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Abstract

Mobile systems must adapt their behavior to changing net-
work conditions. To do this, they must accurately estimate
available network capacity. Producing quality estimates is
challenging because network observations are noisy, particu-
larly in mobile, ad hoc networks. Current systems depend on
simple, exponentially-weighted moving average (EWMA)
filters. These filters are either able to detect true changes
quickly or to mask observed noise and transients, but can-
not do both. In this paper, we present four filters designed
to react quickly to persistent changes while tolerating tran-
sient noise. Such filters are agile when possible, but stable
when necessary, adapting their behavior to prevailing condi-
tions. These filters are evaluated in a variety of networking
situations, including persistent and transient change, conges-
tion, and topology changes. We find that one filter, based on
techniques from statistical process control, provides perfor-
mance superior to the other three. Compared to two EWMA
filters, one agile and the other stable, it is able to offer the
agility of the former in four of five scenarios and the stability
of the latter in three of four scenarios.
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1 Introduction

It is widely recognized that adaptation to changing network-
ing conditions is critical to mobility [8, 13]. However, to
adapt to network conditions one must first know what they
are and how they change over time. Specifically, a mobile
node must know the available network capacity that it could
potentially utilize.

This is a difficult problem, since the effective latency and
bandwidth between a mobile host and other nodes is con-
stantly changing. This may be due to ad hoc topology
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changes, vertical handoff across connection alternatives, or
wireless fading and shadowing [14, 23]. These causes are in
addition to the more prosaic routing changes and congestion
endemic to wired networks of even modest scale [16, 22].
Together, these factors conspire to produce frequent changes
in available latency and bandwidth, and induce substantial
noise in individual network observations.

Converting noisy observations into an estimate of avail-
able latency and bandwidth is an instance of the filter-
ing problem. Observations are fed into a filter, which
smoothes them in some way to produce estimates. Typically,
systems employ an exponentially-weighted moving average
(EWMA) filter to this problem. Given a new observation, an
EWMA filter produces a new estimate as a linear combina-
tion of the old estimate plus the new observation, each given
some weight.

Unfortunately, the gain, which determines the propor-
tional weight assigned to the new observation and the old
estimate, is fixed in traditional EWMA filters. When old es-
timates are given more weight, the filter provides good sta-
bility; it resists noise in individual observations. When new
observations are given more weight, the filter provides good
agility; it is able to detect performance changes quickly. Nei-
ther property is desirable at all times. Ideally, one would like
to have a filter that is agile when possible but stable when
necessary, depending on current circumstances. In other
words, filters should be adaptive, just as other components
of the system must be.

This paper describes our experiences designing and eval-
uating filters that trade stability for agility based on the pre-
vailing situation. We have designed several candidate filters
in an attempt to meet this goal. One, called Flip-flop, is a
composition of an agile EWMA filter and a stable one. Flip-
flop selects between them using a technique borrowed from
statistical process control [20, 24, 26]. Two others, Stability
and Error-based, use heuristics to vary the gain of an EWMA
filter continuously, in order to select for agility or stability
based on the behavior of observations and estimates, respec-
tively. Finally, we have applied a variant of the well-known
Kalman filter [9].

We subjected each candidate filter to a variety of network-
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ing scenarios, comparing them to two EWMA filters: one
agile and the other stable. These scenarios include transient
and persistent performance changes, the introduction of con-
gestion, topology changes, and nodes moving in an ad hoc
network. All of the filters produce similar estimates over the
long-term; they provide similar accuracy. They differ only
in the time required to arrive at accurate estimates, and their
resistance to noise in steady state. In other words, they differ
in agility and stability. We find that the Flip-flop filter pro-
vides agility comparable to the agile EWMA filter in four of
the five settings we examined. Likewise, it provided stability
comparably to the stable EWMA filter in three out of four
settings.

2 Related Work

There is a large body of work concerning the estimation of
network performance. However, prior work differs from ours
in two important ways. First, most systems focus on finding
the physical bandwidth of the bottleneck link rather than the
available bandwidth between two end hosts over time. The
bottleneck link bandwidth is that available along the path in
the absence of congestion traffic. While there are applica-
tions that can make use of bottleneck link information, adap-
tive mobile systems are concerned with the bandwidth that is
actually available to them over time.

Second, most of these systems rely on active probing of
the network, injecting measurement traffic in addition to or
instead of passive observation of traffic already present. This
is likely to be unacceptable during times of sharp decreases
in network performance. To the best of our knowledge, our
work is unique in fully examining the problem of estimating
available network performance using only passive observa-
tions.

Several systems attempt to discover available network per-
formance using static-gain EWMA filters. For example, the
round-trip time estimator in TCP uses a stable EWMA fil-
ter [11]. Odyssey, a platform for application-aware adapta-
tion, employs a network estimator using an agile filter [21].
Unfortunately, both of these static filters suffer from their bi-
ases. The RTT estimator in TCP cannot track varying perfor-
mance quickly, resulting in retransmission timeouts (RTOs)
that are too aggressive. To compensate, RTOs are increased
by a factor that accounts for observed variance. Odyssey
suffers from the opposite problem. Occasionally, it is fooled
into tracking transient changes in bandwidth and adapting
too aggressively as a result. Odyssey applications are re-
sponsible for filtering out transient changes.

Keshav’s work on flow control [15] provides much of the
groundwork in the area of active probing. He proposed the
packet pair technique: the use of two closely spaced pack-
ets to elicit bottleneck bandwidth. Keshav discussed the use
of Kalman filters for network estimation, but rejected them

because too little is known about the network state space
to provide an optimal application. Instead, he employed a
fuzzy logic estimator based on the same heuristic used by
our Error-based filter with an added mechanism to resist oc-
casional transient spikes. This mechanism would not im-
prove performance in the presence of congestion-induced
noise, which is endemic to cross-traffic. Keshav’s estimator
was designed for rate-allocation servers that exhibit much
less noise than FCFS routers. Unfortunately, the current net-
working infrastructure consists primarily of FCFS routers, a
domain Keshav’s work explicitly excludes.

Several variations on packet pair improve its ability to gen-
erate estimates of bottleneck link bandwidth. Paxson [22]
presents receiver-based packet pair (RBPP), which takes ob-
servations at the receiver that incorporate timing information
from the sender for more accurate measurements. Lai [17]
developed a further refinement, called receiver-only packet
pair (ROPP). It depends only on timing information taken at
the receiver, but approaches the effectiveness of RBPP. Lai
also incorporates a mechanism called packet windows that
increases the agility of packet-pair schemes, but leaves them
susceptible to noise and transients. Varying the size of packet
windows can bias ROPP for agility or stability, but this size
is chosen statically.

There have been several approaches to estimating network
performance through active probing. For example, Bolot [2]
uses pairs of UDP packets to explore network state, but re-
quires substantial amounts of bandwidth to do so. Downey’s
application of pathchar [7] uses ICMP packets with vary-
ing time-to-live fields, but also suffers from heavy bandwidth
consumption. Carter and Crovella present tools to measure
bottleneck and available bandwidth [6]. These tools rely on
bursts of ICMP packets, sent in several phases, requiring
substantial overhead. They assume that network conditions
do not change during this process, limiting the granularity of
changes that they can detect.

Lai’s subsequent work [18] develops a more sophisticated
network model that, combined with a technique called packet
tailgating, estimates bottleneck link bandwidth of each link
in a path. It generates much less active network traffic and
makes fewer assumptions about router behavior than prior
schemes. He estimates link bandwidth by determining the
minimum delay experienced at each link. We believe that our
Flip-flop filter could be used with this model to determine
available bandwidth instead.

Balakrishnan’s congestion manager [1] allows multiple
conversations between two hosts—including those of pro-
tocols that normally do not provide congestion control—to
effectively share bandwidth. It is based on an underlying
layer that discovers network characteristics using a tradi-
tional, static-gain EWMA filter. We believe that the Flip-
flop filter can be used in this system to improve the agility of
applications without unduly sacrificing stability or accuracy.
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3 Making Observations

We derive estimates of network performance along a path
by observing the behavior of packets on that path. These
observations are made in light of a network model. This sec-
tion describes the model underlying all of our estimators, and
how we use it to obtain individual observations of network
performance.

3.1 Measuring RTT

We represent the end-to-end path between two hosts with a
simple fluid-flow model [19]. In this model, the sequence
of hops from source to sink can be represented as a single
service queue with latency lat and bandwidth bw. A packet’s
delay is simply: delay = lat+ size=bw. The terms lat and
bw are considered to be the effective latency and bandwidth
along a path rather than those of some physical link. As
traffic along the path increases, effective latency increases
and effective bandwidth decreases.

An individual client observes network performance to a
server by sending a request to that host, receiving a response,
and measuring the total elapsed time. We assume that such
observations happen only as a side effect of normal traffic
exchanged between one machine and another. They are not
made through active probing to avoid overhead during times
of decreasing network performance. Requiring more traffic
to detect such situations will only degrade conditions.

service

lat

lat
rtt

client server

s     /bw

s     /bw

res

req

This figure illustrates the delays experienced by a re-
quest/response pair in our fluid-flow model.

Figure 1: Observing Network Performance

The total elapsed time consists of the time to transmit the
request to the server, the time required to service the request,
and the time required to transmit the response. This process
is depicted in Figure 1. The round-trip time, RTT , with this

model is:

RTT = (lat+
sreq
bw

) + service+ (lat+
sres
bw

) (1)

where sreq and sres are the sizes of request and response,
respectively.

There are several things to note about this model. First,
not all measured costs are imposed by the network. We as-
sume that the service time is small relative to network costs.
If this assumption does not hold, the server must report ser-
vice time in its response packet, so that the client can account
for it. Second, this scheme does not require synchronized
clocks; round-trip times are only determined at the client,
and service times are only measured at the server. This is
convenient, since synchronizing clocks at fine grain requires
GPS [25] or some other external time source. Unfortunately,
in exchange for this convenience, we must assume that net-
work performance is symmetric. In other words, we assume
that it is the same from server to client as from client to
server. While this is not always true, it is an unavoidable
consequence of the lack of synchronized clocks.

3.2 Discounting Self-Interference

Our goal is to determine the effective latency and bandwidth
available to this host. Therefore, estimates should be inde-
pendent of its behavior, but dependent on the other traffic
present along the path. When a host transmits two requests
very close to one another in time, the second will be queued
behind the first, inflating the second’s RTT. We must dis-
count such self-interference [22]. To do so, we use the band-
width estimate to determine self-imposed queuing delay.

at a t+1

q t

q t+1

s  /bwt t

d dtt−1

time

Figure 2: Self-Interference Queueing Delay

Figure 2 illustrates how we compute the self-interference
queueing delay. When message mt+1 arrives at the modeled
queue at at+1, it must wait until the previous message mt

departs at dt. So the queueing delay, qt+1, is defined as:
qt+1 = dt � at+1. Since we do not explicitly measure the
departure time, we compute qt+1 using the following:

qt+1 = max

�
qt +

st
bwt

� (at+1 � at); 0

�
(2)

where st is the size of message mt, and bwt is the bandwidth
estimate generated at at.
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3.3 Computing Spot Values

After the self-interference queueing delay is discounted, the
round trip time consists of the contributions made by effec-
tive latency and bandwidth. In order to separate these two,
we must make two consecutive observations with different
total sizes. The latency and bandwidth obtained using two
observations are called spot values; they represent a single
snapshot of network performance.

There are two subtleties that must be considered when
computing spot values. First, we assume that the observa-
tions producing a spot value experience the same network-
ing conditions. This is not always true. When conditions are
sufficiently different, one of the spot values is negative. We
ignore such observations. Second, if consecutive request-
response pairs have identical total size, we cannot solve for
latency and bandwidth. In such cases, we determine which
parameter, latency or bandwidth, has been more stable over
recent observations. We assume the stable parameter has not
changed, and solve for the remaining one with the new ob-
servation.

4 Producing Estimates

Typically, systems use EWMA filters to smooth noisy net-
work observations. Such filters take the form:

Et = �Et�1 + (1� �)Ot (3)

where Et is the newly generated, smoothed estimate, Et�1

is the prior estimate, and Ot is the current observation. The
term � is called the gain, and determines the filter’s reactiv-
ity. If the gain is large, old estimates will dominate and the
filter will be slow to change, making it stable. For example
TCP’s RTT filter has a gain of 7/8. In contrast, filters with
low gain will tend to be agile. Odyssey’s network filters use
gains as low as 1/8 to detect changes quickly. In the remain-
der of this section, we describe our four adaptive filters.

4.1 Flip-Flop Filter (FF)

The first filter, called Flip-flop, consists of two EWMA fil-
ters. One is agile, with a gain of 0.1, and the other is stable,
with a gain of 0.9. A controller selects between the two.
The underlying principle of this controller is to employ the
agile filter when possible, but fall back to the stable filter
when observations are unusually noisy. It employs a control
chart [20] to make this decision.

Control charts are commonly used to provide statistical
process control in manufacturing applications. They plot the
sample mean, x, of a controlled quantity against the desired
population mean, �, over time. The plot includes two control
limits: the upper control limit (UCL), and the lower control
limit (LCL). Usually, the control limits are defined to be ��

3�x, where �x is the sample standard deviation. When a
sample exceeds the control limits, the process is judged to
be out of control. This is called the 3-sigma rule [26].

We apply this technique to filter selection, but must make
allowances for our domain. First, we do not know the true
latency and bandwidth at any point; this is needed to generate
a population mean. Second, those quantities are expected to
change over time. Control charts are primarily used only to
detect such shifts in mean, but we also want to recalibrate
our control to the new mean value. Finally, we do not know
the population standard deviation in advance, but need it to
establish the control limits.

To address these shortcomings, we periodically change the
center line and limits of the control chart, using the moving
range to approximate the standard deviation. The moving
range, MR, is the average of the differences between adja-
cent points, jxi � xi�1j. The control limits use the moving
range as a substitute for the sample standard deviation. Since
the true value of MR may change over time, we smooth it.
The center line, which represents the population mean, is
set to an exponentially-weighted moving average of the esti-
mated value, x, to account for mean shifts. The control limits
are then:

x� 3
MR

d2
(4)

where d2 estimates the standard deviation of a sample given
its range. When the range is from a sample of two, as it is
for MR, the value of d2 is approximately 1.128 [20]. In the
process control literature, this type of control chart is called
the individual-x chart [24].

inside

Update control limits

inside
MUX

outside

outside

agile stable

Update agile and
stable estimates

against control limits &
set W=inside/outside

Check spot values

check W

spot bw & lat

estimated bw & lat

Update moving range

Figure 3: Flip-Flop Filter

Figure 3 shows how the Flip-flop filter chooses between
its two EWMA filters and when it update its control values.
As long as spot values fall within the 3-sigma limits, we use
the agile filter. If the values fall outside the limits, we fall
back to the stable one. In other words, when spot observa-
tions are unusually variable, the filter dampens its estimates.
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The moving range is updated only when the spot values fall
within the 3-sigma limits. This prevents the moving range
from becoming too wide. The center line and control limits
are adjusted for each packet received.
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B
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M
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The shadowed area represents the values between the upper
and lower control limits. Around 125 seconds, the Flip-flop
filter switches from the agile filter to the stable one. Each
filter is run independently of the other. Therefore, when
switching to the stable EWMA filter, the global estimate
drops without a corresponding low observation.

Figure 4: Flip-Flop Filter Example

Figure 4 shows an example of the Flip-flop filter. The
shadowed area represents the values between the upper and
the lower control limits, the dotted lines show the spot val-
ues, and the solid line plots the estimate over time. When the
spot values are outside of the control limits, the controller
selects the stable filter; at other times, it chooses the agile
filter. For example, around 125 seconds, the Flip-flop filter
switches from the agile filter to the stable one because the
spot value is above the upper control limit, causing a drop
in estimate. This drop is a result of maintaining the two
static-gain filters independently; the stable filter is consis-
tently more conservative in following changes.

4.2 Stability Filter (SF)

The second filter is called the Stability filter. Like the Flip-
flop filter, the Stability filter dampens estimates in proportion
to the variance of spot observations. However, rather than
using variance to select between static-gain filters, we use a
measure of the variance to dynamically change the gain of a
single filter.

The goal of the Stability filter is to dampen estimates when
the network exhibits unstable behavior. As consecutive ob-
servations diverge, the instability increases. This, in turn,
increases the gain, making the filter stable. Our measure of
instability is similar to the moving range used in the Flip-flop
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Figure 5: Stability Filter Example

filter. To compute instability, U , we use a second EWMA fil-
ter:

Ut = �Ut�1 + (1� �)jxt � xt�1j (5)

where xt is the spot value measured at time t, and � is 0.6;
this value was chosen empirically to minimize estimation er-
ror under the network scenarios presented in Section 5. We
set the gain to be:

�t =
Ut

Umax

(6)

where Umax is the largest instability seen in the ten most
recent observations.

An example of the Stability filter is shown in Figure 5. The
dotted line shows the changing spot values, and the solid line
tracks estimated values. The filter is relatively robust against
large changes in performance, but tracks small changes well.

4.3 Error-Based Filter (EF)

The Error-based filter follows the general form of the Sta-
bility filter, but takes a different approach in adapting its
gain. Rather than vary gain based on the variance in net-
work observations, it bases gain on the predictive power of
its estimates. When the Error-based filter produces estimates
that match well with reality, these estimates are given more
weight through higher gain. When the filter does not accu-
rately match observed values, we decrease its gain so that it
can converge more quickly.

The error at an individual observation is the difference be-
tween the past estimate and the current observation: jE t�1�
Otj. Rather than use raw error values at each step, we filter
these errors through a secondary EWMA filter; it then plays
a role similar to that of Ut in the Stability filter. Estimator
error, �t, is:

�t = �t�1 + (1� )jEt�1 �Otj (7)

where  is 0.6. This value was chosen empirically in the
same manner as �. We then set the gain of the Error-based
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Figure 6: Error-Based Filter Example

filter to be:

�t = 1�
�t

�max

(8)

where �max is computed the same way as Umax.
An example of the Error-based filter is shown in Figure 6.

The dotted line shows the changing spot values, and the solid
line tracks the estimated value. In contrast to the Stability
filter, the Error-based filter tracks large changes quickly, but
is robust against small fluctuations in performance.

4.4 Kalman Filter (KF)

The final filter we have explored is an application of the
Kalman filter. Kalman filters, if properly applied to a lin-
ear system, are optimal in that they minimize mean squared
estimation error. While an optimal Kalman filter requires
significant knowledge of the system—knowledge that is not
available when estimating network performance—one can
employ reasonable guesses that give a good result.

Kalman filters describe a system in terms of state space
notation. For our model, this is:

X(t+ 1) = �(t)X(t) +W(t) (9)

where X is the system state vector, � is a constant matrix
combining the state variables, andW is a matrix represent-
ing system noise.

Our filter estimates latency and bandwidth given round-
trip time measurements; latency and bandwidth are the state
variables. Recall that the round-trip time is proportional to
1=bw. Therefore, in order to make the system linear, we use
1=bw rather than bw as the second state variable. So, the
system state vector is written as:

X =

�
x1
x2

�
=

�
lat
1

bw

�
(10)

The state equations are then written as:

x1(t+ 1) = x1(t) + w1(t) (11)

x2(t+ 1) = x2(t) + w2(t) (12)

where w1 and w2 are the (unknown) system noise in latency
and bandwidth, respectively. Putting these together, we have:

� =

�
1 0
0 1

�
(13)

W =

�
w1
w2

�
(14)

In order to apply a filter to the system state, one must mea-
sure it:

Z(t) = H(t)X(t) +V(t) (15)

Here, Z is a matrix containing the measured state values,H
is a constant matrix combining the system state, and V is a
matrix representing the (unknown) measurement error.

Our measurement, RTT, is a scalar, so Z is the scalar z,
andV is the scalar v. Our network model says that RTT =
2lat+ s=bw, so the measurement equation is:

z(t) = 2x1(t) + s(t)x2(t) + v(t) (16)

where s(t) is the sum of the sizes of the request and response
pair at time t. Hence, matrix H is:

H =
�
2 s(t)

�
(17)

To apply a Kalman filter, we must know the process noise
covariance matrix Q and the measurement error covariance
matrix R. Q is the covariance matrix of W; R is the co-
variance matrix of V. SinceW and V are not known, their
covariances are unavailable. Therefore, we assume that the
noise in latency and bandwidth is independent, making their
products zero. This assumption may not be correct, so we
plan to explore it in future work.

Q(t) =

�
w1

2 0
0 w2

2

�
(18)

R(t) = [v2] (19)

Intuitively, Q represents the degree of variability in la-
tency and bandwidth. The terms w1

2 and w2
2 describes the

degree to which one is more volatile than the other. R de-
scribes the measurement uncertainty. If measurements are
uncertain, system state estimates should not change drasti-
cally with individual measurements. In other words, the filter
becomes stable whenR is large.

Unfortunately, we do not know the relative variances in
latency and bandwidth, nor do we have an accurate picture
of measurement noise. Although good guesses forQ andR
will not provide optimal performance, they will make the fil-
ter perform reasonably well [15]. The real impact of Q and
R on the filter’s performance is determined by the relative
magnitudes of each. For matrixQ, we assume that the vari-
ances of noise in latency and bandwidth are the same, and
set both w12 and w22 to 1.
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This figure shows relative error of Kalman filter with dif-
ferent R values under the simple ad hoc network simulation
described in Section 5.5.

Figure 7: Kalman Parameter

With Q fixed, we then empirically determine R using a
simple ad hoc network simulation, which is also used to
evaluate the performance of filters. There are two reasons
that we chose this simulation to determine the bestR value.
First, the nominal bandwidth values are known, allowing us
to compute the relative error, jestimate� truej=true. Sec-
ond, the noise endemic to mobile networks tests the stability
of the filter. In other words, the error values are not only af-
fected by how fast each filter settles, but also how stable it is
once settled. In contrast, if we tune the parameter in an envi-
ronment that does not have much noise after each persistent
change, the error is mainly determined by how fast the filter
settles to a new value. In this case, a smallerR, which makes
the filter agile, would always be preferable.

Figure 7 shows the relative error of the Kalman filter with
R values varied from 0.001 to 1000. The results show that
[10] is the best value for R, and that this value is relatively
insensitive to the performance of the Kalman filter. In other
words, any value except 1000 does not make a large differ-
ence in performance. This holds true for all of our experi-
ments. The resulting matrices are:

Q(t) =

�
1 0
0 1

�
(20)

R(t) = [10] (21)

Given matrices Q and R with the state equations, applying
the Kalman filter is straightforward [5].

5 Evaluation

In evaluating the candidate filters, we set out to answer the
following questions:
� How agile are the filters in the face of idealized, persis-

tent changes in network capacity?

� How stabile are the filters in reaction to transient
changes in network capacity?

� How do filters react in the presence of changing net-
work congestion?

� How do filters react in the presence of topology changes
in a mobile network?

� How do filters compare in a complex, ad hoc network?

To answer these questions, we subjected each filter to a
variety of networking scenarios. Many of these are based
on simulations that vary latency, bandwidth, cross traffic, or
node topology over time. For the simulations, we used ns [3],
a packet level network simulator, with the Monarch exten-
sions for mobile, ad hoc networking [4]. The Monarch exten-
sions include near/far propagation models, packet capture,
and the complete IEEE 802.11 MAC implementation [10].
The 802.11 MAC layer incorporates collision avoidance and
link-level acknowledgement and retransmission. The nom-
inal transmission range is 250 m. For the ad hoc network
routing protocol, we used dynamic source routing [12].

We further modified ns to implement links whose perfor-
mance can change according to a profile we provide. For
each experiment, we generate a profile that specifies the
topology, link characteristics, traffic, and how each of these
change over time. This gives us two important benefits. First,
since we know the objective state of the network, we can pre-
cisely quantify the behavior of our estimator. Second, these
changes can be made arbitrarily taxing, stressing the adaptive
estimators.

In the situations we examined, the long-term estimates for
latency and bandwidth produced by all the filters are roughly
the same. The filters differ only in how quickly they ar-
rive at this estimate, and how well they hold to that estimate
once there. In other words, they differ in agility and stability.
We use settle time as a measure of agility. Settle time mea-
sures the elapsed time it takes a filter to produce an estimate
within 10% of some new nominal value. Lower settle times
are better. We use two different measures to describe stabil-
ity, depending on the context. The first, coefficient of varia-
tion (CV), is used during times when network performance
is nominally stable. It is the ratio of standard deviation to
mean. It measures the degree to which measurement noise
affects a filter’s estimates; lower CV values are better. The
second, mean squared error, is used to measure resistance to
transients. We use this metric because it penalizes filters that
are disturbed by large amounts for a short time more than
those disturbed by small amounts for a longer time. An error
that is large in magnitude is more likely to cause an adaptive
system to make a poor decision.

5.1 Detecting Persistent Changes

In the first experiment, we subject each filter to two step func-
tions: an immediate change from one bandwidth to another.
A client and server are connected by a single link, with per-
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This figure depicts the agility of each filter under a sharp,
ideal change in bandwidth. The X axis shows the average
packets per second generated by the Poisson request process.
The Y axis gives the settle time, in seconds, and is in log
scale. In both cases, the Odyssey filter and the Flip-Flop
filter perform well.

Figure 8: Agility: Settle Time under Varying Rates

formance that varies over time. We explored two different
changes. In the first, called step-up, we increase the avail-
able link bandwidth from 1 Mb/s to 10 Mb/s. In the second,
called step-down, the change is in the other direction. Our
goal in this experiment is to test each filter’s agility; how
long it takes each filter to recognize a persistent change in
bandwidth.

Since the filters rely only on passive measurements, their
agility depends heavily on the rate of the underlying network
traffic. To explore this, our traffic generator uses a Poisson
process with means varying between one and sixteen pack-
ets per second; the fastest Poisson process will saturate the
link when it is at low bandwidth. All the measurements are
done at the UDP layer, so the sizes of requests and responses
can be larger than the MTU, which is 1500 bytes for Eth-
ernet. For our experiment, each request is small, while each
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This figure depicts each filter’s stability in the face of a tran-
sient drop in bandwidth. The X axis shows the number of
packets each filter observes during the performance drop; the
Y axis gives the mean squared error. The TCP filter and the
Flip-Flop filter are the least perturbed.

Figure 9: Stability: Resistance to Transient Change

response is randomly chosen to be either small (512 bytes) or
large (8 KB) with equal probability; we used 8 KB responses
to represent NFS traffic. Large responses will be fragmented
by IP. Five trials of each experiment were taken with differ-
ing random seeds for the request generator.

The results for this experiment are shown in Figure 8. Fig-
ure 8(a) shows the filters’ ability to detect increases in band-
width; Figure 8(b) quantifies detection of decreases. As one
would expect, each filter detects changes more quickly with
more opportunities for observation. The static EWMA filters
also behave as expected. The stable TCP filter is the slow-
est to converge, while the agile Odyssey filter is among the
fastest. Only the Flip-flop filter is comparable to the Odyssey
filter in both cases.

The relatively slow response of EWMA-based filters to
detect decreases compared to increases is not surprising, and
agrees with the evaluation of the Odyssey filter [21]. For ex-
ample, the Odyssey filter settles within 11.25% of the goal
(10 Mb/s) with one accurate observation for the increase
in bandwidth, while it settles within 112.5% of the goal
(1 Mb/s) for the decrease. The Kalman filter does not fol-
low this, and detects decreases faster than increases for all
packet numbers.

5.2 Resisting Transient Changes

The second experiment gauges the filters’ resistance to short-
term drops in performance. In this experiment, each filter is
subjected to a short decrease in bandwidth from 10 Mb/s to
1 Mb/s. In order to fairly compare the filters, we must ensure
that the same number of packets experience each transient
change. So, unlike the agility experiments, we use a con-
stant transmission rate, and vary the length of the transient

8



client server

congestion source

congestion sink

router A

router B

This figure illustrates the network topology for the conges-
tion experiments. The client and server exchange requests
and responses, through routers A and B. During the exper-
iment, the congestion source begins a traffic stream to the
congestion sink.

Figure 10: Topology for Congestion Experiments

from 1 to 5 packets. The sizes of these packets are chosen as
before; requests are small, with responses randomly small or
large. Since they are random, we perform five trials at each
duration.

To evaluate stability of filters, we compute the mean
squared error with a constant nominal value of 10 Mb/s. The
results for bandwidth estimation are shown in Figure 9. As
expected, the TCP filter is the most resistant to change. The
Flip-flop filter is also very stable. The Kalman, Error-based
and Odyssey filters are susceptible to changes, while the Sta-
bility filter follows longer transients more aggressively than
shorter ones. As the duration of the transient increases, the
Stability filter judges the transient value to be stable, and fol-
lows it.

5.3 Detecting Congestion

The previous two experiments explored changes in link ca-
pacity, as might happen during a vertical handoff. However,
link congestion also determines the end-to-end bandwidth
that is ultimately available to a client and server. This exper-
iment characterizes each filter’s ability to detect and estimate
the effects of congestion.

The client and server are part of a six-node network, de-
picted in Figure 10; each link has a capacity of 10 Mb/s.
They exchange request-response traffic with a Poisson pro-
cess at an average rate of 140 Kb/s. The experiment lasts
a total of 150 seconds. 50 seconds into the experiment, the
congestion source sends a constant bit rate (CBR) stream of
5 Mb/s in 8 KB chunks to the congestion sink, reducing the
available bandwidth along the client-server path. This con-
gestion traffic lasts for 50 seconds, and then stops. The re-
sults reflect five trials with different random seeds.

During congestion, observed round-trip times are excep-
tionally noisy. This is because cross traffic may or may
not interfere with any particular request-response pair. In
other words, the observed traffic is only partially perturbed
by congestion. If a router has cross-traffic queued when a
request or response arrives, it will be delayed, but otherwise
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(b) Stability: coefficient of variation

This figure depicts the filters’ reaction to congestion. There
are two categories across each X axis; when congestion is
introduced, and when it is removed. Figure 11(a) gives the
settle time for each filter; the Y axis is given in seconds.
Figure 11(b) shows the coefficient of variation exhibited by
each filter after it has settled. The TCP filter is slow to detect
any change; the Stability filter is slow to detect the absence
of congestion. The TCP, Stability, and Flip-flop filters are
the most stable.

Figure 11: Detecting and Tolerating Congestion

it will not. While each filter produces the same long-term es-
timates, they are consistently optimistic, at just over 6 Mb/s.
This optimism is a direct result of the fact that congestion
traffic only partially perturbs the observed round trips.

Figure 11 shows the agility and stability of each filter. The
first set of bars shows the result from 50 seconds to 100 sec-
onds when the congestion traffic is present; the second set
shows it from 100 seconds to 150 seconds. To compute the
settle time, one needs the nominal bandwidth during each
period. We determined this value by taking the average es-
timate produced by all filters over the last half of each 50
second interval. As explained above, this estimate will tend
to be optimistic, but is the best one can do without measure-
ment within the network. As shown in Figure 11(a), the TCP
filter is clearly the least agile of any of the filters. The other
five filters are very agile. As shown in Figure 11(b), all filters
except the TCP are not stable when the congestion traffic is
on. Among the five, the Stability and Flip-flop filters provide
more stable estimates than the others.
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(b) Stability: coefficient of variation

This figure depicts the filters’ reaction to routing changes in
wide-area networks. The client first requests data from a co-
located server, switches to a remote one, and then switches
back. Figure 12(a) gives settle times for the two route
changes; the X axis lists the route changes, and the Y axis
gives settle time, in seconds. Figure 12(b) presents coef-
ficients of variation in each distinct experiment phase after
settling. The Kalman and TCP filters are particularly poor
at detecting changes, while the Kalman, Error-based, and
Odyssey filters are particularly susceptible to noise.

Figure 12: Performance over Wide-Area Networks

5.4 Wide-Area Networks

To gauge whether instability is endemic to these filters in the
presence of cross traffic, we subjected them to two different,
real-world networking scenarios. In them, a client and server
exchanged ICMP ECHO packets, where each packet was ei-
ther 512 bytes or 8 KB with equal probability. The requests
were generated by a Poisson process with an average rate of
one packet per second. We took measurements between one
client and two servers. One server was in the same subnet,
and the other was located twelve hops and roughly 100 ms
away. We repeated this for five trials to each server; each trial
was 300 seconds long. In each trial, the client starts com-
munication with the local server, switches to the remote one
at 100 seconds, and switches back to the local at 200 sec-
onds. The raw observations from each trial were recorded,
and each filter was subjected to precisely the same set of ob-
servations.

Since this environment is real, we do not know the nomi-

server node A node B

client
stage 4stage 5

stage 3

stage 2stage 1

Figure 13: Topology Changes

nal bandwidth. However, we need some measure of nominal
to compute agility and stability for our filters. We used the
the average bandwidth of the second half of each 100-second
period as the nominal bandwidth.

Figure 12(a) shows the settle times for each filter. The
Odyssey and Error-based filters are the most agile ones. Al-
though the Flip-flop and Stability filters are not as agile as the
best performers, they are much better than both the Kalman
and TCP filters.

Figure 12(b) shows the stability results for each 100-
second period separately. The stability for all filters is much
better when observing traffic from the local server than from
the remote one. This is most likely due to the smaller number
of hops combined with the lower likelihood of encountering
cross traffic in the local case. The Kalman filter performs
particularly poorly in the communication with the remote
server. As expected, the TCP filter is very stable, but the
Flip-flop and Stability filters also perform reasonably well.

5.5 Topology Changes in Mobile Network

The next experiment explores how our filters react to chang-
ing topologies in simple ad hoc networks without the pres-
ence of cross traffic. The topology for this simple network
is shown in Figure 13. Three wireless nodes—one of them a
server—are arranged in a line, each separated by 200 m. The
client moves from the server’s neighborhood to the vicin-
ity of the far node, and then back, comprising five different
stages. The client completes this circuit in five minutes; we
use handoff times as the breakpoints between stages. The
traffic rate was Poisson, with an average of four requests per
second; requests were small and responses were 512 bytes
or 8 KB with equal probability. We took five trials for each
filter.

There are interesting effects even in this simple topology.
First, although there is no cross traffic, the effective band-
width changes as the client moves through the stages. This
is because all nodes share the same physical channel. While
the bandwidth of the physical device is 2 Mb/s, the effective
bandwidth between client and server is divided by two when
routed through node A, and by three through node B.

Second, the wireless MAC protocol allows collisions even
when the client and server communicate directly; the rate of
collisions goes up with hop count. This leads to substan-
tial variability in RTT observations, increased noise in all of
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(b) Stability: coefficient of variation

This figure shows the filters’ performance when moving
through a simple ad hoc network. Figure 14(a) shows the
time each filter requires to determine that a handoff has oc-
curred. The X axis lists each handoff to a new stage, and the
Y axis gives the settle time. Figure 14(b) presents the stabil-
ity during each stage after settling. The X axis is as before,
and the Y axis gives the coefficient of variation. The TCP
filter is the obvious poor performer in agility. The Flip-flop
filter does not match the top performer, but is a contender.
The Flip-flop filter provides the best stability, particularly in
stage 3.

Figure 14: Performance under Changing Topology

the estimators, a higher average latency, and lower average
bandwidth.

Figure 14(a) shows the agility of each stage. All of the fil-
ters except for TCP settle reasonably well, though the Error-
based filter holds a slight advantage. Figure 14(b) shows
the stability. All of the filters except the Error-based and
Odyssey filters show comparable stability. The Flip-flop fil-
ter has an advantage in the worst situation: stage three, where
collisions and link-level retransmissions are most frequent.
This is because the infrequent retransmissions in the mobile
experiment lie outside the Flip-flop control limits, causing
the Flip-flop filter to choose the estimates generated by the
stable EWMA filter.

5.6 Ad Hoc Wireless Networks

In the final experiment, each filter is given the task of predict-
ing available capacity in an ad hoc network with substantial
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This figure shows the filters’ ability to correctly predict
round trip times in a large ad hoc network. The X axis lists
the packet sizes of background traffic. The Y axis shows the
average error produced by each filter’s estimates, in seconds;
lower errors are better. In general, increased background
traffic leads to less accurate predictions. At relatively low
levels of background traffic, each filter is comparable. As
background traffic increases, the Flip-Flop and Stability fil-
ters begin to show advantages.

Figure 15: Accuracy in an Ad Hoc Network

cross traffic. This is a demanding scenario, as the network
topology—and hence route and cross traffic—are constantly
changing. In such a network, past observed performance is
at best a loose predictor of future results. While no filter can
predict perfectly in such an environment, many applications
require the best predictions they can get.

We placed 50 nodes in a space 1500 meters by 500 me-
ters. Initial node locations are distributed throughout the
space uniformly randomly. Each node follows the random
waypoint model [12] with a pause time of 20 seconds and a
maximum speed of 20 meters per second. Each trial simu-
lated 500 seconds.

The 50 nodes were formed into 25 pairs. One pair served
as the estimating client and corresponding server, exchang-
ing requests and responses with Poisson distribution, averag-
ing four requests per second. The remaining pairs are CBR
connections, each source transmitting four packets per sec-
ond. Since the amount of traffic substantially affects noise in
observations, we repeated the simulations with six different
packet sizes. The size varied from 64 bytes to 2 KB. We ran
five different trials for each packet size.

In this experiment, we cannot easily compute the nominal
bandwidth. Thus, we cannot use the usual metrics. Instead,
we computed average absolute error, the difference between
the measured RTT and the estimated RTT based on the band-
width and latency estimates. Figure 15 shows the results. For
every packet size, the Flip-flop and Stability filters work the
best. They show advantages more clearly as the background
traffic increases.

Interestingly, neither the TCP filter nor the Odyssey filter
performed well in the ad hoc network. This is because one
was incapable of detecting changes quickly enough, while
the other was overly sensitive to noise. Either problem is
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This table summaries performance of six filters. We com-
pared the performance each filter with the reference filter.
As the reference filter, we used the Odyssey filter for agility,
and used the TCP filter for stability. For each experiment,
filters that worked better than the reference are marked },
those that are comparable to the reference are given Æ, and
those that performed poorly are marked �.

Figure 16: Evaluation Summary

enough to disqualify a filter from consideration in this set-
ting.

5.7 Summary

Figure 16 summaries the results of the experiments. Clearly,
neither the Odyssey nor TCP filter is a good choice over-
all. However, the Odyssey filter is always very agile, and the
TCP filter is always very stable. So, we use them as the ref-
erences against which to compare. For agility, the filters that
are comparable to Odyssey are marked Æ. Those that work
better are marked }, while those that perform substantially
worse are marked �. For stability, we compare against TCP,
with the same conventions. The top half of the table shows
the agility results, and the bottom half shows the stability re-
sults. We did not include the results from the complex ad hoc
network experiment presented in Section 5.6 because neither
static-gain filter worked well.

The Flip-flop filter is clearly the winner. It often produced
agility comparable to the agile Odyssey filter and stability
comparable to the stable TCP filter. In the few settings in
which it did not compare with the reference filter, it often
outperformed its adaptive peers. For the wide-area experi-
ment, the Flip-flop filter was more agile than the Stability
and Kalman filters, but not the Error-based one. For the con-
gestion experiment, the Flip-flop and Stability filters were
much more stable than the other two adaptive filters.

The Stability filter also worked well in most of the experi-
ments. It provided stability comparable to Flip-flop, but was
always slower than Flip-flop in detecting persistent changes.
While the Error-based filter provided excellent agility, it was
too unstable to be considered useful. The Kalman filter
was also very agile, but has a tendency to follow transient
changes in bandwidth. We suspect that the Kalman filter
could be tuned to behave more reasonably, but do not have

confidence that such tuning would apply to all possible cir-
cumstances.

6 Conclusion

Adaptation to changing network conditions is critical to the
success of mobile systems. However, knowing how those
conditions change is a difficult problem. Individual obser-
vations of network performance may have little bearing on
available capacity. Historically, systems have filtered such
observations with static-gain EWMA filters. Such filters are
biased either toward agility or stability. Ideally, a network
estimator would be agile when possible, but stable when nec-
essary; it should adapt to the prevailing network conditions.

We have developed four candidate filters with this goal in
mind. Each one examines the behavior of the network, and
tunes itself in an attempt to provide accurate and timely es-
timates. Two of these filters are modifications of an EWMA
filter that use heuristics to vary the filter’s gain dynamically.
A third is an application of the well-known Kalman filter.
The fourth uses techniques from statistical process control to
select between two static-gain EWMA filters, one agile and
the other stable.

We evaluated these filters in a variety of contexts, includ-
ing persistent and transient capacity changes, the presence
of cross traffic, and changes in topology. We compared each
adaptive filter to two static-gain EWMA filters, one agile and
the other stable. We find that in the majority of scenarios,
the filter based on statistical process control provides agility
comparable to the agile Odyssey filter and stability compara-
ble to the stable TCP filter. We believe that this filter presents
the best choice for adaptive, mobile systems.

Acknowledgements

Pramod Khargonekar helped us construct a Kalman filter for
the network estimation problem. Mark Corner, Landon Cox,
Songkuk Kim, and Kevin Lai read earlier drafts of this docu-
ment, and suggested numerous improvements to the presen-
tation.

This research was supported in part by Novell, Inc., and
the National Science Foundation under grant CCR-9984078.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. The views and conclu-
sions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of Novell, Inc.,
the National Science Foundation, or the U.S. Government.

12



References

[1] H. Balakrishnan, H. S. Rahul, and S. Seshan. An inte-
grated congestion management architecture for Internet
hosts. In Proceedings of ACM SIGCOMM ’99, pages
175–87, Cambridge, MA, USA, August 1999.

[2] J.-C. Bolot. Characterizing end-to-end packet delay
and loss behavior in the Internet. Journal of High Speed
Networks, 2(3):305–23, 1993.

[3] L. Breslau, D. Estrin, S. Floyd, J. Heidemann,
A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu,
and H. Yu. Advances in network simulation. IEEE
Computer, 33(5):59–67, May 2000.

[4] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and
J. Jetcheva. A performance comparison of multi-hop
wireless ad hoc network routing protocols. In Proceed-
ings of MobiCom’98, pages 85–97, Dallas, TX, USA,
October 1998.

[5] R. B. Brown and P. Y. C. Hwang. Introduction ot Ran-
dom Signals and Applied Kalman Filtering. John Wiley
& Sons, Inc., 1997.

[6] R. L. Carter and M. E. Crovella. Server selection
using dynamic path characterization in wide-area net-
works. In Proceedings of INFOCOM ’97, pages 1014–
21, Kobe, Japan, April 1997.

[7] A. Downey. Using pathchar to estimate internet link
characteristics. In Proceedings of ACM SIGCOMM
’99, pages 241–250, August 1999.

[8] D. Duchamp. Issues in wireless mobile computing. In
Proceedings of the Third Workshop on Workstation Op-
erating Systems, pages 2–10, Key Biscayne, FL, USA,
April 1992.

[9] A. Gelb. Applied Optimal Estimation. M.I.T. Press,
Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1974.

[10] IEEE. Wireless LAN medium access control (MAC)
and physical layer (PHY) specifications. IEEE Std
802.11-1999.

[11] V. Jacobson. Congestion avoidance and control. In
Proceedings of ACM SIGCOMM ’88, pages 314–329,
August 1988.

[12] D. B. Johnson and D. A. Maltz. Dynamic source rout-
ing in ad hoc wireless networks. In Mobile Computing,
T. Imielinski and H. Korth, editors. Chapter 5, pages
153–181. Kluwer Academic Publishers, 1996.

[13] R. H. Katz. Adaptation and mobility in wireless in-
formation systems. IEEE Personal Communications,
1(1):6–17, 1994.

[14] R. H. Katz and E. A. Brewer. The case for wireless
overlay networks. In Proceedings 1996 SPIE Confer-
ence on Multimedia and Networking, pages 77–88, San
Jose, CA, January 1996.

[15] S. Keshav. A control-theoretic approach to flow con-
trol. In Proceedings of ACM SIGCOMM ’91, pages
3–15, September 1991.

[16] C. Labovitz, G. R. Malan, and F. Jahanian. Internet
routing instability. IEEE/ACM Transactions on Net-
working, 6(5):515–28, October 1998.

[17] K. Lai and M. Baker. Measuring bandwidth. In Pro-
ceedings of INFOCOM ’99, pages 235–45, New York,
NY, USA, March 1999.

[18] K. Lai and M. Baker. Measuring link bandwidths using
a deterministic model of packet delay. In Proceedings
of ACM SIGCOMM 2000, Stockholm, Sweden, August
2000.

[19] S. Low. Traffic management of ATM networks: service
provisioning, routing, and traffic shaping. PhD thesis,
University of California, Berkeley, 1992.

[20] D. C. Montgomery. Introduction to statistical quality
control. John Wiley & Sons, Inc., 3rd edition, 1997.

[21] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E.
Tilton, J. Flinn, and K. R. Walker. Agile application-
aware adaptation for mobility. In Proceedings of the
16th ACM Symposium on Operating Systems Princi-
ples, pages 276–87, Saint-Malo, France, October 1997.

[22] V. Paxson. End-to-end internet packet dynamics. In
Proceedings of ACM SIGCOMM ’97, pages 139–52,
Cannes, France, September 1997.

[23] T. S. Rappaport. Wireless Communications:Principles
and Practice. Upper Saddle River, New Jersey:Prentice
Hall, 1996.

[24] S. E. Rigdon, E. N. Cruthis, and C. W. Champ. De-
sign strategies for individuals and moving range control
charts. Journal of Quality Technology, 26(4):274–87,
October 1994.

[25] U. Schmid and W. A. Halang. Synchronized UTC
for distributed real-time systems. In Proceedings of
the IFAC Workshop on Real Time Programming, pages
101–107, Pergamon, Oxford, UK, June 1994.

[26] Western Electric. Statistical Quality Control Hand-
book. Western Electric Corporation, Indianapolis, Inc.,
1956.

13


