removal, and querying of simple (open chain, tree topology) kinematic models made up of
physical bodies (links) and virtual joints. The models are structured so that individual properties of a body
can be passed between different software modules, allowing one module to update certain aspects of the
model and then communicate only this information to another module, which can then update its model.
Using the model data structure and current state of the system, generic functions can be easily formed to
compute forward kinematics, Jacobians, center-of-mass, and collisions. The model can also be drawn with
OpenGL for visualization in operator interfaces or for debugging algorithms.

For collision detection, bodies can be padded to account for uncertainty, and collisions between any two
bodies can be filtered in or out. Filtering of collisions is important when the robot is expected to make
contact with the environment, an object, or itself. The robot is modeled using primitive shapes, such as
boxes and cylinders, to keep collision detection very fast. Objects, such as a tool that the robot might use,
are also modeled using primitive shapes, and can be attached to the robot end-effector to allow the system to
account for the object’s mass and geometry. Similarly, the environment is segmented into oriented bounding
boxes, each of which are added to the model.

Specialized algorithms are used for closed form inverse kinematics of the RoboSimian limb, with multiple
approaches for redundancy resolution. The most common approach is to search over a free joint and select
the solution that minimizes some cost function. Because of RoboSimian’s limb design, we allow one of two
joints to be the free joint, resulting in solutions that are biased to minimizing pitch or roll joint motions. To
reduce computation time, we typically only search a limited angle range from the current joint angle. As a
faster but less flexible alternative for IK, we use an iterative Jacobian-based solver seeded with the limb’s
current joint angles, or a predefined set of joint angles.

3.3 Cameras

The vision system of RoboSimian is built using only low-cost passive cameras. The system is comprised
of only stereo cameras and are used to provide both context from imagery and 3-D data from stereoscopy.
Figure 8 shows the designed layout of the stereo cameras. RoboSimian is designed to provide complete
360◦ situational awareness (SA) by having 10cm baseline stereo cameras all around the robot perimeter for
hazard avoidance (also referred to as hazard cameras or HAZ cameras). 360◦ coverage is provided through
the use of fish-eye lenses. These lenses provide a horizontal field of view (FOV) of 105◦ and a vertical FOV
of 73◦. Each camera in RoboSimian is the same Point Grey Reseach Flea2 color camera with 1024 × 768
pixels which as a result allowed for simple replacement.

The HAZ cameras alone cannot provide the scene context and map resolution that would be needed for
the finer manipulation tasks that RoboSimian would face. To resolve this, two additional pairs are also
added to the front face of the robot, stacked vertically around the front facing HAZ cams. In the walking
stance, one of the additional pairs (10cm baseline) would face straight forward to aid in navigation (NAV).



Belly Cams (BEL)

Navigation Cams (NAV)

Hazard Cams (HAZ)

Manipulation Cams (MAN)

Hazard Side Cams (HAZ)

Figure 8: RoboSimian chassis with the designed stereo camera layout.

In the sit posture, the second additional pair (12cm baseline) would now face straight forward to aid in
manipulation and driving (MAN). Note that whether forward-facing or rear-facing, RoboSimian is designed
to be symmetric, so any additional stereo cameras added to the front end have also been added to the rear
end. In addition to the HAZ, NAV, and MAN camera pairs, RoboSimian is designed to include a set of
stereo cameras mounted in the “belly” (BEL) of the robot that would be primarily used when RoboSimian
is in an upright posture. Note that due to time constraints, at the DRC Trials the three stereo pairs on the
front face of the robot were the only cameras wired and in use.

Each camera’s intrinsics are calibrated using a CAHVORE model (Gennery, 2006), which handles fish-eye
lenses. The extrinsics calibration is broken up into two steps. First, each pair is calibrated with respect to
each other using a dot-patterned calibration board. If the two pairs are able to fully view the calibration
board, the relative pose between the pairs can be resolved. There are cases on RoboSimian in which two
pairs cannot simultaneously view the board (e.g. MAN and HAZ). In this case, an intermediate camera is
used to act as a link between the two pairs to resolve two relative poses. These poses are then chained to
generate a complete relative pose between the camera pairs. The second step in the extrinsics calibration is
to compute the relative pose between a stereo pair and the robot base frame (the frame used for the robot
pose). This step is done by detecting fiducials on RoboSimian’s front limbs and computing the relative pose
between the kinematic fiducial pose in the robot base frame and the detected fiducial pose in the camera
frame. This is discussed more in Section 3.4 and illustrated in Figure 11a.

The cam module is responsible for capturing all cameras simultaneously. Each camera is triggered externally
via a signal generator. Each stereo pair’s acquired imagery is rectified and processed in the stereo processing
pipeline. Stereo is continually processed on all pairs on RoboSimian. Likewise, visual odometry (VO) is
also processed for each pair which provide VO pose updates. However, at any one time, only one camera
pair’s VO updates are used to compute the pose of the robot. However, if there is camera occlusion or if VO
fails, the camera pair used for VO is switched to the next available and valid pair. Stereo data and robot
state are then passed to the perception (prcp) module, described in the following subsection, and are used
to compute environment maps and obstacle bounding boxes. This data pipeline is shown and described in
Figure 7.

3.4 Perception

The perception system is responsible for building, maintaining, and processing 3D maps based on the stereo
range images and the visual odometry poses that are computed by the camera module. The output of



(a) The walk map. (b) The manipulation map. (c) The bounding boxes of map seg-
ments.

Figure 9: Maps built by the perception module with range images obtained from RoboSimian’s stereo
cameras a) walk map b) manipulation map c) Surface normals based map segmentation produces object
bounding boxes.

the perception system is used by the planning module and the operator for collision-free motion planning,
insertion of virtual objects into the map, and visual inspection of the environment as perceived by the robot.

The tasks in the DRC Trials impose a variety of features and minimum requirements that a mapping system
should provide. To this end, the perception module maintains two specialized voxel-based maps. The first
one, the manipulation map, is a high resolution (typical values ranges in between 0.02m − 0.05m), n-tree
3D map structure based on previous work (Bajracharya et al., 2012). This map is used when moving the
end-effector to manipulate an object in the world and is sent to the remote module for visualization upon
request. The second is the walk map, which is a coarse elevation map for walk planning. The walk map is
lower resolution and provides the basis for foot-step planning over rough terrain.

Due to its high resolution and full 3D structure, the manipulation map requires higher memory and processing
compared to the the walk map. The real-time requirements of the system are strained if the manipulation
map is built at large scales. High fidelity 3D structure matters most when manipulating objects. The
manipulation map’s computational footprint is kept bounded by expiring voxels in the map that are not seen
in a set number of images and keeping the map size small enough to cover the workspace of RoboSimian’s
end effectors. In contrast, the walk map is maintained for the entire extent of a run. The 2.5D nature of the
walk map also ensures faster planning algorithms.

RoboSimian’s maps are used for collision free motion planning. Since RoboSimian’s sensor coverage includes
the limbs’ workspace, often 3D points from RoboSimian’s own body appear in the map. This in turn affects
collision checking as the robot appears to be in collision with itself. The solution chosen for this problem is
to simulate a given camera’s acquired image in a 3D virtual world (OpenGL context) tuned to that camera’s
model parameters and solely populated by the robot’s CAD model. With up-to-date joint angles and given
that the actual robot is built similar to the CAD model, this virtual view acts as a mask image to the stereo
images that return range points. Thus using this mask image, 3D points that belong to RoboSimian’s own
body are deleted from acquired range images before they are inserted into the map.

In order to accurately project RoboSimian’s CAD model into a camera frame, the camera coordinate frame
needs to be known with respect to the robot’s coordinate frame. To this end we have used a fiducial detector
from previous work (Hudson et al., 2014). By placing fiducials at known positions on the limbs, the 6-DOF
fiducial pose in the robot frame (robot2fiducial) can be computed by forward kinematics. Further, by
detecting the fiducials in acquired images, their pose in the camera frame (cam2fiducial) can be obtained.
The camera’s position in the robot frame is then obtained by running a least-squares optimization method
that minimizes the Euclidean distance between the two fiducial poses. Figure 10 shows an example of this



(a) (b) (c)

Figure 10: Removing 3D points that belong to RoboSimian’s body is a necessary step for collision checking. a)
Fiducials on the arms and initial estimate of robot frame overlaid with transparency. Blue marks correspond
to the initial estimate of fiducials and pink marks correspond to actual found fiducials in the image. b) 3D
points from RoboSimian’s limbs appear in the map. c) Robot points are cleared from the map.

process.

Another type of processing performed on the 3D maps is surface normals based segmentation of the map into
objects. As a result of segmentation, parts of the map that generally constitute a single entity (such as the
ground plane or a brick that sits on the floor) can be abstracted to a bounding box. These bounding boxes
are then used in collision checking since collision checking solely based on map voxels would be prohibitively
slow, especially when a given configuration needs to be evaluated for collisions during motion planning.

Generating meshes from voxel maps has several benefits. In the context of the DRC where bandwidth is
limited, transmitting each voxel in the map can incur long latencies which wastes precious operator time.
Furthermore, collision checking with the object bounding boxes explained previously can result in boxes
that contain significant amount of free space, unnecessarily limiting the motion capabilities of the robot. In
contrast, a mesh of the map that consists of triangles will preserve the true surface boundaries of objects.
The mesh structure can also be decimated so as to reduce the amount of triangles. This reduction removes
detail that is redundant as in planar parts of the map or unneeded as in parts that are far away from the
robot whose fine structure is not relevant to the task at hand. For mesh generation, the marching cubes
algorithm is performed at each voxel (Lorensen and Cline, 1987). By looking at the surface crossing at
each voxel, this algorithm generates triangles at a per voxel basis, hence being highly parallelizable. Other
meshing algorithms such as dual contouring and adaptive skeleton climbing that have certain advantages

(a) (b) (c)

Figure 11: Maps showing the mesh representation of a manipulation voxel map. a) The fine voxel map used
for manipulation purposes. b) Initial mesh generation from the voxel map. c) The subsequent decimated
mesh of the voxel map.



over marching cubes were not considered because of the computational penalty that comes with them (Ju
et al., 2002) (Poston et al., 1998). The decimation of the mesh is done by determining the cost of removing
each vertex in the mesh and greedily removing those vertices until the resulting mesh has a certain number
of vertices.

3.5 Remote Operation

Figure 12: The remote operator interface for RoboSimian is shown above. A number of widgets were added
to simplify user interaction and optimize speed to achieve certain tasks. The top window is designed to
display the left camera image from each available stereo-camera pair. The main center window is designed
to display a 3D rendering of the world for situational awareness. This window plots the current robot pose,
the intended robot action, and the sensed environment from perception maps. It also serves as a window for
operator interaction to move and manipulate objects and the robot.

The primary purpose of the remote module was to control the robot and model the world. The remote-
interface allowed for configuring the robot “end-state” and requesting a plan solution to move all the limbs
and joints to properly end in that configuration via simple key-presses and mouse clicks. It also allowed
for inserting known models of objects (e.g. valves, ladders, hoses, etc.) into the world manually so that
RoboSimian could interact with objects for manipulation.

The remote interface peripherals to RoboSimian proved essential to controlling the robot and were designed
to be easy to use for an operator with minimal training and limited information / options displayed to avoid
clutter and overload of information. Several different user input devices were considered and implemented for
controlling RoboSimian: the Razer Naga Hex gaming mouse (which afforded additional key presses on the
side of a traditional mouse), the Omega series haptic device from Force Dimensions, 3D monitors, and the
SpaceNavigator by 3D Connexion. It became readily clear in our testing with these devices that aside from
the traditional mouse and keyboard, any additional non-native computer peripheral required a significant
amount of tuning at the driver level and user practice to become quick and effective. Consequently, a
simpler approach of a color-coded keyboard and mouse with user-defined hotkeys was decided upon. The



graphical user-interface itself (shown in Figure 12) was written with the Qt library for widgets (buttons,
sliders, checkboxes, etc.) and OpenGL extensions for plotting of 3D data and stereo-camera images.

(a) (b) (c)

Figure 13: (a) A gray trail of hand locations offers the operator a preliminary preview of the action the
robot will take. (b) A successful motion plan is shown in green, with the previewed robot motion shown in
transparent blue. (c) RoboSimian is shown completing the valve turn during the DRC Trials.

Due to bandwidth limitations imposed by the competition rules and guidelines, real-time teleoperation of the
robot was not possible. As such, semi-autonomous behaviors were developed that allowed the user to specify
any chained sequence of behaviors to follow. Figure 13a shows one such sequence that was used for the valve
task. It consists of a “grasp” behavior to grasp the valve, followed by a large “rotate” behavior to rotate
the valve a specified amount about the rotation axis, and finally a “release” behavior to open the hand.
If a collision-free plan existed to execute the entire sequence, RoboSimian would execute the motion from
the beginning behavior to the end. Complicated sequences of behaviors were eventually scripted into single
actions that could be called by the operator with a single button press (e.g. “rotate-valve”, “insert-hose”,
“push-open-door”), depending on the task.

Note that since the plan module was run on the robot high-brain computing stack and not the same machine
as the remote module, only plan “previews” were sent back to the user to inspect and verify the intended
plan motion. Only once the user verified a given “preview” plan would the robot then proceed to execute the
entire plan. Figure 13b shows the current robot pose in gray and the previewed robot motion in transparent
blue. Figure 13c is a live image taken during the actual competition of RoboSimian executing the valve turn.

To establish a sense of scene-understanding and situational awareness, the 3D voxel map used in the per-
ception process along with the stereo images can be sent to the remote module interface. To optimize the
amount of data sent over the limited bandwidth, only voxel deltas are sent when delivering map data and
compressed images are sent when delivering imagery. Figure 12 shows the situational awareness provided by
the voxel map representation of the world along with the left-stereo camera images from the available stereo
camera pairs. Additionally, because the objects with which we intend to interact with are well known and
modeled, a graphical object model is overlaid in the stereo image (top left image of Figure 12). This feature
combined with the 3D voxel map afford the user the capability to accurately fit objects into the world before
interacting with them.

3.6 Planning

Planning of behaviors was performed onboard the robot using a combination of a mobile manipulation motion
planner and a behavior planner. Given a paramterized behavior, such as grasp an object, and the world
state from perception data, the behavior planner determines the goal state for the robots body and limb
end-effectors. The motion planner is then used to determine the motions of the limbs to maintain stability
and achieve the desired body and end-effector poses.



3.6.1 Mobile Manipulation Motion Planning

RoboSimian uses a unified mobile manipulation motion planner to generate all the motions that it executes.
The planner ensures that the robot stays statically stable at all times, and that all motions are kinematically
feasible, kinodynamically smooth, and collision free (except when contact is expected). Motions are contin-
uously replanned to account for sensing or execution uncertainty. Planning time scales with the complexity
of the problem, but typical plans are generated in tens of milliseconds.

With four 7-DOF limbs, four 3-fingered hands, and its differential drive wheels, RoboSimian is an extremely
capable and flexible mechanism. However, because of the number of degrees of freedom, achieving a desired
motion by manually moving the actuators is difficult and dangerous. Furthermore, manually coding efficient
and safe motions, even for relatively simple sequences such as statically stable walking, is difficult due to the
amount of coordination required and extremely flexible, but sometimes non-intuitive kinematic configuration
of the robot. Consequently, to keep the robot safe and stable, and to exploit the robot’s capabilities, we
require that all motions be generated by a motion planner.

In order to exploit RoboSimian’s ability to walk, climb, sit, manipulate, roll, and smoothly transition between
behaviors, we developed a single, unified mobile manipulation planner capable of planning all motions. In
parallel, we also developed specialized planners that were optimized for certain behaviors, such as walking
and driving. While these planners could perform specialized tasks better, transitioning between the planners
was a non-trivial integration problem. Ultimately, due to severe time and resource constraints, we did not
use the specialized planners for any tasks.

We achieve generality and speed by decomposing the mobile manipulation planning problem into a combi-
nation of open-chain and closed-chain motion planning problems. The open-chain planner plans the motions
of an unconstrained serial manipulator system in joint space. The closed-chain planner plans the motion of
a parallel manipulator system in Cartesian space of the manipulator base frame. For RoboSimian, this can
typically be thought of as moving a limb end-effector, or moving the body while keeping the robot’s points of
contact stationary. In combination, the two planners can perform almost any task, including walking, climb-
ing, transitioning to sitting, adjusting the body posture, single-limb manipulation, dual-arm manipulation,
and driving.

The open-chain planner is simply an RRT-Connect planner (Kuffner and LaValle, 2000) with greedy path
smoothing (Hudson et al., 2014). It can be used on any number of degrees-of-freedom of a serial manipulator,
but we typically only use it for a single 7-DOF limb, attached at the chassis shoulder. This planner assumes
the end state is specified as joint angles; because there are typically redundancies in the manipulator, the
goal angles are chosen by a behavior planner, which optimizes the use of the redundant degrees-of-freedom
when perfoming the limb inverse kinematics (see Section 3.2).

The closed-chain planner is implemented by simply interpolating the base frame from its current pose to
the goal pose, with the possibility of a single randomly selected intermediate pose. During each step of
interpolation, the joint angles are computed from the limb IK for limbs in contact. The intermediate pose
is only used if the initial motion is not feasible, and is limited to only several iterations of random sampling.
The search could be implemented as an RRT, but we found that it was not necessary, as the intermediate
poses were very rarely necessary.

Due to the planner decomposition, the natural way to specify tasks is by specifying a desired body pose
(position and orientation) and the desired limb end-effector poses. Given these inputs, a high level planner
searches for a global plan using the two base planners to achieve the desired end state. A simple finite-state-
machine (FSM) is used to transition between the planners and some basic behaviors. The high level global
planner is a brute force search over body and limb motions to achieve the goal. For example, for walking, the
high level planner tries to achieve the desired body pose and end-effector poses by moving the end-effectors
in a fixed order, moving the body to remain statically stable on the remaining limbs or points of contact.
If the goal cannot be achieved, it then computes an intermediate goal, and tries to achieve it in the same



way. If no global plan can be found with the limb order being used, it uses a new limb order. In practice,
we use seven limb orders, which are selected by regression testing all possible limb orderings in simulation,
and choosing the ones that most commonly lead to a feasible solution.

For each high level command provided, the planner first computes a global plan for the entire motion sequence
to ensure it is feasible. However, when the system actually starts executing the sequence, each motion is
replanned before it is executed to account for inaccuracies in execution. For computation efficiency, only the
single next motion is planned, rather than replanning the entire sequence to the goal. This assumes that
there are no large deviations during execution, which is reasonable since the system is designed to fault and
stop if there is a large unexpected deviation. The replanning architecture also allows the planner to react to
unexpected end-effector poses. If the motion hits the terrain early or late, the planner reacts by adjusting
the body posture during the next move. In general, the planner tries to keep the body roll and pitch aligned
to the average pitch and roll of the end-effectors. This naturally makes the robot climb up steep objects,
such as a wall or ladder.

(a) (b)

(c) (d)

Figure 14: (a) A visualization of the planner performing a limb motion for taking a step; the robot is shown
with the representation used for collision checking (made up of primitive shapes) and the padding around
those shapes; the robot in gray is the current planned state of the robot, and the transparent green is the
starting state; the blue lines show the polygon of support; the blue sphere shows the center of the polygon
of support; the red line shows the robot’s planned center of mass projected onto the polygon of support; the
green line shows planned limb wrist trajectory. (b) A plan for climbing a ladder, with holds automatically
generated from a simple model of the ladder; the small green lines show the normal for possible grasp or step
locations. (c) and (d) A plan for transitioning from an upright posture to a sitting posture; (c) shows the
four limb motion required to transition (but the limbs wrists will stay stationary, and the body will move),
and (d) shows the plan for placing the caster wheels on the ground in front of the robot.

3.6.2 Behavior Planning

In many cases, generating the task specification (the body pose and limb end-effector poses) for the motion
planner is non-trivial. For example, when turning a valve, the robot needs to know where to grasp the valve
so that it can also perform the turning motion. For walking, the robot needs to know where it can or cannot



step, while still allowing the body to move to balance for the next step. When climbing, the robot needs
to know what it can grasp, step on, or support against. To generate the motion specifications, we use a
behavior planner.

The input to the behavior planner is a behavior specification, which consists of a behavior type, and the
input parameters specific to that behavior. For example, a “grasp-and-rotate” behavior is specified by a
position and orientation in which to grasp an object, an axis of rotation, and the amount to rotate. This can
then be used for tasks such as opening a door handle, opening the door, or turning a valve. The output of
the behavior planner is a ranked set of fully specified behaviors, which include the desired body pose of the
robot, the joint angles of the limbs required for the behavior, and other parameters, such as the expected
force on the end-effector, and what controllers and checks to run (e.g. force control in the end-effector z-axis
during a certain motion).

Behavior planning is broken up into manipulation behaviors and mobility behaviors. For manipulation
planning, the goal is to determine the best end-effector pose and starting joint angles of a limb to perform
a certain behavior. For grasping, the operator can specify a desired end-effector orientation, an orientation
with mirroring along an axis, or a palm normal. The behavior planner then searches over the possible
orientations, discretizing the search when necessary (e.g. over yaw around the palm normal). The behavior
planner can optionally also perturb the pose if no solutions are found at the specified poses.

For each pose, the behavior planner first determines if there is an IK solution for the desired pose. Then
for each IK solution for the pose, it forward propagates the expected behavior motion and verifies that a
continuous IK solution (i.e. no configuration changes) exists for the entire behavior. The cost of each solution
is the length of completion, or for motions that complete enough of the behavior, the cumulative joint angle
distance from the current joint angles to the solution. The motion planner is then called to test feasibility of
achieving the start position of the behavior, in order of lowest cost solutions, exiting after the first feasible
solution.

For mobility behaviors, such as walking, climbing, or shifting the body, the behavior planner is responsible
for producing a set of body and end-effector poses, and a IK reference posture, which is then fed to the
motion planner. While a complete system would use perception data to autonomously compute a path of
body poses through the terrain, due to time constraints we required the operator to navigate the terrain by
providing a delta goal position and orientation to the robot. Typically when walking, these delta motions
were 1-2 meters long. Using the desired goal pose, the behavior planner then interpolated from the current
robot pose to the desired pose, placing nominal limb holds for each limb in succession over the body motions.
The effective step length could be regulated by changing the body delta (in position and orientation) used
to place a new limb hold. In practice, the planner adaptively selected the step length by starting with the
longest distance and then reducing it if no solutions were found by the motion planner.

When walking or climbing, the behavior planner first selects a nominal limb hold based on the expected
body pose. This is independent of any terrain knowledge, and so can be used for completely blind, reactive
motions. However, when terrain knowledge is available, either generated from vision data, or supplied by
a user model, the planner automatically selects holds by searching around the nominal hold. When a grid
map is available, the planner searches a local neighborhood in the map for feasible holds, and returns the
best hold. When a model is provided by the operator, or when holds are specified directly by the operator,
holds are indexed into a KD-tree and nearest neighbor search is used to find feasible holds within a fixed
distance of the nominal hold. Holds are classified as weight holds, which are flat z-normal weight bearing
holds (e.g. the ground), balance holds, which are flat but not z-normal weight bearing (e.g. a wall), or grasp
holds, which can be grasped (e.g. a railing).

The IK reference posture biases the motion planner to choose solutions that minimize the distance to a set
of reference joint angles. This allows the robot to “walk” in different ways for the same set of limb holds.
For example, with a reference posture of the limbs pointing down under the chassis, and a free pitch joint,
the robot will tend to walk using its pitch joints, similar to a horse or dog. But for a reference posture with



the limbs pointing out from the chassis, and a free yaw joint, the robot will tend to walk using its yaw joints,
similar to a spider. The behavior planner can change the reference posture at any time, and the planner
will naturally migrate to that solution as it moves. This is useful for transitioning between a low sprawled
walk, which is more stable and kinematically feasible on very rough terrain, and walking tall, narrow, and
upright, which is useful for walking through narrow openings or up stairs.

3.7 Control & Behaviors

The control and behavior process is the on-board robotic motion execution system. Behaviors are represented
by a asynchronous hierarchical state machine, which defines task frame control specifications and monitors
execution of the synchronous fixed-rate control loop. The control loop is responsible for achieving specified
task frame goals, and inverting the desired motions into joint space trajectories which are executed on each
limb’s distributed motor controllers.

3.7.1 Behaviors and Sequences

The asynchronous behavior system defines desired task frame motions and feedback set-points for each limb.
The behavior state machine translates high level requirements (such as moving a limb into contact) into
motions (task frame positions and motions) and set-points (desired end effector force). The behavior system
is executed as a finite state machine, for instance first moving along a velocity vector, then detecting contact,
and then achieving a desired force set-point. Each behavior also provides abstraction for the planning engine,
translating the state machine into an efficiently searched kinematic representation for verification of reach-
ability, balance, and force limit checking.

The behavior state machine architecture was previously developed in the DARPA Autonomous Manipulation
Software (ARM-S) Program (Hudson et al., 2014). The following definitions and concepts follow from this
program.

An action is defined as a single finite state of a behavior. An action defines the current control goals,
for instance moving the end effector around a valve axis, and tracking a desired torque about the axis.
Specifications are not required to be in orthogonal axes, and may compete for desired end effector motions.
An action also has a set of end conditions that dictate when an action is complete or when an error has
occurred. An action will monitor both extrinsic signals, such as increases in valve rotation torque, indicating
reaching the end of a valve handle’s travel, or internal fault state, such as reaching kinematic constraints.

A behavior is implicitly a hybrid automaton, where the control goals define the continuous motion of the
system, and the guarded transitions between states are defined by the end-conditions and transitions of
the finite state machine. A behavior encapsulates the idea of automatic fault recovery: the behavior state
machine is programmed to differentiate between conditions that are recoverable, with a predefined recovery
sequence, or conditions that require halting the execution sequence.

To exploit operator involvement in the system, and to simplify the development and testing of behaviors,
RoboSimian utilized the sending of behavior sequences to the robot. A behavior sequence is simply a
sequential script of behaviors, with transitions between behaviors constrained to the sequence, or exiting on
a single behavior failure. The on-board execution system is agnostic to the use of a behavior compared to a
behavior sequence; for instance, a complicated grasp-rotate-release behavior could be created, which would
execute exactly as a sequence of a grasp behavior, a rotate behavior, and a release behavior sequence. The
use of sophisticated hierarchical behaviors was important in the DARPA ARM-S program, where completely
autonomous execution was required. Behaviors can have well defined and logical transitions between states
to facilitate automated fault recovery. However, given the ability and desire to have a human user monitor
the robotic execution in the DRC, it was safer and easier to test a set of simple behaviors with simple fault
conditions, and to rely on the operator to create and reorganize a behavior sequence. This also has the



advantage that the human can step though each behavior or send novel sequences to the robot during trials
to cope with unexpected situations, but does lack the automatic fault recovery present in DARPA ARM-S.

The most complicated behavior tested on RoboSimian was an “open-door” sequence. This sequence was
composed of a grasp, rotate (handle), rotate (door), release behaviors, all completed while in a walking
stance. This sequence allowed automatic determination of where to place the robotic body to open the
door, however this was not utilized in the DRC Trials. Instead, RoboSimian opened the door while on
it’s differential drive, using a grasp, rotate (handle) sequence, and then having the user manually put the
robot’s free leg (limbs) into the open door gap, and rotating on the differential drive. Utilizing behaviors
sequences allowed for verification of many subtle occurrences due to the limited kinematic range of the limb
manipulators. When turning the valve, a grasp-rotate-release sequence was scripted, and used by the planner
to search for an admissible starting grasp location. The behavior-planning system was able to down select
initial grasp poses as the required release motion from the valve would cause intersection with the robot.

3.7.2 Control

Actions are translated into Generalized Compliant Motion (GCM) controllers (Backes, 1994) further de-
veloped under the DARPA ARM-S program (Hudson et al., 2014). GCM translates competing control
objectives into end effector positions trajectories or velocity set-points by representing control goals as linear
second order systems in the task frame and superimposing them. GCM has the significant advantage of mak-
ing specifying behaviors simple, allowing arbitrary frames and competing control objectives to be specified,
with relative importance being represented by the stiffness of the representative second order system. In
both DARPA ARM-S and the DRC, a small set of task frame control objectives: force, Cartesian trajectory
tracking, visual servoing (minimizing visual tracking goal errors), dithering (random searching motions, such
as wiggling a key), kinematic constraint satisfaction were sufficient to execute all tasks.

The GCM fusion of control objectives in the task frame produces a continuous desired end-effector motion.
This is then translated into desired joint space motions through numerical inverse kinematics. GCM con-
trollers and numerical IK were run at 250 Hz in a soft real time loop to produce desired joint position and
velocity set-points. A separate process for each limb interpolated these set-points at 1kHz and sent position
goals to each motor controller over EtherCAT. The distributed Elmo motor controllers track joint positions
at 10kHz in hard-real time.

The 10kHz PID controllers produced high bandwidth joint tracking, and the 100:1 motor gear ratios create a
stiff and precise limb, which requires all task frame controllers to produce smooth joint trajectories. No feed-
forward control or intrinsic limb compliance were utilized to achieve control objectives. Both of these later
approaches have been shown to be advantageous (Hudson et al., 2014), (Pastor et al., 2011) (Kalakrishnan
et al., 2013) in the ARM-S program, but the high control bandwidth in RoboSimian enabled achieving
adequate task frame compliance using sensed force feedback.

This end effector compliance was required for robust walking over uncertain terrain. By simply specifying
desired contact forces for behaviors, executed every step touchdown, the open loop planners were able to
walk blindly over the entire DRC walking course.

3.8 Ongoing Mobility Research

Traditionally, kinematic redundancies have been avoided in robot leg designs because of their inherent in-
creased mechanical and planning complexity without clear benefits for walking. In contrast, redundant
kinematics are favored for manipulation because of increased dexterity. Because RoboSimian uses the same
kinematically redundant limbs for mobility and manipulation, effective strategies for choosing inverse kine-
matics (IK) solutions and planning walking motions are key to improving RoboSimian’s ability to traverse
rough terrain.



Ongoing research activities toward this goal have focused on the use of an IK lookup table designed to give
unique solutions with smooth joint trajectories for any end-effector trajectory in the (potentially truncated)
workspace. This IK table could be used on all limbs at all times to create effectively non-redundant limbs,
but at the cost of a great deal of capability. Instead, we use the IK table only at limited times, and at other
times allow for arbitrary motions in joint space on certain limbs.

Figure 15: Animation stills showing RoboSimian stepping over an obstacle. The blue limb is the dominant
limb (which determines the body pose), the green limb is the swing limb, and the grey limbs are dependent.
a) The step motion begins from a small standoff distance above the foothold. b) The swing leg clears the
obstacle. c) The step motion ends a small standoff distance above the destination foothold. d) A small
cartesian move is used to make contact with the foothold.

We use the IK table to determine the positions of all four limbs at the beginning and end of a step or
body shift motion. Uniquely determining the end pose allows the use of planning algorithms such as RRT
Connect, and the proper design of the IK table ensures that the choice is appropriate. During these motions,
one limb (known as the dominant limb) is allowed to move arbitrarily in jointspace. The forward kinematics
of the dominant limb determines the position of the body relative to the world. When there is a swing limb,
it is also allowed to move arbitrarily in joint space during the motion (the dominant and swing limbs can
be considered to be one serial mechanism). Achieving kinematic closure of the remaining non-dominant and
non-swing (dependent) limbs is accomplished by using IK table solutions for those limbs between the body
pose (which is determined by the dominant limb) and the footholds for the dependent limbs. Figure 15
shows an example of this process.

It is our hope (supported by tentative simulation and experimental results to date) that this approach
will substantially improve RoboSimian’s mobility performance in terms of speed and tolerance for difficult
terrain.

4 Field Testing

The RoboSimian robot has been tested on a variety of mobile manipulation tasks in lab environments,
outdoor in controlled but unstructured tests, and as part of the 2014 DARPA Robotics Challenge (DRC)
Trials. In order to understand the limitiations of the system, when preparing for the DRC Trials, we tested
the robot in conditions, terrains, and tasks that were harder and less structured than the tasks at the Trials.



4.1 Trial Results

The DRC challenge was broken into 8 tasks that focused on mobility and manipulation. The tasks were
broken up over two days and each task had a time limit of 30 minutes. Human interventions were allowed so
that the task and robot could be reset, but with each intervention there was a 5 minute penalty. Each task
consisted of 3 subtasks for 1 point each. If the task was completed succesfully without any interventions,
a bonus point was awarded for a total of 4 points. Each robot was required by DARPA to be tethered for
communications and power. In addition, each robot had the option to be belayed for safety; RoboSimian
was the only robot to not use a belay during the competition.

Two of the tasks focused primarily on mobility. These tasks were the Ladder and Terrain task. The Ladder
task required the robot to climb an industrial step ladder which was 8 feet tall and could either be at a 60◦

or 75◦ angle with or without hand rails. Stepping on the first rung was 1 point, the fourth rung was 1 point
and reaching the clearing was another point. The Terrain task was a 40 feet obstacle course primarily made
of cinder blocks. It was broken up into three distinct sections of increasing difficulty each worth 1 point. The
Vehicle task consisted of 2 subtasks. The first subtask required the robot to drive a Polaris Ranger XP900
through a 150 feet course worth 1 point. The second subtask required the robot to dismount the vehicle and
was worth 2 points. The robot started in the vehicle with the vehicle running and in gear. To dismount,
placing the vehicle in park was not required.

Manipulation tasks were Valve, Hose, Door, Wall, Debris. The Valve task consisted of turning 3 valves
(small and large circular valves and a handle valve) that were placed side by side on a wall. Closing each
valve, which required a full turn for the circular valves or a 90◦ turn for the handle valve, was worth 1 point
each. The Hose task consisted of 3 subtasks each worth 1 point. The first subtask was to grasp the hose
from a reel and carry it 4 feet, the second was to place the hose in contact with a wye and the third subtask
required the hose to be screwed onto the wye. The Door task consisted of opening three doors (a push door,
a pull door and a weighted pull door) in succession worth 1 point each. The Wall task consisted of grasping
a cutting tool and cutting a triangle in a wall composed of drywall. Each complete cut of each side of the
triangle was worth 1 point with the last point requiring that the triangular piece be removed. The Debris
task consisted of removing wood pieces from an entrance of a doorway. Removal of 10 pieces of wood from
the pathway was worth 2 points. Once the pathway is clear, the robot was required to cross the doorway for
the final point.

The DRC Trials took place over two days on December 19th and 20th, 2013. RoboSimian’s schedule for
the first day consisted of the Terrain, Ladder and Driving tasks. RoboSimian attempted the Terrain task
first and was able to achieve 2 points in the 30 minutes with 0 interventions. The first point was achieved
relatively quickly in the run. The first cinder block hill obstacle presented the most difficulty which caused
several hyper-extensions of RoboSimian’s limbs. These hyper-extensions often prevent RoboSimian from
taking another step. Undoing these extensions are time consuming and as a result, forced JPL to reach the
maximum time limit. Given the short project timeline and preparation for the DRC trials, the Ladder and
Driving tasks presented significant safety risk for the robot. JPL chose not to attempt those tasks primarily
insure the robot for the second day of tasks, consequently scoring 0 points for those two tasks.

Successes in the second day represented the bulk of RoboSimian’s points. RoboSimian used the upright
driving posture as shown in Figure 1b in the following manipulation tasks. The valve task was the first
event on the second day. RoboSimian scored 4 points on this task with 0 interventions within 29 minutes.
One difficulty that manifested during this task was that RoboSimian falsely stopped during the first two
valve attempts. It was only on the second valve did the operators realize that the valve model that they
were placing into the virtual world, from which the rotate behaviors are generated, did not precisely match
the visual data of the valve. The valve model was misaligned causing the rotate behavior to rotate around
an incorrect axis. This misalignment triggered RoboSimian’s force safety system forcing the operator to
continue re-attempting the valve turn. This delay caused RoboSimian to only complete the valve task in the
last minute.



Team Score (pts)

Schaft 27

IHMC 20

Tartan Rescue 18

MIT 16

RoboSimian 14

Traclabs 11

WRECS 11

Trooper 9

(a) Ranking by points of top 8 teams
that competed in the Trials.

Task Score (pts)

Obstacles 2

Ladder 0

Driving 0

Valves 4

Debris 4

Door 2

Hose 2

Wall 0

Total 14

(b) RoboSimian’s points by task.

Figure 16: DARPA Robotics Challenge Results - breakdown by team and by task

The hose challenge was the next task to complete. RoboSimian achieved only 2 points in the 30 minutes
with 0 interventions. This task was one of the least tested tasks in our development. RoboSimian was able
to successfully grasp the hose hanging from the reel and carry it past the yellow line for the first point.
RoboSimian was able to position itself in front of the wye and place the hose directly on the wye inlet. Due
to the project timeline, JPL did not have a behavior in place to rotate the hose onto the wye. As a result,
the operators had to teleoperate the robot by joint moves in an effort to secure the hose onto the wye. It was
difficult to view the wye and the hose through the cameras as the hand obstructed the view of the of wye.
RoboSimian operators let go of the hose thinking it was securely fastened on the wye. The hose dropped to
the ground and RoboSimian reached the maximum time limit.

JPL approached the debris task differently than the other teams. RoboSimian managed to remove three
pieces of wood manually from the initial setup and placed them at the side of the doorway. In placing the
pieces at the side, one piece unfortunately did not fully clear the doorway. RoboSimian reattempted to clear
that piece of wood and succeeded. In order to pass through the doorway, RoboSimian had to remove the
truss. RoboSimian did so by grasping a member of the truss while driving and turning backwards so that
the truss was no longer in the pathway to the door. As the truss was removed so were additional pieces
of wood. The remaining pieces of wood on the ground were then grasped and/or dragged forward past the
threshold of the door. RoboSimian managed to complete the task with 4 points and 0 interventions.

The door task proved to be an interesting challenge. The first door (the push door) provided RoboSimian
with the most difficulty. The door handles were lever style and required a full 90◦ of rotation. As a result,
this caused a finger in our hand to break. While our behaviors are parametrized and use force control, our
handle placement in the virtual world was slightly off causing RoboSimian to not rotate the full 90◦. We
attempted to further rotate, but with the door handle still misaligned, which caused the finger tendon that
had the most load to snap. From our imagery, the operators thought the hand was non-functional. Knowing
that we only had one working hand left and two doors left to open, the operators used the end effector
to rotate the handle by simply contacting the door and sliding the end effector down. As the end effector
maintained contact with the door, the door naturally opened when the door lock tongue cleared.

On the next door (a pull door), RoboSimian was able to open it just enough to put its lower limb in the
opening to pry the door fully open. While the weather, especially the wind, proved fatal to other teams, the
wind aided us by opening the door even more so that we could use our lower limbs. RoboSimian was able
to only open 2 doors within the 30 minutes and with 0 interventions.

The wall task was immediately after the door task. As a result, the team had only 15 minutes to repair the



broken hand and to verify that the other hand was functioning normally. As a result, when we attempted to
pickup the tool for cutting, our grasp was less than solid and unfortunately we dropped the tool. Our team
took its only intervention to replace the tool and to investigate the finger. One finger needed a slight repair
and RoboSimian continued the task. RoboSimian was able to grasp the tool. The tool was turned on by
using an appendage on RoboSimian that made contact with the trigger button on the tool. The operators
made end-effector Cartesian moves so that the appendage made contact with this button. The operators
were able to know when the tool was turned by analyzing the power spectral density of the FFT of the
force-torque sensor readings. RoboSimian was then able to place the tip of the cutting tool on the top-most
corner of the triangle. As it tried to insert the drill into the wall, the tool slipped out of RoboSimian’s hand.
Time had elapsed and RoboSimian did not receive any points on the wall task.

4.2 Other Results

We have used RoboSimian’s unified mobile manipulation planner to walk in very different postures, over
flat and rough terrain, climb up on a wall, walk while dragging an object, balance while manipulating,
manipulate a variety of objects, and switch from standing to sitting and back to standing.

Figure 17: RoboSimian attempting to climb onto a wall.

The planner computes motions for manipulation behavior sequences, such as turning a valve or opening a
door, automatically shifting the body to balance when necessary. The robot can walk in a narrow upright
posture, like a horse, or a low sprawled posture, like a spider, or any other posture, by simply changing the
reference posture. It can walk blindly over rough terrain when necessary, and will automatically adjust its
posture and react to unexpected obstacles. It can climb up a wall by simply changing the desired body pose
to be upright, shown in Figure 17. The planner was used with manual hold selection to demonstrate climbing
up a ladder, but was not fielded due to time constraints. The flexibility of the planner allowed adding useful
capabilities, such as taking a step forward with a back foot to create a tripod stance when lifting a front
limb for manipulation, or not lifting one limb when walking while holding an object so it would be dragged
on the ground.

Transitioning from a standing posture to a sitting posture is a sequence of desired body poses and limb
positions. First, the behavior planner is used to find a body posture that is pitched up with the wheels
in contact with the groundplane. Then, it computes the lower limb positions so that the caster wheels
are in contact with the groundplane in front of the robot. And finally, the upper limbs are raised into a
user specified posture. Transitioning to standing is the opposite procedure, with the front limbs placed into
contact with the ground plane in front of the robot, the back limbs placed in contact behind the robot,
and a then the body placed parallel to the groundplane with an adjustable height. Because each motion is



automatically computed and collision free motion planning used for each motion, the sequence is robust to
different starting conditions, terrains, and objects in the environment.

4.3 Discussion & Lessons Learned

The trials allowed the teams to experiment with different approaches both in hardware and in software. The
JPL RoboSimian team learned many important lessons for fielding a fully functioning, built-from-scratch
robot.

Other than the inevitable list of features that would have been useful but for which there was not sufficient
time for implementation, there were a few elements of the RoboSimian hardware design that did not function
as expected. We expect to make hardware improvements in the hand design. In particular, the hand, while
capable of relatively high ultimate grasp strength, was challenged by any applied moments. This weakness
was particularly evident in the wall cutting task, in which the side loads during cutting quickly worked the
tool out of the hand’s grasp. Another area of interest is the layout of the many stereo camera pairs. While
the protected location of the cameras makes for a physically robust system, the limbs tended to obscure the
cameras while performing manipulation operations. The solution to this issue may come from the integration
of the remaining stereo pairs (only 3 pairs were integrated out of the possible 10 pairs), but we may also
work to reintroduce a camera system into the hand design.

In terms of mobility, four-legged motion planning and mobility was not a trivial task, especially with the
number of degrees of freedom of RoboSimian. While our approach was to remain statically stable, the
complexity of walking still proved to be initially difficult. There were considerable intricacies to enable
walking robustly for the terrain course of the DRC. Walking faster and planning to avoid configurations
which prevent RoboSimian from taking another step are two tasks that still require more work and effort.

While we always kept three limbs in contact with the ground in order to be statically stable, this approach
introduced the problem of walking while manipulating or grasping an object in our fourth hand. The original
intention was to either walk bipedally or dynamically with three limbs. Given the amount of time to the
Trials, those two approaches were not explored fully. Two other approaches were also considered that involved
being statically stable with four limbs. The first was to walk on the manipulating limb but on the second
to last link (on a elbow cap) as opposed to the end-effector. The other approach was to simply walk on the
knuckles of the fingers. Unfortunately the hand design was not robust enough to support such actions. The
final solution for the Trials ended up being wheeled mobility via the differential drive for mobile manipulation.
In fact from an algorithmic perspective, this solution ended up being the most robust and easiest solution
for mobile manipulation. As a result, RoboSimian started in this upright-wheeled drive configuration for all
manipulation tasks at the Trials . This allowed the team to focus on the manipulation algorithms rather than
on mobility algorithms for manipulating. The switch to the differential drive accelerated the development
of RoboSimian dramatically and allowed us to perform and be competitive at the Trials.

The plan process ran on the high-brain computer of the robot. This was originally decided as the planner was
continually replanning, which required fast access to state data and communication with the ctrl process.
While this was primarily useful for limbed mobility, manipulation plans often did not require replanning.
Due to the communication limits imposed, manipulation plans took time to be sent to the remote station.
In cases when produced plans were not trusted by the operator, additional plans were requested, and the
operation time increased unnecessarily. In the future, we intend to have two instances of the plan process –
one running on the robot and one running on the remote side. This allows for requested plans that require
replanning to be run on the robot and those that do not require replanning to be processes on the remote side.
This is particularly beneficial for behavior and manipulation plans that can be computed quickly reducing
operation time. The plan instance on the robot side could solely be a mobility planner and the remote side
planner could be a manipulation planner.

The RoboSimian software had some notion of objects but it was primarily used for the operators to assign



objects into the virtual world displayed in the remote interface. These objects aided in composing behaviors.
Objects were not part of the autonomy, i.e. the state of objects were not persistent, grasp points were not
selected based on the object, and the object location was not estimated by the autonomy software. In the
next revision, the notion and use of object models will be much more pervasive throughout the autonomy
software similar to our other work (Hudson et al., 2012), (Hudson et al., 2014) and not just used as a remote
operator tool. The use of object models will reduce the operator time and make plans safer by checking
collisions between the world and the object model.

Acknowledgments

The research described in this publication was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, with funding from the DARPA Robotics Challenge Track A program through an
agreement with NASA.

References

Backes, P. G. (1994). Dual-arm supervisory and shared control task description and execution. Robotics and
Autonomous Systems, 12:29–54.

Bajracharya, M., Ma, J., Howard, A., and Matthies, L. (2012). Real-time 3d stereo mapping in complex
dynamic environments. In International Conference on Robotics and Automation - Semantic Mapping,
Perception, and Exploration (SPME) Workshop, 2012, Shanghai, China.

Gennery, D. (2006). Generalized camera calibration including fish-eye lenses. International Journal of
Computer Vision.

Hudson, N., Howard, T., Ma, J., Jain, A., Bajracharya, M., Myint, S., Kuo, C., Matthies, L., Backes,
P., Hebert, P., Fuchs, T., and Burdick, J. (2012). End-to-end dexterous manipulation with deliberate
interactive estimation. In Robotics and Automation (ICRA), 2012 IEEE International Conference on,
pages 2371 –2378.

Hudson, N., Ma, J., Hebert, P., Jain, A., Bajracharya, M., Allen, T., Sharan, R., Horowitz, M., Kuo, C.,
Howard, T., et al. (2014). Model-based autonomous system for performing dexterous, human-level
manipulation tasks. Autonomous Robots, 36(1-2):31–49.

Ju, T., Losasso, F., Schaefer, S., and Warren, J. (2002). Dual contouring of hermite data. ACM Trans.
Graph., 21(3):339–346.

Kalakrishnan, M., Pastor, P., Righetti, L., and Schaal, S. (2013). learning objective functions for manipula-
tion. In ieee international conference on robotics and automation.

Kuffner, J. J. and LaValle, S. M. (2000). Rrt-connect: An efficient approach to single-query path planning.
In Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on, volume 2,
pages 995–1001. IEEE.

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3d surface construction
algorithm. COMPUTER GRAPHICS, 21(4):163–169.

Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., and Schaal, S. (2011). skill learning and task
outcome prediction for manipulation. In IEEE International Conference on Robotics and Automation.

Poston, T., Wong, T.-T., and Heng, P.-A. (1998). Multiresolution isosurface extraction with adaptive skeleton
climbing. Comput. Graph. Forum, 17(3):137–148.


