
Mobile Objects in Distributed Oz

PETER VAN ROY

Université Catholique de Louvain

SEIF HARIDI and PER BRAND

Swedish Institute of Computer Science

and

GERT SMOLKA, MICHAEL MEHL, and RALF SCHEIDHAUER

German Research Center For Artificial Intelligence (DFKI)

Some of the most difficult questions to answer when designing a distributed application are related
to mobility: what information to transfer between sites and when and how to transfer it. Network-
transparent distribution, the property that a program’s behavior is independent of how it is
partitioned among sites, does not directly address these questions. Therefore we propose to extend
all language entities with a network behavior that enables efficient distributed programming by
giving the programmer a simple and predictable control over network communication patterns.
In particular, we show how to give objects an arbitrary mobility behavior that is independent of
the object’s definition. In this way, the syntax and semantics of objects are the same regardless of
whether they are used as stationary servers, mobile agents, or simply as caches. These ideas have
been implemented in Distributed Oz, a concurrent object-oriented language that is state aware
and has dataflow synchronization. We prove that the implementation of objects in Distributed
Oz is network transparent. To satisfy the predictability condition, the implementation avoids
forwarding chains through intermediate sites. The implementation is an extension to the publicly
available DFKI Oz 2.0 system.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming—distributed programming; D.3.2 [Programming Languages]: Language Classifications—
concurrent, distributed, and parallel languages; data-flow languages; object-oriented languages;
F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—opera-
tional semantics

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Mobile objects, network transparency, latency tolerance

The development of Distributed Oz at DFKI is supported by the BMBF through Project PERDIO
(FKZ ITW 9601). This research is funded in Sweden by the Swedish national board for industrial
and technical development (NUTEK) and SICS.
Author’s addresses: P. Van Roy, Department of Computing Science and Engineering, Université
Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; email: pvr@info.ucl.ac.be; S. Haridi
and P. Brand, Swedish Institute of Computer Science, S-164 28 Kista, Sweden; email: {seif; per-
brand}@sics.se; G. Smolka, M. Mehl, and R. Scheidhauer, German Research Center for Artificial
Intelligence, D-66123 Saarbrücken, Germany; email: {smolka; mehl; scheidhr}@dfki.de.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 1997 ACM 0164-0925/97/0900-0805 $3.50

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997, Pages 805–852.

806 · Peter Van Roy et al.

1. INTRODUCTION

The distinguishing feature of a distributed computation is that it is partitioned
among sites. It is therefore important to be able to easily and efficiently transfer
both computations and information between sites. Yet, when the number of sites
increases without bounds, the programmer must not be burdened with writing sep-
arate programs for each site and explicitly managing the communications between
them. We conclude that there are two conflicting goals in designing a language for
distributed programming. First, the language should be network transparent, i.e.,
computations behave correctly independently of how they are partitioned between
sites. Second, the language should give simple and predictable control over network
communication patterns. The main contribution of this article is to present a lan-
guage, Distributed Oz, that satisfies these two goals. The design has two key ideas:
first, to define the language in terms of two semantics, a language semantics and
a distributed semantics that refines it to take network behavior into account, and
second, to incorporate mobility in a fundamental way in the distributed semantics.

1.1 Object Mobility

Making mobility a primitive concept makes it possible to define efficient networked
objects whose mobility can be precisely controlled (see Section 5.4.2). The object
can change sites on its own or on request. The object does not leave a trail, i.e.,
it does not leave behind aliases or surrogate objects to forward messages when it
changes sites. There is no “proxy explosion” problem when an object is passed
repeatedly between two sites [Foody 1997]. Many sites may send messages to the
object. It is eventually true that messages sent will go to the object in a single
network hop, no matter how many times the object moves. There is no differ-
ence in syntax or computational behavior between these objects and stationary
objects. No published system has objects with these abilities. In particular, Emer-
ald [Jul et al. 1988], Obliq [Cardelli 1995], and Java with Remote Method Invoca-
tion [Sun Microsystems 1996] all suffer from the aliasing problem to some extent.
One of the contributions of this article is to show how to provide mobile objects with
predictable network behavior, i.e., without aliasing, in a simple and straightforward
way.

1.2 Two Semantics

The basic design principle of Distributed Oz is to distinguish clearly between the
language semantics and the distributed semantics. Distributed Oz has the same
language semantics as Oz 2, a concurrent object-oriented language that is state
aware and has dataflow synchronization. The object system has a simple formal
foundation and yet contains all the features required in a modern concurrent lan-
guage. Detailed information about the language and its object system can be
found in Haridi [1996] and Henz [1997].1 Implementations of Oz and its successor
Oz 2 have been used in many research projects [Axling et al. 1995; Carlsson and
Hagsand 1996; Fischer et al. 1994, 1995; Henz and Würtz 1996; Henz et al. 1996;
Schmeier and Achim 1996; Walser 1996]. To be self-contained, this article uses a
subset of Oz 2 syntax that directly corresponds to its semantics.

1See also http://www.ps.uni-sb.de .

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

http://www.ps.uni-sb.de

Mobile Objects in Distributed Oz · 807

The distributed semantics extends the language semantics to take into account
the notion of site. It defines the network operations invoked when a computation
is partitioned on multiple sites. There is no distribution layer added on top of an
existing centralized system. Rather, all language entities are given a network be-
havior that respects the same language semantics they have when executing locally.
By a language entity we mean a basic data item of the language, such as an object,
a procedure, a thread, or a record. Figure 3 classifies the entities and summarizes
their distributed semantics. Network operations2 are predictable, which gives the
programmer the ability to manage network communications.

1.3 Developing an Application

Developing an application is separated into two independent parts. First, the appli-
cation is written without explicitly partitioning the computation among sites. One
can in fact check the safety and liveness properties3 of the application by running
it on one site. Second, the application is made efficient by controlling the mobility
of its entities. For example, some objects may be placed on certain sites, and other
objects may be given a particular mobile behavior. The shared graphic editor of
Section 2 is designed according to this approach.

1.4 Mobility Control and State

The distributed semantics extends the language semantics with mobility control.
In general terms, mobility control is the ability for stateful entities to migrate
between sites or to remain stationary at one site, according to the programmer’s
intention [Haridi et al. 1997]. The programmer can use mobility control to program
the desired network communication patterns in a straightforward way. For example,
to reduce network latency a mobile object can behave as a state cache. This is
illustrated by the shared graphic editor of Section 2.

By stateful entities we mean entities that change over time, i.e., they are defined
by a sequence of states, where a state can be any entity. At any given moment, a
stateful entity is localized to a particular site, called its home site. Stateful entities
are of two kinds, called cells and ports, that are respectively mobile and stationary.
Objects are defined in terms of cells. The mobility behavior of an object is defined
in terms of cells and ports. The language semantics of these entities is given in
Section 4, and their distributed semantics is given in Section 5. The implementation
contains a mobile state protocol that implements the language semantics of cells
while allowing the cell’s state4 to efficiently migrate between sites.

It is important that all language entities have a well-defined network behavior.
For example, the language provides network references to procedures. A procedure
is stateless, i.e., its definition does not change over time. Calling the procedure
locally or remotely gives the same results. Disregarding sites, it behaves identically
to a centralized procedure application. Passing a procedure to a remote site causes
a network reference to be created to the procedure. Calling the procedure causes
it to be replicated to the calling site.5 The procedure’s external references will be

2In terms of the number of network hops.
3A fortiori, correctness and termination for nonreactive applications.
4More precisely, its content-edge, which is defined in Section 4.1.
5This is not the same as an RPC. To get the effect of an RPC, a stationary entity (such as a port)

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

808 · Peter Van Roy et al.

either replicated or remotely referenced, depending on what kind of entity they are.
Only the first call will have a network overhead if the procedure does not yet exist
on the site.

1.5 Overview of the Article

This article consists of eight parts and an appendix. Section 2 presents an example
application, a shared graphic editor, that illustrates one way to use mobile objects
to reduce network latency. Section 3 lays the foundation for our design by reasoning
from four general requirements for distributed programming. Section 4 summarizes
the language semantics of Distributed Oz in terms of these requirements. Section 5
defines and justifies the distributed semantics of Distributed Oz. We show by
example how easy it is to code various kinds of migratory behavior using cells and
ports. Section 6 outlines how mobility is introduced into the language semantics
and specifies a mobile state protocol for cells. Section 7 summarizes the system
architecture and situates the protocol in it. Section 8 compares the present design
with distributed shared memory, Emerald, and Obliq. Section 9 summarizes the
main contributions and the status of the project. Finally, Appendix A gives a
formal proof that the mobile state protocol implements the language semantics for
cells.

2. A SHARED GRAPHIC EDITOR

Writing an efficient distributed application can be much simplified by using network
transparency and mobility. We have substantiated this claim by designing and
implementing a prototype shared graphic editor, an application which is useful in
a collaborative work environment. The editor is seen by an arbitrary number of
users. We wish the editor to behave like a shared virtual environment. This implies
the following set of requirements. We require that all users be able to make updates
to the drawing at any time, that each user sees his or her own updates without any
noticeable delays, and that the updates must be visible to all users in real time.
Furthermore, we require that the same graphical entity can be updated by multiple
users. This is useful in a collaborative CAD environment when editing complex
graphic designs. Finally, we require that all updates are sequentially consistent,
i.e., each user has exactly the same view of the drawing. The last two requirements
are what makes the application interesting. Using multicast to update each user’s
visual representation, as is done for example in the LBL Whiteboard application, 6

does not satisfy the last two requirements.
Figure 1 outlines the architecture of our prototype. The drawing state is repre-

sented as a set of objects. These objects denote graphical entities such as geometric
shapes and freehand drawing pads. When a user updates the drawing, either a new
object is created or a message is sent to modify the state of an existing object. The
object then posts the update to a distributed agenda. The agenda sends the update
to all users so they can update their displays. The users see a shared stream, which
guarantees sequential consistency.

New users can connect themselves to the editor at any time using the open

must be introduced.
6Available at http://mice.ed.ac.uk/mice/archive .

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

http://mice.ed.ac.uk/mice/archive

Mobile Objects in Distributed Oz · 809

User BUser A

process

User C

Distributed Oz
Objects for

picture state

Graphics subsystem
(Tcl/tk)

Fig. 1. A shared graphic editor.

computing ability of Distributed Oz. The mechanism is extremely simple: the
implementation provides primitives for saving and loading a language entity in a
file named by a URL. A URL is an Ascii string that names a globally unique file
and is recognized by HTTP clients and servers. We use a URL because it provides
us with a convenient global address space. The graphic editor saves to a file a
reference to the object that is responsible for managing new users. By loading the
file, a new user gets a reference to the object. The two computations then reference
the same object. This transparently opens a connection between two sites in the
two computations. From that point onward, the computation space is shared.
When there are no more references between two sites in a computation, then the
connection between them is closed by the garbage collector. Computations can
therefore connect and disconnect at will. The issue of how to manage the shared
names represented by the URLs leads us into the area of multiagent computations.
This is beyond the scope of the article, however.

The design was initially built with stationary objects only. This satisfies all
requirements except performance. It works well on low-latency networks such as
LANs, but performance is poor when users who are far apart, e.g., in Sweden,
Belgium, and Germany, try to draw freehand sketches or any other graphical entity
that needs continuous feedback. This is because a freehand sketch consists of many
small line segments being drawn in a short time. In our implementation, up to 30
motion events per second are sent from the graphics subsystem to the Oz process.
Each line segment requires updating the drawing pad state and sending this update
to all users. If the state is remote, then the latency for one update is often several
hundred milliseconds or more, with a large variance.

To solve the latency problem, we refine the design to represent the picture state
and the distributed agenda as freely mobile objects rather than stationary objects.
The effect of this refinement is that parts of the picture state are cached at sites
that modify them. Implementing the refinement requires changing some of the calls

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

810 · Peter Van Roy et al.

Table I. System Requirements and Some of their Mechanisms

Requirements Mechanisms

Network transparency Shared computation space,
concurrency

Flexible network awareness State awareness,
mobility control

Latency tolerance Concurrency,
caching,
dataflow synchronization,
asynchronous ordered communication

Language security Capability-based computation space,
lexical scoping,
first-class procedures

that create new objects. In all, less than 10 lines of code out of 500 have to be
changed. With these changes, freehand sketches do not need any network operations
to update the local display, so performance is satisfactory. Remote users see the
sketch being made in real time, with a delay equal to the network latency.

This illustrates the two-part approach for building applications in Distributed
Oz. First, build and test the application using stationary objects. Second, reduce
latency by carefully selecting a few objects and changing their mobility behavior.
Because of transparency, this can be done with quite minor changes to the code of
the application itself. In both the stationary and mobile designs, fault tolerance
is a separate issue that must be taken into account explicitly. It can be done by
recording on a reliable site a log of all display events. Crashed users disappear, and
new users are sent a compressed version of the log.

In general, mobile objects are useful both for fine-grain mobility (caching of object
state) as well as coarse-grain mobility (explicit transfer of groups of objects). The
key ability that the system must provide is transparent control of mobility, i.e.,
control that is independent of the object’s functionality. Section 5.4 shows how this
is done in Distributed Oz.

3. LANGUAGE PROPERTIES

In order to provide a firm base for the language design, we start from four require-
ments that are generally agreed to be important in a distributed setting. We then
propose a set of mechanisms that are sufficient to satisfy these requirements. The
four requirements are network transparency, flexible network awareness, latency
tolerance, and language security. Table I summarizes the requirements and their
enabling mechanisms. Section 4 presents a design that contains all the mecha-
nisms. For brevity, we give only a summary of the fault model. Other important
requirements such as resource management and network security will be presented
elsewhere.

It is not obvious that the four requirements can be satisfied simultaneously. In
particular, achieving both network transparency and flexible network awareness
may seem inherently impossible. It becomes possible by carefully distinguishing
between the language semantics and distributed semantics.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 811

3.1 Network Transparency

Network transparency means that computations behave in the same way indepen-
dent of the distribution structure.7 That is, the language semantics is obeyed inde-
pendent of how the computation is partitioned onto multiple sites. This requires
a distributed shared computation space, which provides the illusion of a single net-
workwide address space for all entities (including threads, objects, and procedures).
The distinction between local references (on the same site) and remote references
(to another site) is invisible to the programmer. Consistency of remote access is
explained in Section 5. For reasons of security, the computation space is not just a
shared memory. This is explained below.

To be practical, a network-transparent system must be able to express all im-
portant distributed-programming idioms. Many of these do parallel execution, e.g.,
multiple clients accessing multiple servers. Therefore the language must be concur-
rent, i.e., allow for multiple computational activities (called “threads”) that coexist
and evolve independently.

3.2 Flexible Network Awareness

Flexible network awareness means two things: predictability and programmability.
Network communication patterns should be simply and predictably derived from
the language entities. In addition, the communication patterns provided should be
flexible enough to program the desired network behavior. The resulting distributed
semantics gives the programmer explicit control over network communication pat-
terns.

The basic insight to achieve flexible network awareness is that for efficiency,
stateful data (e.g., objects) must at any instant reside on exactly one site (the home
site).8 On the other hand, stateless data (e.g., procedures or values) can safely be
replicated, i.e., copied to another site. It is therefore useful for the language to
distinguish between these two kinds of data, that is, it is state aware. Replication
is used in first instance to improve the network behavior of stateless data.

Mobility control is the ability of a home site to change (mobility) or to remain
the same (stationarity). With the concepts of state awareness and mobility control,
the programmer can express any desired network communication pattern. In the
design described here, entities have three basic network behaviors. Mobile entities
migrate to each remote site invoking them. The implementation is careful to make
the network behavior of mobile entities predictable by using the appropriate dis-
tributed algorithm. Stationary entities require a network operation on each remote
invocation. Replicable entities are copied to each remote site requesting the entity.
More complex network behaviors are built from these three.

3.3 Latency Tolerance

Latency tolerance means that the efficiency of computations is affected as little
as possible by network delay. Distributed Oz provides four basic mechanisms for
latency tolerance. Concurrency provides latency tolerance between threads: while

7The terms “network transparency” and “network awareness” were first introduced by
Cardelli [1995].
8They can of course be referenced from any site.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

812 · Peter Van Roy et al.

one thread waits for the network, other threads can continue.
Caching improves latency tolerance by increasing the locality of computations.

Caching stateless entities amounts to replicating them. Caching stateful entities
requires a coherence protocol. The mobile state protocol of Distributed Oz guaran-
tees coherence and is optimized for frequent state updates and moves. The current
design does not yet have a replacement policy, i.e., there are no special provisions
for resource management.

Dataflow synchronization allows computations to stall only on data dependency
(not on send or receive). Well-known techniques to achieve this are futures [Halstead
1985], I-structures [Iannucci 1990], and logic variables [Bal et al. 1989; Shapiro
1989]. We use logic variables because they have great expressive power, are easily
implemented efficiently, and are consistent with the semantics of a state-aware lan-
guage (see Section 4.1.2). Asynchronous ordered communication generalizes logic
variables by adding a form of buffering. This is provided by ports (see Section 4.2.2).

3.4 Language Security

Language security means that the language guarantees integrity of computations
and data. It is important to distinguish between language security and imple-
mentation security. Implementation security means that integrity of computations
is protected against adversaries that have access to the system’s implementation.
This is beyond the scope of the article, though. We provide language security by
giving the programmer the means to restrict access to data. Data are represented
as references to entities in an abstract shared computation space. The space is
abstract because it provides a well-defined set of basic operations. In particular,
unrestricted access to memory is forbidden.9 One can only access data to which one
has been given an explicit reference. This is controlled through lexical scoping and
first-class procedures [Abelson et al. 1985]. Lexical scoping means that a program’s
initial references are determined by its static structure. Other references are passed
around explicitly during execution. First-class procedures means that procedures
can be created and applied dynamically and that references to them can be passed
around:

local P in % Scope of P
% At site 1: Declare X with limited scope
local X in

% Define procedure P
proc {P ...} ... end % X is visible inside P

end

% At site 2:
local Q in

% Define procedure Q
proc {Q ...} ... end % X is not visible inside Q

end
end

9For example, both examining data representations (type casts) and calculating addresses (pointer
arithmetic) are forbidden.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 813

Table II. Summary of OPM Syntax

S ::= S S Sequence
| X=f(l1:Y1 ... ln:Yn) | Value

X=Number | X=Atom | {NewName X}
| local X1 ... Xn in S end | X=Y Variable
| proc {X Y1 ... Yn} S end | {X Y1 ... Yn} Procedure
| {NewCell Y X} | {Exchange X Y Z} | {Access X Y } State
| if X=Y then S else S end Conditional
| thread S end | {GetThreadId X} Thread
| try S catch X then S end | raise X end Exception

Procedure P can access X, but procedure Q cannot. However, since Q can access P,
this gives Q indirect access to X. Therefore Q has some rights to X, namely those
that it has through P. Passing procedures around thus transfers access rights, which
gives the effect of capabilities.

4. LANGUAGE SEMANTICS

Distributed Oz, i.e., Oz 2, is a simple language that satisfies all the requirements
of the previous section. Distributed Oz is dynamically typed, i.e., its type struc-
ture is checked at run-time. This simplifies programming in an open distributed
environment. The language is fully compositional, i.e., all language constructs that
contain a statement may be arbitrarily nested. All examples given below work in
both centralized and distributed settings.

Distributed Oz is defined by transforming all its statements into statements of
a small kernel language, called OPM (Oz Programming Model) [Smolka 1995a;
Smolka 1995b]. OPM is a concurrent programming model with an interleaving
semantics. It has three innovative features. First, it uses dataflow synchroniza-
tion through logic variables as a basic mechanism of control. Second, it makes an
explicit distinction between stateless references (logic variables) and stateful refer-
ences (cells). Finally, it is a unified model that subsumes higher-order functional
and object-oriented programming.

The basic entities of OPM are values, logic variables, procedures, cells, and
threads. A value is unchanging and is the most primitive data item that the
language semantics recognizes. For all entities but logic variables, an entity is a
group of one or more values that are useful from the programmer’s point of view.
A record entity consists of one value (the record itself), and a cell entity consists
of two values (its name and content). The full language provides syntactic support
for additional entities including objects, classes, and ports. The system hides their
efficient implementation while respecting their definitions. All entities except for
logic variables have one value that is used to identify and reference them.

4.1 Oz Programming Model

This section summarizes OPM, the formal model underlying Oz 2. Readers inter-
ested mainly in the object system may skim directly to Section 4.2 on first reading.
A program written in OPM consists of a (compound) statement containing value
descriptions, variable declarations, procedure definitions and calls, state declara-
tions and updates, conditionals, thread declarations, and exception handling (see
Table II).

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

814 · Peter Van Roy et al.

Computation takes place in a computation space hosting a number of sequential
threads connected to a single shared store. The store contains three compartments:
a set of variables, each with its binding if bound, a set of procedure definitions, and
a set of cells. Variable bindings and procedure definitions are immutable. Cells are
updatable, as explained below. Each thread consists of a sequence of statements.
Computation proceeds by reduction of statements that interact with the store and
may create new threads. Reduction is fair between threads. Once a statement
becomes reducible, it stays reducible.

4.1.1 Value Description. The values provided are records (including lists), num-
bers, literals (names and atoms), and closures. Except for names and closures, these
values are defined in the usual way. Closures are created as part of procedures and
are only accessible through the procedure name. The other values can be written
explicitly or referred to by variables:

local V W X Y Z H T in
V=queue(head:H tail:T) % Record
W=H|T % Record (representing a list)
X=333667 % Number
Y=foo % Literal (atom)
{NewName Z} % Literal (name)

end

A name has no external representation and hence cannot be forged within the
language. The call {NewName Z} creates a new name that is unique systemwide.
Names are used to identify cells, procedures, and threads. Names can be used to
add hidden functionality to entities. For example, the server loop of Section 5.4.2
is stopped with a secret name. Names are to language security what capabilities
are to implementation security.

4.1.2 Variable Declaration. All variables are logic variables. They must be de-
clared in an explicit scope bracketed by local and end. The system enforces that
a variable always refers to the same value. A variable starts out with its value un-
known. The value becomes known by binding the variable, i.e., after executing the
binding X=V, variable X has value V.10 The binding operation is called incremental
tell [Smolka 1995b]. In essence, incremental tell only adds variable bindings that
are consistent with existing bindings in the store.

Any attempt to use a variable’s value will block the thread making the attempt
until the value is known. From the viewpoint of the thread, this is unobservable. It
affects only the relative execution rate of the thread with respect to other threads.
Therefore logic variables introduce a fundamental dataflow element in the execution
of OPM.

Binding variables is the basic mechanism of communication and synchronization
in OPM. It decouples the acts of sending and receiving a value from the acts of
calculating and using that value. A logic variable can be passed to a user thread
before it is bound:

local X in % Declare X, value is unknown

10Variables may be bound to other variables. An exception is raised if there is an attempt to bind
a variable to two different values.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 815

thread {Consumer X} end % Create thread, use X
{Producer X} % Calculate value of X

end

The call {Consumer X} can start executing immediately. Its thread blocks only
if X’s value is not available at the moment it is needed. We assume that the call
{Producer X} will eventually calculate X’s value.

4.1.3 Procedure Definition and Call. Both procedure definitions and calls are
executed at run-time. For example, the following code defines MakeAdder, which
itself defines Add3:

local
MakeAdder Add3 X Y

in
proc {MakeAdder N AddN} % Procedure definition

proc {AddN X Y} Y=X+N end
end
{MakeAdder 3 Add3} % Procedure call
{Add3 10 X} % X gets the value 13
{Add3 1 Y} % Y gets the value 4

end

Executing the call {MakeAdder 3 Add3} defines Add3, a two-argument procedure
that adds 3 to its first argument. Executing a procedure definition creates a pair
of a name and a closure. A variable referring to a procedure actually refers to the
name. When calling the procedure, the name is recognized as corresponding to a
procedure definition. A closure is a value that contains the procedure code and the
external references of the procedure (which are given by lexical scoping).

4.1.4 State Declaration and Update. Variables always refer to values, which
never change. Stateful data must be declared explicitly during execution by creat-
ing a cell. The call {NewCell X C} creates a pair of a new name (referred to by
C) and an initial content X. The content can be any value. The pair is called the
content-edge of the cell. Two other operations on cells are an atomic read-and-write
(exchange) and an atomic read (access). The call {Exchange C X Y} atomically
updates the cell with a new content Y and invokes the binding of X to the old
content, and the call {Access C X} invokes the binding of X to the cell content.

local C X1 X2 X3
in

{NewCell bing C} % C’s cell has initial content bing
{Exchange C X1 bang}
% X1 bound to bing; new content is bang
{Exchange C X2 bong(me:C was:X2)}
% X2 bound to bang; new content is bong(me:C was:X2)
{Access C X3}
% X3 bound to bong(me:C was:X2)

end

Cells and threads are the only stateful entities in OPM. The other stateful entities
in Distributed Oz, namely objects and ports, are defined in terms of cells.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

816 · Peter Van Roy et al.

4.1.5 Conditional. There is a single conditional statement. The condition must
be a test on the values of data structures:

local X in
thread % Put conditional in its own thread

% Block until can decide the condition
if X=yes then Z=no else Z=yes end

end
X=no % Now decide the condition: it is false

end

The conditional blocks its thread until it has enough information about the value of
X to decide whether X=yes is true or false. In this case, the binding X=no makes it
false. Local logic variables may be introduced in the condition. Their scope extends
to the end of the then branch.

4.1.6 Thread Declaration. Execution consists of the preemptive and fair reduc-
tion of a set of threads. Each thread executes in strictly sequential manner. A
thread will block, or suspend execution, if a value it needs is not available. The
thread becomes reducible again when the value becomes available. Concurrency is
introduced explicitly by creating a new thread:

local Loop in
proc {Loop N} % Define a procedure

{Loop N+1}
end
thread % Run an infinite loop in a new thread

{Loop 0}
end

end

Each thread is identified uniquely by a name, which can be obtained by executing
{GetThreadID T} in the thread. With the thread name, it is possible to send
commands to the thread, e.g., suspend, resume, and set priority. Thread names
can be compared to test whether two threads are the same thread.

4.1.7 Exception Handling. Exception handling is an extension to a thread’s
strictly sequential control flow that allows to jump out from within a given scope.
For example, AlwaysCalcX will return a value for X in cases when CalcX cannot:

proc {AlwaysCalcX CalcX A X}
try

local Z in
{CalcX A Z}
Z=X % Bind X if there is no exception in CalcX

end
catch E then

{FailFix A X}
end

end

The try S1 catch E then S2 end defines a context for exception handling in
the current thread. If an exception T is raised during the execution of S1 in the
same thread then control will transfer to the catch clause of the innermost try. If

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 817

T matches E then S2 is executed, and the try is exited; otherwise the exception is
reraised at an outer level. User-defined exceptions can be raised by the statement
raise T end.

4.2 Compound Entities

Distributed Oz provides the following two additional derived entities over OPM:

—Concurrent objects with explicit reentrant locking. There is syntactic support
for classes with multiple inheritance and late binding.

—Ports, which are asynchronous channels related to M-structures [Barth et al.
1991].

These entities are entirely defined in terms of OPM. They are provided because they
are useful abstractions. In Section 5 they are given a specific distributed semantics.

4.2.1 Concurrent Objects. An object in Oz 2 is defined in OPM as a one-
argument procedure. The procedure references a cell which is used to hold the
object’s internal state. State update and access are done with cell exchange and
access. The procedure’s argument is the message, which indexes into the method
table. Methods are procedures that are passed the message and the object’s state.
Mutual exclusion of method bodies is supported through explicit reentrant locking.

Class definitions and object declarations are both executed at run-time. A class
definition builds the method table and resolves conflicts of multiple inheritance.
Like OPM, both class definitions and object declarations are fully compositional
with respect to all language features. For example, arbitrary nesting is allowed
between class, object, procedure, and thread declarations. The following presents a
definition of objects consistent with Oz 2. For more information see Smolka [1995a],
Haridi [1996], Henz [1997], and Smolka et al. [1995].

An object without locking. The following example in Oz 2 syntax defines the class
Counter:

class Counter % Define class
attr val:0 % Attribute declaration with initial value
meth inc % Method declaration

val := @val + 1
end
meth get(X) % Method with one argument

X = @val
end
meth reset

val := 0
end

end

Objects of this class have a single attribute val with initial value 0 and the three
methods inc, get, and reset. Attribute access is denoted with @ and attribute
assignment with :=.

An object with locking. Instances from this class may be accessed from several
concurrent threads. To make sure that the methods are mutually exclusive, Oz 2
uses reentrant locking. This is done by using the construct lock S end on the

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

818 · Peter Van Roy et al.

part of the methods that require exclusive access. This can be done by specializing
the Counter class as follows:

class LCounter from Counter
prop locking % Declare an implicit lock
meth inc

lock Counter,inc end % Call the method of superclass
end
meth get(X)

lock Counter,get(X) end
end
meth reset

lock Counter,reset end
end

end

The above class declares an implicit lock and specializes the methods of the super-
class Counter. The notation Counter,inc is a static method call to the methods
of the Counter class. An instance is created using the procedure New as follows:

C={New LCounter} % Create instance
{C inc} % Send message
{C get(X)} % Return with X=1

With the above class definition, the object C behaves in a way equivalent to the
following code in OPM:

proc {NewCounter ?C}
State = s(val:{NewCell 0 $})
Lock = {NewLock $}
Methods = m(inc:Inc get:Get reset:Reset)
proc {Inc M} V W in

{Lock proc {$} {Exchange State.val V W} W=V+1 end}
end
proc {Get M} X in

M=get(X) {Lock proc {$} {Access State.val X} end}
end
proc {Reset M}

{Lock proc {$} {Exchange State.val _ 0} end}
end

in
proc {C Message}
M in

{Label Message M}
{Methods.M Message}

end
end

This example introduces four syntactic short-cuts which will be used freely from now
on. First, the question mark in the argument ?C is a comment to the programmer
that C is an output. Second, we omit the local and end keywords for new local
variables in a procedure or a conditional. Third, all variables occurring before the
in and either as procedure names or to the left-hand side of equalities are newly
declared. Fourth, we add a nesting notation for statements, so that Lock={NewLock

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 819

$} is equivalent to {NewLock Lock}. The dollar symbol is used as a placeholder.
We use the notation proc {$...} ... end for anonymous procedures.

The procedure {NewLock Lock} returns a reentrant lock named Lock. In OPM
a reentrant lock is a procedure that takes another procedure P as argument and
executes P in a critical section. The lock is thread-reentrant in the sense that
it allows the same thread to enter other critical sections protected by the same
lock. Other threads trying to acquire the lock will wait until P is completed. The
definition of NewLock in OPM will be given shortly. As we will see, thread-reentrant
locking is modeled in OPM using cells and logic variables.

The procedure NewCounter defines the variables State, Lock, and Methods.
State contains the state of the object defined as a record of cells; Lock is the
lock; and Methods is the method table. Both the state and lock are encapsulated
in the object by lexical scoping. The call {NewCounter C} returns a procedure
C representing the object. This procedure, when given a message, will select the
appropriate method from the method table and apply the method to the message.
The call {Label M X} returns record M’s label in X.

Reentrant locking in OPM. A thread-reentrant lock allows the same thread to
reenter the lock, i.e., to enter a dynamically-nested critical region guarded by the
same lock. Such a lock can be secured by at most one thread at a time. Concurrent
threads that attempt to secure the same lock are queued. When the lock is released,
it is granted to the thread standing first in line. Thread-reentrant locks can be
modeled by the procedure NewLock defined as follows:

proc {NewLock ?Lock}
Token = {NewCell unit $}
Current = {NewCell unit $}

in
proc {Lock Code}

ThisThread={GetThreadID $}
LockedThread

in
{Access Current LockedThread}
if ThisThread=LockedThread then

{Code}
else Old New in

{Exchange Token Old New}
{Wait Old}
{Exchange Current _ ThisThread}
try

{Code}
finally

{Exchange Current _ unit}
New=unit

end
end

end
end

This assumes that each thread has a unique identifier T that is different from the
literal unit and that is obtained by calling the procedure {GetThreadID T}. The

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

820 · Peter Van Roy et al.

_

t t

thread A thread B

Send the elements

Respect order X1

X3

X2

within threads

Elements appear at end of stream

{Snd X1}

{Snd X2}

{Snd X3}
Str = X1 | X3 | X2 | _

Str =

{Port entity =
Procedure ‘Snd’
Stream ‘Str’

Fig. 2. Ports: asynchronous channels with multicast ability.

{Wait Old} call blocks the thread until Old’s value is known. The try ... fi-

nally S end is syntactic sugar that ensures S is executed in both the normal and
exceptional cases, i.e., an exception will not prevent the lock from being released.

4.2.2 Ports. A port is an asynchronous channel that supports ordered many-to-
one and many-to-many communication. A port consists of a send procedure and a
stream (see Figure 2). A stream is a list whose tail is a logic variable. Sends are
asynchronous and may be invoked concurrently. The entries sent appear at the end
of the stream. The send order is maintained between entries that are sent from
within the same thread. No guarantees of order are given between threads.

A reader can wait until the stream’s tail becomes known. Since the stream is
stateless, it supports any number of concurrent readers. Multiple readers waiting
on the same tail can be informed of the value simultaneously, thus providing many-
to-many communication. Adding an element to the stream binds the stream’s tail
to pairs (cons cells) containing the entry and a logic variable as the new tail.

Within OPM one can define a port as a send procedure and a list. The procedure
refers to a cell which holds the current tail of the list. Ports are created by NewPort,
which is defined as follows:

proc {NewPort Str ?Snd}
C={NewCell Str $}

in
proc {Snd Message}
Old New in

{Exchange C Old New} % Create new stream tail
thread Old=Message|New end % Add message to stream

end
end

Calling {NewPort Str Snd} creates the procedure Snd and ties it to the stream
Str. Calling {Snd X} appends X to the stream and creates a new unbound end of
the stream. That is, the tail S of the stream is bound (S=X|S2), and S2 becomes

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 821

stateful

stateless

unknown

known

stationary

mobile

cell

object

port

thread

procedurelazy

eager value

Binding causes value to be multicast.

Executing causes replication to executing site.

Value is replicated to each site that references it.

Execution is sequential and remains on the same site.

thread. Stream is always created on the same site.
Send is asynchronous and ordered from within same

State update causes state to move to sending site.

Exchange causes content-edge to move to executing site.

logic variable

Oz 2 entity

Fig. 3. Oz 2 entities and their distributed semantics.

the new tail. One way to build a server is to create a thread that waits until
new information appears on the stream and then takes action, depending on this
information. Section 5.4.1 shows how to use a port to code a server.

5. DISTRIBUTION MODEL

Distributed Oz defines a distributed semantics for all basic entities and compound
entities. By this we mean that each operation of each entity is given a well-defined
network behavior. This section defines and motivates this behavior. The distributed
semantics for all seven entities is classified and summarized in Figure 3. We discuss
separately replicable entities (values and procedures), logic variables, and stateful
entities (cells, objects, ports, and threads). The semantics of the basic stateful
entity, the cell, are defined in Section 6. Appendix A proves correctness of the cell’s
mobile state protocol. Definitions and correctness proofs for objects and ports
should be easy to devise after understanding the cell.

5.1 Replication

All stateless entities, namely values and procedures, are replicated. That is, copies
are made when necessary to improve network behavior. Since the entities never
change, using copies does not affect the language semantics. An important design
decision is how much of a stateless data structure to replicate eagerly. Too much
may cause resource limits to be exceeded on the receiving site. Too little may cause
a great increase in latency. The current design incorporates both eagerness and
laziness so that the programmer can program the degree of laziness desired.

We summarize the lazy replication protocol, i.e., the distributed algorithm that
manages replication. Records, numbers, and literals are replicated eagerly, i.e.,
there is no such thing as a remote reference to a record.11 Procedures are repli-
cated lazily, i.e., one may have remote references to a procedure. The procedure is
replicated when it is applied remotely. Both the compiled code and the closure are
given global addresses. Therefore a site has at most one copy of each code block and

11Therefore, it is possible to have multiple copies of the same record on a site, since the same
record may be transferred many times.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

822 · Peter Van Roy et al.

closure. All network messages, except for responses to explicit replication requests,
do not contain any procedure code nor closure. A replication request is sent only
if the code or closure is not available locally.

The two extremes (eager and lazy) are thus provided. This allows the program-
mer to design the degree of eagerness or laziness desired in his or her data structures.
This is not the only possible design; good arguments can also be given for eager
procedure replication and an independent mechanism to introduce laziness.

The following example shows how a large tree can be dynamically partitioned
into eager and lazy subtrees by introducing procedures:

proc {MakeLazyTree E L R ?X}
I1 I2 in

X=bigtree(leftlazy:I1 rightlazy:I2 eagerbranch:E)
proc {I1 T1} T1=L end
proc {I2 T2} T2=R end

end

Executing {MakeLazyTree E L R X} with three record arguments E, L, and R re-
turns a record X with one eager field corresponding to E and two lazy fields corre-
sponding to L and R. When a reference to X is communicated to a site, the subtree
at eagerbranch is transferred immediately while the subtrees at leftlazy and
rightlazy are not transferred. Executing {I1 Y} transfers the left subtree and
binds it to Y.

5.2 Logic Variables

A logic variable is a reference to a value that is not yet known. Since a logic variable
does not correspond to a sequence of values, but to a single value, we consider it
to be stateless. There are two basic operations on a logic variable: binding it and
waiting for it to have a value. Binding a logic variable eagerly replaces the logic
variable by its value on all sites that reference it. Since a value is stateless, any
number of readers can wait concurrently for the value to become known. This
binding protocol, also called variable elimination protocol, is the only distributed
algorithm needed to implement distributed unification.12

In addition to their role in improving latency tolerance, logic variables provide
the programmer with an efficient and expressive way to dynamically manage multi-
cast groups. A multicast sends data to a predefined subset of all network addresses,
called the multicast group. Recent protocol designs support multicast as a way to
increase network efficiency [Deering 1989]. Binding a logic variable can be imple-
mented using a multicast group. Binding to a record multicasts the record. Binding
to a procedure multicasts only the name of the procedure (not the closure). Binding
to another logic variable merges the two multicast groups.

If a logic variable is bound to a list whose tail is a logic variable, then a new
multicast group can be immediately created for the tail. Implementations may
be able to optimize the binding to reuse the multicast group of the original logic
variable for the tail. In this way, efficient multicasting of information streams can
be expressed transparently.

12The distributed unification algorithm will be the subject of another article.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 823

5.3 Mobility Control

Any stateful entity, i.e., cell, object, port, or thread, is characterized by its home
site. Mobility control defines what happens to the home site for each operation
on the stateful entity. For example, invoking an exchange operation on a cell is
defined to change the home site to be the invoking site. A stateful entity is referred
to as mobile or stationary, depending on whether the entities’ basic state-updating
operation is mobile or stationary.

To allow programming of arbitrary communication patterns, the language must
provide at least one mobile and one stationary entity. To satisfy this condition, we
define cells and objects to be mobile and ports and threads to be stationary.

— Cells. A cell is mobile. A cell may be accessible from many sites, each of which
knows the cell name. Only the home site contains the cell’s content-edge, which
pairs the name and the content. Invoking an exchange from any site causes a
synchronous move of the content-edge to that site. This is done using a mobile
state protocol to implement the interleaving semantics of the exchanges (see
Section 6). Invoking a cell-access operation does not move the content-edge.
Only the cell’s content is transferred to the invoking site.

— Objects. An object is mobile, and its distribution semantics obeys its OPM
definition. When a method is called remotely, the procedures corresponding
to the object and the method are replicated to the calling site. The method
is then executed at the calling site. When the object’s state is updated, the
content-edge of the cell holding the state will migrate to the site. Subsequent
method calls will be completed locally without network operations. If the object
possesses a lock, then operations on the object’s state will not be disturbed by
remote requests for the lock until it is released. This is implemented by using
a cell-access operation to check the current thread (see reentrant locks).

— Ports. A port is stationary. Invoking a send from any site causes a new entry
to appear eventually in the port’s stream at its home site. The send operation
is defined to be asynchronous (nonblocking) and ordered (FIFO). This behavior
cannot be defined in terms of OPM. It is proper to the distributed semantics.
Send operations complete immediately (independently of any network opera-
tions), and messages sent from a given thread appear on the stream in the same
order that they were sent.

We provide ports as an entity for two reasons. First, a stationary port is
a natural way to build a server. Second, the asynchronous ordering supports
common programming techniques and can exploit popular network protocols.
Ports have a second operation, localize, which causes a synchronous move of
the home site to the invoking site. Without the ability to localize ports, mostly
stationary objects cannot be implemented transparently (see Section 5.4.2).

— Threads. A thread is stationary. The reduction of a thread’s statement is
done at its home site, which is the thread’s creation site. A thread cannot
change sites. First-class references to threads may be passed to other sites
and used to control the thread. For example, an exception may be raised in
a thread from a remote site. Commands to a thread from a remote site are
sent synchronously and in order, as an RPC. This is modeled as if the target

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

824 · Peter Van Roy et al.

proc {MakeStat Obj ?StatObj}
Str
proc {Serve S}

if M Ss in S=M|Ss then
{Obj M}
{Serve Ss} % Loop on received messages

else skip end
end

in
{NewPort Str StatObj} % Port is stationary
thread {Serve Str} end % The server loop

end

Fig. 4. Making an object stationary (first attempt).

thread access were packaged in a port, and the calling thread suspends until
the operation is performed.

The protocols used to implement mobility control for objects and ports are both
based on the mobile state protocol given in this article. They are extended to
provide for the operations of the particular entity. For example, the port protocol
manages the mobility of the home site as well as the FIFO connections from other
sites to the home site. The port protocol is defined in Section 6.4.4.

5.4 Programming with Mobility Control

We show how to concisely program arbitrary migratory behavior using the entities
of Distributed Oz. Expressing other distributed-programming idioms (e.g., RPC
and client-server architectures) is left as an exercise for the reader. We assume the
existence of primitives to initiate a computation on a new site.

In a user program, the mobility of an object must be well-defined and serve the
purpose of the program. Some objects need to stay put (e.g., servers), and others
need to move (e.g., mobile agents or caches). The most general scenario is that
of the caller and the object negotiating whether the object will move. The basic
implementation technique is to define procedures to transparently limit the mobility
of an object, which is freely mobile by default. We show in three steps how this is
achieved:

—Freely mobile objects. This is the default behavior for objects. Any object
defined as in Section 4.2.1 will move to each site that sends a message that
updates the object’s state. The object is guaranteed to stay at the site until the
lock is released within the invoked method. While the lock is held, the object
will not move from the site.

—Stationary objects. A stationary object executes all its methods on the same
site. Any object can be made stationary using the technique given in Sec-
tion 5.4.1.

—Mostly stationary objects. A mostly stationary object remains stationary
unless explicitly moved. Any freely mobile object can be made mostly stationary
using the technique given in Section 5.4.2.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 825

proc {MakeStat Obj ?StatObj}
Str Send
proc {Serve S}

if M Sync Ss in S=msg(M Sync)|Ss then
thread

try {Obj M} Sync=unit
catch E then Sync=exception(E) end

end
{Serve Ss} % Loop on received messages

else skip end
end

in
{NewPort Str Send} % Port is stationary
proc {StatObj M}
Sync E in

{Send msg(M Sync)} % Sync variable ensures order
if Sync = exception(E) then

raise E end
else skip end

end
thread {Serve Str} end % The server loop

end

Fig. 5. Making an object stationary (correct solution).

Each of the latter two cases defines a procedure that can control the mobility of any
mobile object. This is an important modularity property: it means that one can
change the network behavior of a program’s objects without rewriting the objects in
any way. The objects and their mobility properties are defined independently. This
property is obtained independently of the object system’s metaobject protocol.

5.4.1 Stationary Objects. An object can be made stationary be wrapping it in
a port. Figure 4 shows a simple way to do this by defining the procedure MakeStat
that takes any object Obj and returns the procedure StatObj. The result of calling
StatObj is to send messages to a port. The thread in the construction thread

{Serve Str} end is responsible for the actual object invocation. The thread takes
messages from the port’s stream and sends them to the object. The thread does
not move. Therefore, StatObj behaves like Obj except that Obj does not move.
After the first object invocation, the object is at the site of the server loop and
will not move (unless, of course, some threads are given direct references to Obj).
For example, if upon its creation Obj is passed directly to MakeStat, and only
references to StatObj are passed to others, then Obj will forever remain on its
creation site.

However, the solution in Figure 4 is too simple. StatObj deviates from providing
exactly the same behavior as Obj in three ways. First, sending messages to StatObj
is asynchronous, whereas sending messages to Obj is synchronous. Second, only one
method of Obj can be executing at a time, since Obj is inside its own thread. Third,
exceptions in Obj are not seen by StatObj.

Figure 5 gives a correct definition of the procedure MakeStat. The logic vari-

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

826 · Peter Van Roy et al.

able Sync is used to synchronize {StatObj M} with {Obj M}. The notation msg(M

Sync) pairs M and Sync in a record. Waiting until Sync is bound to a value guar-
antees that the thread executing {StatObj M} continues execution only after {Obj
M} is finished. This means that messages sent from within one thread are received
in the order sent. The example also models exceptions correctly by transferring the
exceptions back to the caller.13

There are many useful variations of this solution:

—Leaving out the synchronization variable Sync makes StatObj behave asyn-
chronously. Then message sending is a local operation that takes constant time.
Messages are received in any order.

—Leaving out the thread ... end inside Serve ensures that Obj executes only a
single message at a time. Together with the synchronization variable, this results
in an end-to-end flow control between the sender and receiver. All messages sent
are serialized at Obj and only a single message is handled at a time.

This solution makes it clear that a stationary object is not a simple concept. It
requires synchronization between sites, passing of exceptions between sites, and
thread creation. Freely mobile objects are simpler, since their execution is always
local. The mechanics of making an object stationary can be encapsulated, as is
done here, to hide its complexity from the user. In general, most of the com-
plexity of concurrent programming can be encapsulated. The practicality of this
approach is demonstrated on an industrial scale by the Ericsson Open Telecom
Platform [Armstrong et al. 1996; Ericsson 1996].

5.4.2 Mostly Stationary Objects. It may be desirable in special cases to move
an object that has been made stationary, e.g., for a server to move closer to its
clients or to leave a machine that will be shut down. We require a solution in
which it is eventually true that sending a message will need only a single network
hop, no matter how many times the object moves. Figure 6 gives a solution that
uses the localize operation for ports. Port mobility is derived from cell mobility;
see Sections 5.3 and 6.4.4. The figure defines the procedure MakeFirm that takes
any freely mobile object Obj and returns two procedures, FirmObj and Move. The
procedure FirmObj has identical language semantics to Obj but is stationary.14

Move is a zero-argument procedure that when applied, atomically moves the object
to the invoking site. That is, in each thread’s stream of messages to FirmObj, there
is a point such that all earlier messages are received on the original site, and all
later messages are received on the new site.

Like a stationary object, a mostly stationary object consists of an object wrapped
in a port. To handle incoming messages, a server loop is installed on the port’s
home site. To move the object, this loop is stopped; the port’s home site is moved
using the localize operation; and a new server loop is installed on the new site. The
server loop in Figure 6 is stopped by sending the message Key(Stopped Rest),

13One subtle point remains that requires attention. The encapsulated object can escape by a
method returning self. The problem can be solved by using inheritance to make the object
stationary or by using the Oz 2 metaobject protocol [Henz 1997]. We do not show the details,
since this would take us too deep into the object system.
14Adding the corrections of Figure 5 is left as an exercise for the reader.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 827

proc {MakeFirm Obj ?FirmObj ?Move}
Str Prt Key={NewName $}
proc {Serve S} % Stoppable server proc.

if Stopped Rest Ss in
S=Key(Stopped Rest)|Ss then
Rest=Ss
Stopped=unit

elseif M Ss in S=M|Ss then
{Obj M}
{Serve Ss}

else skip end
end

in
proc {Move}
Stopped Rest in

{Prt Key(Stopped Rest)} % Stop old server loop
{Wait Stopped}
{Localize Prt} % Transfer to new site
thread {Serve Rest} end % Start new server loop

end
{NewPort Str Prt}
proc {FirmObj M} {Prt M} end
thread {Serve Str} end % Initial server loop

end

Fig. 6. Making an object mostly stationary.

where Key is an Oz 2 name used to identify the message and where Stopped and
Rest are outputs. Since Key is unforgeable and known only inside MakeFirm, the
server loop can be stopped only by Move. The port Prt must be hidden inside a
procedure; otherwise it can be localized by any client. When the loop is stopped,
Rest is bound to the unprocessed remainder of its message stream. The new server
loop uses Rest as its input.

From an algorithmic viewpoint, Figure 6 defines the distributed algorithm for
mostly stationary objects. This algorithm is a composition of three simpler algo-
rithms: (1) a mobile state protocol (for cells and extended for ports), which is the
scope of this article, (2) a variable elimination protocol (see Section 5.2), and (3) a
lazy replication protocol (see Section 5.1). The three algorithms are composed by
means of a notation which is exactly the OPM language. The technique of factoring
complex algorithms into simpler components has many advantages. For example,
Figure 6 can be extended in a straightforward way with a failure model, using the
exceptions of OPM.

6. CELLS: SEMANTICS AND MOBILE STATE PROTOCOL

In this section we specify the language semantics and distributed semantics of cells.
We first define both semantics in a high-level manner. In general, the language
semantics is defined as a transition relation between configurations. A configura-
tion is a pair consisting of a statement and a store. The distributed semantics
is an orthogonal refinement of the language semantics where the notion of site is

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

828 · Peter Van Roy et al.

made explicit. It is carefully designed to give a simple programmer model of net-
work awareness. In this article, however, we confine ourselves to the model of cell
mobility.

It will be shown in the case of the cell exchange operation that the distributed
semantics correctly implements the language semantics, hence achieving network
transparency. The mobile state protocol is part of a graph model of the execution
of OPM. We give the graph model in just enough detail to set the context of the
protocol. We then give an informal description and a formal specification of the
protocol. Appendix A proves that the formal specification correctly implements
the distributed semantics and consequently the language semantics.

6.1 Cell Semantics

Among the basic operations on cells there are creation, exchange, and access. We
give the language semantics of these operations and the distributed semantics of
exchange. The distributed semantics of the other operations should be relatively
easy to devise after understanding the exchange.

6.1.1 Basic Notation. All execution is described by the reduction of transition
rules. The reduction is an atomic operation that is described by a rule written
according to the following diagram:

(statement) (new statement)
(store) (new store)

This rule becomes applicable for a given statement when the actual store matches
the store given in the rule. Because the language is concurrent, reduction is in
general nondeterministic. The effect of a reduction is to replace the current config-
uration by a set of result configurations. In the case of cell operations, this set is
always a singleton. Fairness between threads implies that a rule is guaranteed to
reduce eventually when it is applicable and when it refers to the first statement of
a thread.

6.1.2 Language Semantics. We give the transition rules for cell creation, access,
and exchange. For all rules, the part of the store that is not relevant to the rule is
denoted by σ.

Cell creation
{NewCell X C} C=n

σ σ ∧ n:X
newName(n)

Cell creation is provided by the operation {NewCell X C}. The statement reduces
to the new statement C=n, where n is a new name taken from an infinite set of fresh
names. The new store contains the content-edge n:X, which pairs n with the initial
content X.

Cell access
{Access C X} X=Z

σ ∧ C=n ∧ n:Z σ ∧ C=n ∧ n:Z

Cell access is provided by the operation {Access C X}. The rule is reducible when
its first argument refers to a cell name. It reduces to the binding X=Z. The store
is unchanged. The binding is defined through other reduction rules. Reducing the
binding gives access to the content Z through X. If X and Z are incompatible, then
an exception is raised.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 829

Cell exchange
{Exchange C X Y} X=Z

σ ∧ C=n ∧ n:Z σ ∧ C=n ∧ n:Y

Cell exchange is provided by the operation {Exchange C X Y}. The rule is re-
ducible when its first argument refers to a cell name. It reduces to the new state-
ment X=Z, which gives access to the old content Z through X. The content-edge is
updated to refer to the new content Y.

6.1.3 Distributed Semantics of Exchange. The distributed semantics is an ex-
tension of the language semantics that specifies how the reduction is partitioned
among multiple sites. We introduce the notion of a representative on a site. This
notion is used to place statements and the store contents on one or more sites. By
store contents we mean content-edges and references to values or logic variables.
The representative of X on site i is denoted by Xi. The subscript denotes the site.
The exact notion of representative depends on what Oz 2 entity is considered (see
Figure 3). In the case of cells it is defined here. For other entities it is straight-
forward to devise after understanding the language graph and distribution graph
defined in Section 6.2.1. We define the distributed semantics in three steps:

—Define the representation of an entity as a formula written in terms of represen-
tatives.

—Define a mapping M from the representation of an entity to the entity it repre-
sents.

—Formulate the reduction rules in terms of representations.

To show that the distributed semantics implements the language semantics, we use
a technique variously known as abstraction [Lampson 1993] or simulation [Lynch
1996]. Consider the configuration (S, σ). Its reduction gives a set of new con-
figurations (S′, σ′). Consider the corresponding configuration (Sr, σr), written in
terms of representatives. Its (distributed) reduction gives a set of (S′

r, σ′

r). This
is summarized in the following diagram:

(S, σ)
ls
−→ (S′, σ′)

M ↑ ↑ M

(Sr, σr)
ds
−→ (S′

r, σ
′

r)

(1)

To show that the distributed semantics ds implements the language semantics ls,
we must show that M applied to the set of possible configurations (S′

r, σ′

r) gives
the same result as the set of possible configurations (S′, σ′).

Assume that a cell with name n exists on sites 1, ... k and that the content-edge
is on site p with content Z. We define the mapping M as follows:

Distributed semantics Language semantics
C1=n ∧ ... ∧ Ck=n C=n

(n:Z)p ∧ 1 ≤ ∀i ≤ k, i 6= p : (n:⊥)i n:Z

The cell is accessible from sites 1, ..., k, so that C1=n, C2=n, ... Ck=n together imply
C=n. The content-edge on site p is denoted by (n:Z)p. The other sites know the
cell but do not have the content-edge. This is denoted by (n:⊥)i for i 6= p. If we

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

830 · Peter Van Roy et al.

...

... ...

S

a : X

a : XX

record

procedure thread

port

celllogic variable

f(a1:X a2:Y ... an:Z)

a : X Y ... Z / S

Fig. 7. Nodes in the language graph.

assume the exchange is invoked on site q and that the content-edge is on site p,
where 1 ≤ p, q ≤ k, then the distributed reduction rule is

{Exchange C X Y}q (X=Z)q

σr ∧ C1=n ∧ ... ∧ Ck=n ∧ σr ∧ C1=n ∧ ... ∧ Ck=n ∧
(n:Z)p ∧ 1 ≤ ∀i ≤ k, i 6= p : (n:⊥)i (n:Y)q ∧ 1 ≤ ∀i ≤ k, i 6= q : (n:⊥)i

We assume that the representatives Xq , Yq , and Zq are created if needed to complete
the reduction. From this rule it follows that the cell is accessible from multiple
sites, that the content-edge exists on exactly one of these sites, that the exchange
is performed on exactly one of these sites, and that after the exchange the content-
edge is on the same site as the exchange.

Theorem T1. The distributed semantics of exchange implements the language
semantics of exchange.

Proof. Consider the reduction performed by the rule for distributed exchange.
It is clear from inspection that M continues to hold after the reduction.

If multiple exchanges are invoked on site q, it is easy to see that if p 6= q then the
first exchange requires nonlocal operations. One can deduce also that subsequent
exchanges are purely local. If exchanges are invoked from many sites, then they
will be executed in some order. If the content-edge refers to an object state, then
the object, while mobile, will be correctly updated as it moves from site to site.
The system uses a mobile state protocol to implement this rule.

6.2 The Graph Model

We present a graph model of the distributed execution of OPM. The graph model
plays a key role in bridging the distributed semantics with the mobile state pro-
tocol and the implementation architecture. An OPM computation space can be
represented in terms of two graphs: a language graph, in which there is no notion of
site, and a distribution graph, which makes explicit the notion of site. We explain
what mobility means in terms of the distribution graph. Finally, we summarize the
failure model in terms of the distribution graph.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 831

Language graph Distribution graph

Site 1 Site 2 Site 3 Site 1 Site 2 Site 3

M

access structure for N2

N1 P1 P2 P3 N3N3N2N1

Fig. 8. From language graph to distribution graph.

6.2.1 The Distribution Graph. The distributed execution of OPM is introduced
in two steps. In the first step, we model an OPM computation space as a graph,
called language graph. Each Oz 2 entity except for an object corresponds to one
node in the language graph (see Figure 7). An object is a derived concept that is
modeled as a subgraph, namely a procedure with references to the object’s state,
lock, and methods. OPM execution is modeled as a sequence of graph transforma-
tions.

In the second step, we extend the language graph with the notion of site. First
introduce a finite set of sites, and then annotate each node of the language graph
with a site. If a node is referenced by a node on another site, then we map it to a set
of nodes. This set is called the access structure of the original node (see Figure 8).
An access structure consists of a set of global nodes, namely one proxy node per
site and one manager node for the whole structure. In a cell access structure, the
content-edge is an edge from exactly one proxy node to the content. Nodes that
are only accessed locally (local nodes) do not have an access structure. In this case,
the content-edge is an edge from the local node to the content.

The graph resulting after all nodes have been transformed is called the distri-
bution graph. OPM execution is again modeled as a sequence of graph transfor-
mations. These transformations respect language semantics while defining the dis-
tributed semantics. For a cell access structure, a proxy node Pi on site i corresponds
to the representatives Ci=n ∧ (n:X)i if the content-edge is on site i, and otherwise
to Ci=n ∧ (n:⊥)i. The content-edge itself corresponds to the representative (n:X)i.

6.2.2 Mobility in the Distribution Graph. At this point, it is useful to clarify
how cell mobility fits into the distribution graph model. First, the nodes of the
distribution graph never change sites. A manager node has a global address that
is unique across the network and never changes. This makes memory management
very simple, as explained in Section 7.2. Second, access structures can move across
the network (albeit slowly) by creating proxies on fresh sites and by losing local
references to existing proxies. Third, a content-edge can change sites (quickly) if
requested to do so by a remote exchange. This is implemented by a change of state
in the cell proxies that is coordinated by the mobile state protocol.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

832 · Peter Van Roy et al.

The mobile state protocol is designed to provide efficient and predictable network
behavior for the common case of no failure. It would be extremely inefficient to
inform all proxies each time the content-edge changes site. Therefore, we assume
that proxies do not in general know where the content-edge is located. A proxy
knows only the location of its manager node. If a proxy wants to do an exchange
operation, and it does not have the content-edge, then it must ask its manager
node. The latency of object mobility is therefore at most three network hops (less
if the manager node is at the source or destination).

Having a fixed manager node greatly simplifies the implementation. However,
it reduces locality and introduces an unwanted dependency on a third party (i.e.,
the manager site). For example, object movement within Belgium is expensive if
the manager is in Sweden, and it becomes impossible if the network connection
to Sweden breaks down. We present two possible extensions to the mobile state
protocol, each of which solves these problems and is compatible with the current
system architecture. The final solution is being designed in tandem with the failure
model (see below). The first solution is to dynamically construct a tree of managers,
such that each proxy potentially has a manager on its own site. The second solution
is for the proxies to change managers. For example, assume the old manager knows
all its proxies. To change managers, it creates a new manager and then it sends a
message to each proxy informing it of the new manager.

6.2.3 The Failure Model. The failure model must reliably inform the program-
mer if and when a failure occurs and allow him or her to take the necessary actions.
The failure model is still under discussion, so the final design will likely differ from
the one presented here. This section summarizes an extension to the mobile state
protocol that provides precise failure detection. The programmer can enable a fail-
ure to appear in the language as an exception. Objects based on the extended proto-
col can be used as building blocks to program reliable objects. For example, one can
program a reliable cell that has a primary-slave architecture [Coulouris et al. 1994].

We distinguish between network failure and site failure. All failures become
visible lazily in a proxy. For sites we assume a stopping failure (crash) model: a
failed site executes correctly up to the moment of the failure, after which it does
nothing. A thread attempts to access a proxy to do a cell operation. If the access
structure cannot continue to function normally, then the proxy becomes a failure
node, and attempts to invoke an operation can cause an exception to be raised in
the thread.

In the case of site failure, a cell access structure has two failure modes:

—Cell failure. The complete access structure fails if either the manager node
fails or if a proxy that contains the content-edge fails. The manager does not
know at all times precisely where the content-edge is. The manager bounds the
set of proxies that may contain the content-edge by maintaining a conservative
approximation to the chain structure (see Appendix A). The content-edge is
guaranteed to be in the chain. If one proxy in the chain fails, then the manager
interrogates the proxies in the chain to distinguish between cell failure and proxy
failure.

—Proxy failure. This happens if a proxy fails that does not contain the content-
edge. This does not affect the computation and may be safely ignored.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 833

T

1 2

M2.get(P1)

Content

4.put(Nz)

Content-edge
1.request(T,Ny)

P P

P

T
z

z

P

1 2

M

Content

Content-edge
5.proceed(Pz)

Nx

P

N

P

y

N

N

x

y

Mz

zN

Site 1 Site 2 Site 1 Site 2

3.forward(P1)

Fig. 9. Exchange initiates migration of content-edge.

It is impossible in general to distinguish between a failed site and a very slow
network. A cell may therefore fail even if no site has failed. This will normally be
a rare event.

6.3 Informal Description

We first give an informal description of the mobile state protocol. The protocol is
defined with respect to a single cell. Assume that the cell is accessible from a set of
sites. Each of these sites has a proxy node responsible for the part of the protocol
on that site. The proxy node is responsible for all cell behavior visible from its site.
In addition, there is a single manager node that is responsible for coordinating the
proxy nodes. These nodes together implement the distributed semantics of one cell.

The content-edge is stored at one of the cell proxies. Cell proxies exchange
messages with threads in the engine. To ask for the cell content, a thread sends a
message to a proxy. The thread then blocks waiting for a reply. After executing its
protocol, the proxy sends a reply giving the content. This lets the thread do the
binding. Figure 9 shows how this works. We assume that the content-edge is not at
the current proxy. A proxy requests the content-edge by sending a message to the
manager. The manager serializes possible multiple requests and sends forwarding
commands to the proxies. The current location of the content-edge may lag behind
the manager’s knowledge of who is the eventual owner. This is all right: the
content-edge will eventually be forwarded to every requesting site.

Many requests may be invoked concurrently to the same and different proxies,
and the protocol takes this into account. A request message from a thread that
issued {Exchange C X Y} will atomically achieve the following results: the content
Z is transferred to the requesting site; the old content-edge is invalidated; a new
content-edge is created bound to Y; and the bind operation X=Z becomes applicable
in the requesting thread.

Messages. The protocol uses the following nodes and messages. Pi denotes the
addresses of proxies in the distribution graph corresponding to cell C. Nx, Ny, Nz de-
note the addresses of nodes corresponding to variables X, Y, and Z. A manager under-
stands get(P). A proxy understands put(N), forward(P), and request(T,N),
where T is the requesting thread. A thread understands proceed(N).

Outline of protocol (Figure 9).

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

834 · Peter Van Roy et al.

Proxy
node

Protocol layerEngine

Manager
node

Proxy
node

Thread
node

Send(d,m)

Fig. 10. Interface between engine and protocol.

(1) Proxy P1 receives a request(T,Ny) from the engine. This message is sent by
thread T as part of executing {Exchange C X Y}. Thread T blocks until the
proxy replies. Ny is stored in P1 (but does not yet become the content-edge).
If the content-edge is at P1 and points to some node Na, then P1 immediately
sends proceed(Na) to T. Otherwise, get(P1) is sent to the manager.

(2) Manager M receives get(P1). Manager sends forward(P1) to the current
owner P2 of the content-edge and updates the current owner to be P1.

(3) Proxy P2 receives forward(P1). If P2 has the content-edge, which points to
Nz, then it sends put(Nz) to P1 and invalidates its content-edge. Otherwise,
wait until the content-edge arrives at P2. Sending the message put(Nz) causes
the creation of a new access structure for Nz.

15 From this point onward, all
references to Nz are converted to Pz.

(4) Proxy P1 receives put(Pz). At this point, the content-edge of P1 points to
Ny. P1 then sends proceed(Pz) to thread T.

(5) Thread T receives proceed(Pz). The thread then invokes the binding of Nx

and Pz.

6.4 Formal Specification

We formally define the mobile state protocol as a set of nondeterministic reduction
rules that determine the behavior of a subset of the distribution graph. We assume
nodes of three types: proxy, manager, and thread nodes. The proxy and manager
nodes form an access structure for a cell. We first define the notation for the rules
and the nodes’ internal state. Then we give the rule definitions. Finally, we describe
how to extend the protocol for ports. Appendix A gives a formal proof that the
protocol correctly implements the language semantics of cells.

6.4.1 Preliminaries. Consider a single manager node M, a set of k proxy nodes
Pi with 1 ≤ i ≤ k, and a set of m thread nodes Ti with 1 ≤ i ≤ m. All nodes have
state, can send messages to each other according to Figure 10, and can perform
internal operations. Let these nodes be linked together by a network N that is
a multiset containing messages of the form d : m where d identifies a destination
(proxy, manager, or thread node) and where m is a message.

The protocol is defined using reduction rules of the form

15For all types of entities Nz except records, which are replicated eagerly.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 835

Table III. Node State

Thread Ti
Attribute Type Initial value

id NodeRef GetThreadRef(i)

Manager M

Attribute Type Initial value

tail NodeRef GetProxyRef(1)

Proxy Pi
Attribute Type Initial value

state {FREE,CHAIN} CHAIN (i = 1), FREE (i 6= 1)
content NULL | NodeRef N (i = 1), NULL (i 6= 1)
forward NULL | NodeRef NULL
thread NULL | NodeRef NULL
newcontent NULL | NodeRef NULL
manager NodeRef GetManagerRef()
id NodeRef GetProxyRef(i)

Condition
Action

.

Each rule is defined in the context of a single node. Execution follows an interleaving
model. At each reduction step, a rule with valid condition is selected. Its associated
actions are reduced atomically. A rule condition consists of boolean conditions on
the node state and one optional receive condition Receive(d,m). The condition
Receive(d,m) means that d : m has arrived at d. Executing a rule with a receive
condition removes d : m from the network and performs the action part of the rule.
A rule action consists of a sequence of operations on the node state with optional
sends. The action Send(d,m) asynchronously sends message m to node d, i.e., it
adds the message d : m to the network. The action Receive(d,m) blocks until
message m arrives at d, at which point it removes d : m from the network and
continues execution.

We assume that the network and the nodes are fair in the following sense. The
network is asynchronous, and messages to a given node take arbitrary finite time
and may arrive in arbitrary order. All rules that are applicable infinitely often will
eventually reduce.

6.4.2 Node State. The node state is represented as a set of attributes of each
node. Table III lists the attributes for proxy, manager, and thread nodes, along
with their initial values. This table assumes without loss of generality that the
content-edge is initially at proxy P1. A NodeRef is a reference to any node. Get-
ManagerRef() returns a reference to the manager M. GetProxyRef(i) returns a
reference to proxy Pi. GetThreadRef(i) returns a reference to thread Ti. N is a
NodeRef giving the initial content of the cell. NULL is a special value that marks
an attribute as not valid. P.manager, P.id, and T.id are constants.

6.4.3 Rule Definitions. The protocol is defined in two parts. Figure 11 defines
the procedure exchange and bind, which is part of the thread. Figure 12 defines
the protocol rules. Rules 1–5 are defined for proxy nodes. Rule 6 is defined for the
manager node.

The reduction of both the statement {Exchange C X Y} and its resulting binding
X=Z is implemented in thread T by calling exchange and bind(P,Nx,Ny). The nodes

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

836 · Peter Van Roy et al.

procedure exchange and bind(P,Nx,Ny)
Send(P,request(T.id,Ny))
Receive(T,proceed(Nz))
bind(Nx,Nz)

end

Fig. 11. Mobile state protocol: Thread interface.

P, Nx, and Ny correspond to the variables C, X, and Y. T sends a message containing
Ny to the proxy P on its site. T blocks until the content-edge and the content have
moved to its site. Then the proxy sends the old content Nz to T. The exchange is
completed, strictly speaking, when Nz is received in T, because that is when the
bind operation becomes applicable. The thread then invokes bind(Nx,Nz).

Appendix A gives a proof that this specification implements the distributed se-
mantics of exchange. Every exchange eventually results in a bind operation with
correct arguments, and the content is updated correctly in the access structure. Ex-
change requests on a site without the content-edge will invoke the bind operation
when the content arrives.

P.state=FREE if P has not requested the content-edge. P.state=CHAIN if P
has requested the content-edge, which may not have arrived yet. P.content6=NULL
if and only if P has the content-edge. P.forward6=NULL if and only if P should
forward the content when it is present. P.thread and P.newcontent are used when
the content-edge is remote. They store the information necessary for a correct reply
when the content-edge arrives locally.

6.4.4 Extension for Port Mobility. The port protocol is an extension of the cell
protocol defined in the previous section. As explained in Section 5.3, a port has two
operations, send and localize, which are initiated by a thread referencing the port.
The localize operation uses the same protocol as the cell exchange operation. For a
correct implementation of the send operation, the port protocol must maintain the
FIFO order of messages even during port movement. Furthermore, the protocol
is defined so that there are no dependencies between proxies when moving a port.
This means that a single very slow proxy cannot slow down a localize operation.

Each port home is given a generation identifier. When the port home changes
sites, then the new port home gets a new generation identifier. Each port proxy
knows a generation which it believes to be the generation of the current port home.
No order relation is needed on generations. It suffices for all generations of a given
port to be pairwise distinct. For simplicity they can be implemented by integers.

The send operation is asynchronous. A send operation causes the port proxy to
send a message to the port home on a FIFO channel. The message is sent together
with the proxies’ generation. If a message arrives at a node that is not the home or
has the wrong generation, then the message is bounced back to the sending proxy
on a FIFO channel. If a proxy gets a bounced message then it does four things.
It no longer accepts send operations. It then asks the manager where the current
home is. When it knows this, it recovers all the bounced messages in order and
forwards them to the new home. Finally, when it has forwarded all the bounced
messages, it again accepts send operations from threads on its site.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 837

1. Request content (content not present).

Receive(P,request(T,Ny)) ∧ P.state=FREE

Send(P.manager,get(P.id))
P.state ← CHAIN
P.thread ← T
P.newcontent ← Ny

2. Request content and reply to thread (content present).

Receive(P,request(T,Ny)) ∧ P.content6=NULL

Send(T,proceed(P.content))
P.content ← Ny

3. Accept content and reply to thread.

Receive(P,put(Nz))

P.content ← Nz
Send(P.thread,proceed(P.content))
P.content ← P.newcontent

4. Accept forward.

Receive(P,forward(P’))

P.forward ← P’

5. Forward content.

P.forward6=NULL ∧ P.content6=NULL

Send(P.forward,put(P.content))
P.forward ← NULL
P.content ← NULL
P.state ← FREE

6. Serialize content requests (at manager).

Receive(M,get(P))

Send(M.tail,forward(P))
M.tail ← P

Fig. 12. Mobile state protocol: Migration of the content-edge.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

838 · Peter Van Roy et al.

Thread Cell State

Language graph layer

Reliable message layer

Memory management layer

Centralized engine

Network (TCP)

Nodes doing language operations

Reliable messages

Sited nodes sending subgraphs

Arbitrary-length byte sequences

Un/marshalling, building access structures
Shared address space and garbage collection

Distributed algorithms for:

DFKI Oz 2.0 byte-code emulator

M
PP StateThread

Cell

Nonblocking send, connection cache

mobile state, variable elimination, lazy replication

Fig. 13. System architecture on one site.

7. SYSTEM ARCHITECTURE

The mobile state protocol defines the distributed semantics of cells. This protocol
is only one aspect of a Distributed Oz implementation. Other important aspects
include the interface between the protocol and the centralized execution, how the
protocol is built on top of a shared computation space, and how the shared com-
putation space is built. This section summarizes these aspects in sufficient detail
to situate the protocol. Figure 13 shows an architecture for the execution of the
distribution graph. This architecture is fully implemented and is being used for
application development. Sections 7.1, 7.2, and 7.3 summarize the language graph
layer, the memory management layer, and the reliable message layer.

Distribution is added as a conservative extension to a centralized engine. The ex-
tension is designed not to affect the centralized performance. The centralized engine
executes internally all operations on local nodes. It is based on emulator technology
and has similar or better performance than current Java emulators [Henz 1997]. In
particular, DFKI Oz 2.0 threads are much cheaper than Java threads. Operations
on distributed entities are passed to the language graph layer. The language graph
layer implements the distributed semantics for all Oz 2 entities, e.g., it decides
when to do a local operation or a network communication. The language graph
layer rests on a “bookkeeping” layer, the memory management layer. This layer
implements the shared computation space, the building of access structures, and
the distributed garbage collection. The reliable message layer implements transfer
of arbitrary-length byte sequences between sites. It keeps a connection cache be-
tween sites and manages the message buffers. The network is the network interface
of the host operating system, providing standard protocols such as TCP/IP.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 839

Table IV. Object Granularity in the Distributed Oz
Implementation

Item Space (bytes)

Local object 36
Global object

Active proxy 64
Passive proxy 44
Manager 44

Protocol messages
get 15
forward 29
put 15 + S

7.1 Language Graph Layer

The distribution semantics of each Oz 2 entity is implemented in the language
graph layer. Each entity has a separate protocol. There are three essentially dif-
ferent protocols: mobile state (cells, objects, and ports), variable elimination (logic
variables), and lazy replication (procedures). Records and threads have trivial pro-
tocols. As illustrated in Figure 13 for cells, these protocols implement the illusion
that all entities are centralized.

Table IV gives the space usage of objects and messages in the mobile state pro-
tocol. Objects have a tag that defines them to be local, active proxy, passive proxy,
or manager. This tag is combined with other fields to take up no extra space. The
following extra run-time overhead is paid over a system that has only local objects.
For each object operation, test the tag to see if the object is local or global, and if it
is global, check if the content-edge is local. The local objects shown are of minimum
size; add 4 bytes for each attribute and method. The global object sizes include the
overhead for distributed garbage collection (see Section 7.2.3). A passive proxy is
one that has not been called since the most recent local garbage collection. Other
proxies are active. In the put message, S denotes the marshalled size of the state.

7.2 Memory Management Layer

7.2.1 Shared Computation Space. A two-level addressing scheme, using local
and global addresses, is used to refer to nodes. The translation between local and
global addresses is done automatically to maintain the following invariants. Nodes
on the same site are always referred to by local addresses. Nodes on remote sites
are always referred to by global addresses. Global addresses never change, since
nodes in the distribution graph never change sites. A node has a global address if
and only if it is remotely referenced. A node is remotely referenced if and only if
it is referenced from another site or from a message in transit. If the node is no
longer remotely referenced, then its global address will be reclaimed.

7.2.2 Building Access Structures. Access structures are built and managed auto-
matically when language entities become remotely referenced. This happens when-
ever messages exchanged between nodes on different sites contain references to other
nodes. If the reference is to a local node, then the memory management layer con-
verts the local node into an access structure. We say the local node is globalized
(see Figure 14). While the message is in the network, the access structure consists
of a manager and one proxy. When the message arrives at the destination site, then

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

840 · Peter Van Roy et al.

Site 1

Site 2

M

P

Site 1

L

Site 1

Site 2

M

P

P

Local node Export Import

Message

Fig. 14. Globalizing a local node.

a new proxy is created there. Access structures can reduce in size and disappear
completely through garbage collection.

7.2.3 Distributed Garbage Collection. Distributed garbage collection is imple-
mented by two cooperating mechanisms: a local garbage collector per site and a
distributed credit mechanism to reclaim global addresses. Local collectors can be
invoked at any time independently of other sites. The roots of local garbage col-
lection are all nodes on the collector’s site that are reachable from non-suspended
thread nodes or are remotely referenced.

A global address is reclaimed when the node that it refers to is no longer re-
motely referenced. This is done by the credit mechanism, which is informed by the
local garbage collectors. This scheme recovers all garbage except for cross-site cy-
cles. The only cross-site cycles in our system occur between different objects or cells.
Since records and procedures are both replicated, cycles between them will be local-
ized to single sites. The credit mechanism does not suffer from the memory or net-
work inefficiencies of previous reference-counting schemes [Plainfossé and Shapiro
1995].

We summarize briefly the basic ideas of the credit mechanism. Each global
address is created with an integer (its debt) representing the number of credits that
have been given out to other sites and to messages. Any site or message that
contains the global address must have at least one credit for the global address.
The creation site is called the owner. All other sites are called borrowers. A node
is referenced remotely if it is on its owner site and if its debt is nonzero.

Initially there are no borrowers, so the owner’s debt is zero. The owner lends
credits to any site or message that refers to the node and increments its debt each
time by the number of credits lent. When a message arrives at a borrower, its
credits are added to the credits already present. When a message arrives at the
owner, its credits are deducted from the owner’s debt. When a borrower no longer
locally references a node then all its credits are sent back to the owner. This is
done by the local garbage collector. When the owner’s debt is zero then the node

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 841

is only locally referenced, so its global address will be reclaimed.
Consider the case of a cell access structure. The manager site is the owner,

and all other sites with cell proxies are borrowers. A proxy disappears when no
longer locally referenced. It then sends its credit back to the manager. If the
proxy contains the content-edge, then the content-edge is transferred back to the
manager site as well. Remark that this removes a cross-site cycle within the cell
access structure. When the manager recovers all its credit then it disappears, and
the cell becomes a local cell again. When the local cell has no local references, then
it is reclaimed. If the local cell becomes global again (because a message referring to
it is sent across the network), then a new manager is created, completely unrelated
to the reclaimed one.

7.3 Reliable Message Layer

The reliable message layer is the part of the Distributed Oz architecture that is
closest to the operating system. This layer assumes a reliable transport protocol
with no bounds on transfer time. For all entities except threads and ports, no
assumptions are made on relative ordering of messages (no FIFO). For threads
and ports, FIFO connections are made. The current prototype implements a
cache of TCP connections to provide reliable transfer between arbitrary sites on a
wide-area network [Comer 1995]. Recent implementations of TCP can outperform
UDP [Callaghan 1996]. To send arbitrary-length messages from fair concurrent
threads, the implementation manages its own buffers and uses nonblocking send
and receive system calls. If some global addresses in a message require additional
credit, then the message is put in a pending queue until all credit arrives.

8. RELATED WORK

All systems that we know of except Emerald [Jul et al. 1988] and Obliq [Cardelli
1995] do distributed execution by adding a distribution layer on top of a centralized
language, e.g., CORBA [Crowcroft 1996; Otte et al. 1996], DCE [Tanenbaum 1995],
Erlang [Wikström 1994], Java [Sun Microsystems 1996], Facile [Leth and Thomsen
1992], and Telescript [General Magic]. This has the disadvantage that distribution
is not a seamless extension to the language, and therefore distributed extensions to
language operations (such as mobile objects or replicated data) must be handled
by explicit programmer effort. In the following sections, we take a closer look at
distributed shared memory, Emerald, and Obliq.

A better environment for distributed programming can be obtained by looking
carefully at the entities of the language and conservatively extending their be-
havior to a distributed setting. For example, the Remote Procedure Call (RPC)
[Birrell and Nelson 1984] is designed to mimic centralized procedure calling and is
therefore a precursor to the design given in this article. Following this integrated
approach has two consequences. First, in order to carry it out successfully, the
language must have a well-defined operational semantics that clearly identifies the
entities. Second, to do the extensions right one must design a distributed algorithm
for each entity.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

842 · Peter Van Roy et al.

8.1 Distributed Shared Memory

Distributed shared memory (DSM) [Coulouris et al. 1994; Tanenbaum 1995] has
the potential to provide an adequate substrate for distributed programming. DSM
has traditionally been viewed as a substrate for parallel programming, but work has
been done on using it for distributed programming. We limit the discussion to dis-
tribution in software DSM. To achieve predictable network awareness, a language
for distributed programming must be well-matched with its DSM layer. Follow-
ing Coulouris et al. [1994], we distinguish between page-based and library-based
DSM.

Page-based DSM does not provide predictable network awareness. The units
of distribution (“pages”) do not correspond directly to language entities. This is
too coarse grained for the applications we have in mind. It leads to false sharing.
Munin [Carter et al. 1991], while page-based, provides programmer annotations for
network awareness. A data item in memory can be annotated as read-only, migra-
tory, write-shared, and so forth.

Library-based DSM provides sharing that is designed for particular data ab-
stractions and hence can avoid the problems of granularity and false sharing. For
example, Orca [Bal et al. 1992] provides network pointers, called “general graphs,”
and shared objects. Orca is designed for parallel applications. Linda [Carriero and
Gelernter 1992] provides operations to insert and extract immutable data items,
called “tuples,” from a shared space. This is called a coordination model, and it
can be added to any existing language. Linda does not address the language issues
of network transparency.

Distributed Oz follows the library-based approach. The shared computation
space is a DSM layer that is designed to support all language entities. The layer
is extended to provide functionality that is not part of traditional DSMs. First, it
supports single-assignment data in a strong form (logic variables) as well as other
sharing protocols such as read-only data (values) and migratory data (objects).
Second, as was briefly mentioned in Section 2, the system is open: sites can connect
and disconnect dynamically. Although not impossible, we do not know of any DSM
system that possesses this property. Third, the system is portable across a wide
range of operating systems and processors. Fourth, the system can be extended to
support precise failure detection.

8.2 Emerald

Emerald is a statically typed concurrent object-based language that provides fine-
grained object mobility [Jul 1988; Jul et al. 1988]. The object system of Emerald is
interesting in its own right. We limit the discussion to issues related to distribution.
Emerald has distributed lexical scoping and is implemented efficiently with a two-
level addressing scheme. Emerald is not an open system. Objects can be mutable
or immutable. Objects are stationary by default and explicit primitive operations
exist to move them. Having an object reference gives both the right to call and to
move the object; these rights are separated in Distributed Oz. Immutable objects
are copied when moved. Apart from object mobility, Emerald does not provide
any special support for latency tolerance. There is no syntactic support for using
objects as caches.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 843

Moving a mutable object in Emerald is an atomic operation that clones the
object on the destination site and aliases the original object to it. The result is
that messages to the original object are passed to the new object through an aliasing
indirection. If the object is migrated again, there will be two indirections, and so
forth. The result is an aliasing chain. This chain is lazily shortened in two ways.
First, if the object returns to a previously visited site, then the chain is short-
circuited. Second, all message replies inform the message sender of the object’s
new site. If the object is lost because a site failure induces a break in the aliasing
chain, then a broadcast is used to find the object again. Using broadcast does not
scale up to many sites. As in Distributed Oz, failure is detected for single objects.

Because of the aliasing chain and possible broadcasting, it is difficult or impos-
sible to predict the network behavior in Emerald or to guarantee that an object is
independent of third-party sites. These problems are solved in Distributed Oz by
using a manager node that is known to all proxies (see Section 6.2.2). This gives
an upper bound of three on the number of network hops to get the object and
guarantees that all third-party dependencies except for the manager site eventually
disappear. Furthermore, the lack of an aliasing chain means that losing an object
is so infrequent that it is considered as an object failure. There is therefore no need
for a broadcast algorithm.

The Emerald system implements a distributed mark-and-sweep garbage collector.
This algorithm is able to collect cross-site cycles, but it is significantly more complex
than the Distributed Oz credit mechanism. It requires global synchronization, and
it is not clear whether this scales up. It handles temporary network failures, but it
is not clear how it behaves in the case of site failures.

8.3 Obliq

With Obliq, Distributed Oz shares the notions of dynamic typing, concurrency,
state awareness, and higher-orderness with distributed lexical scoping. We differ
from Obliq in two major ways: mobility control is a basic part of the design, and
logic variables introduce a fundamental dataflow element. Another difference is
that Distributed Oz is object-oriented with a rich concurrent object system, while
Obliq is object-based. While it is outside the scope of this article, we mention
that Oz 2 is a powerful constraint language that is being used in problem-solving
research. The constraint aspects of Oz 2 are orthogonal to the distribution aspects
given in this article.

Obliq has taken a first step toward the goal of conservatively extending language
entities to a distributed setting. Obliq distinguishes between values and locations.
Moving values causes them to be copied (replicated) between sites. Moving loca-
tions causes network references to them to be created.

Distributed Oz takes this approach for the complete language, consisting of seven
language entities. Each of these entities has a distributed algorithm that is used
to remotely perform an operation on the entity (see Figure 3). The algorithms are
designed to preserve the language semantics while providing a simple model for the
communication patterns.

It is interesting to compare object migration in Obliq with Distributed Oz mo-
bile objects. Obliq objects are stationary. Object migration in Obliq can be im-
plemented in two phases by cloning the object on another site and by aliasing

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

844 · Peter Van Roy et al.

the original object to the clone. These two phases must be executed atomically
to preserve the integrity of the object’s state. According to Obliq semantics, the
object must therefore be declared as serialized. To be able to migrate these ob-
jects, the migration procedure must be executed internally by the object itself (be
self-inflicted, in Obliq terminology). The result is an aliasing chain.

Oz 2 objects are defined as procedures that have access to a cell. The content-
edge refers to the current object state. Mobility is obtained by making the cell
mobile. When a method is invoked on a remote site, the content-edge is first
moved to that site. Integrity of the state is preserved because the cell continues
to obey the language semantics. The implementation uses a distributed algorithm
to move the content-edge (see Section 6). Because mobility is part of a cell’s
distributed semantics, there are no chains of indirections. This is true as well for
mostly stationary objects, which use the port protocol (see Section 6.4.4).

9. CONCLUSIONS, STATUS, AND CURRENT WORK

We have presented the design of a language for distributed programming, Dis-
tributed Oz, in which the concept of mobility control has been incorporated in a
fundamental way. We define the language in terms of two operational semantics,
namely a language semantics and a distributed semantics. The language semantics
ignores the notion of site and allows reasoning about correctness and termination.
The distributed semantics gives the network behavior and allows the writing of
programs that use the network predictably and efficiently. Mobility control is part
of the distributed semantics.

The main contribution of this article is a system for network-transparent distri-
bution in which the programmer’s control over network communication patterns is
both predictable and easy to understand. To make object migration predictable,
the implementation uses a distributed algorithm to avoid forwarding chains through
intermediate sites. This guarantees that all dependencies to third-party sites except
for the manager site eventually disappear.

We show by example how this approach can simplify the task of distributed
programming. We have designed and implemented a prototype shared graphic
editor that is efficient on networks with high latency yet is written in a fully network-
transparent manner. We give Oz 2 code that shows how the mobility of objects
can be precisely controlled and how this control can be added independently of the
object’s definition.

We give a formal definition of the mobile state protocol, and we prove that it
implements the language semantics. This implies that the implementation of cells,
objects, and ports in Distributed Oz is network transparent.

We outline the system architecture including the distributed memory manage-
ment and garbage collection. A prototype implementation of Distributed Oz exists
that incorporates all of the ideas presented in this article. The prototype main-
tains the semantics of the Oz 2 language. The implementation is an extension of
the centralized DFKI Oz 2.0 system and has been developed jointly by the Ger-
man Research Center for Artificial Intelligence (DFKI) [Smolka et al. 1995] and the
Swedish Institute of Computer Science (SICS). DFKI Oz 2.0 is publicly available16

16At http://www.ps.uni-sb.de

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

http://www.ps.uni-sb.de

Mobile Objects in Distributed Oz · 845

and has a full-featured development environment.
This article has presented one part of the Distributed Oz project. This work is

being extended in several ways. An important unresolved issue is to find high-level
abstractions for fault tolerance that separate the application’s functionality from
its fault-tolerant behavior. Providing the basic primitives, e.g., precise failure de-
tection, is not difficult. Other current work includes improving the efficiency and
robustness of the prototype, using it in actual applications, improving the support
for open computing, and building the standard services needed for distributed appli-
cation development. Future work includes adding support for resource management
and multiprocessor execution (through “virtual sites”), and adding security. The
main research question to be addressed is how to integrate these abilities without
compromising network transparency.

APPENDIX

A. CORRECTNESS PROOF OF MOBILE STATE PROTOCOL

This appendix gives a proof that the mobile state protocol as defined in Section 6.4
implements the language semantics of the exchange operation as defined in Sec-
tion 6.1. We have given three specifications of the exchange operation:

(LS) Language reduction rule (Section 6.1)
(DS) Distributed reduction rule (Section 6.1)
(MP) Mobile state protocol (Section 6.4)

Theorem T1 (Section 6.1) implies that (DS) implements (LS). It remains to be
shown that (MP) implements (DS). We do this in two parts. First, in Section A.1
we prove safety and liveness of the mobile state protocol. Namely, all reachable
configurations satisfy the chain invariant defined in Section A.1.1, and a request
for the content-edge on a node that does not have it causes it to arrive exactly
once. Then, in Section A.2 we use these results first to prove that the mobile state
protocol is observationally equivalent to a much simpler protocol. We then show
that the latter implements the distributed reduction rule for exchange.

A.1 Mobile State Protocol Correctly Migrates the Content-edge

This section proves that the mobile state protocol correctly implements the mi-
gration of the content-edge. We follow the definitions and notations introduced in
Section 6. The proof is structured around a global distributed data structure that
we call a chain, which is defined in Section A.1.1 by an invariant of the distribution
graph [Lynch 1996; Tel 1994]. Section A.1.2 proves that the mobile state protocol
satisfies the chain invariant. Section A.1.3 proves that requesting the content causes
it to arrive exactly once.

Informally, a chain consists, at any given instant, of the known path of the content
among the proxy nodes (see Figure 15). That is, it is a sequence of proxy nodes
such that the first node contains the content or will eventually receive it and that
all nodes will eventually pass the content on to the next node in the chain. The
chain grows if new content-edge requests are more frequent than the rate at which
the content is forwarded among proxies. If there are no new requests, then the
chain shrinks to length one. The chain is defined formally as part of the proof.
Reasoning in terms of the chain makes proving properties of the protocol tractable.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

846 · Peter Van Roy et al.

link

a a a a321
P PPP

a1 a2 3 aaP P P P
j

j

Content

Content

Forwarding

Nodes

Nodes

Fig. 15. Two forms of a chain.

For the proof, we ignore the attributes thread and newcontent and the operations
concerning them. We are interested only in whether the content attribute is NULL
or non-NULL. We use the special value CVAL to represent any non-NULL value.
We assume the initial P1.content and the Ny argument in request messages are
both CVAL. We show that there is only one node or message in the network that
contains the value CVAL. Any node may request the content, and we show that
the protocol guarantees that the content will eventually arrive exactly once. After
arriving at the node, the content will eventually leave if another node requests it.

A.1.1 Chain Invariant. The chain invariant I is defined as follows on the dis-
tribution graph:

I = Ip ∧ Ia ∧ Ib ∧ Ic ∧ It ∧ Iu (1)

Ip = A, B, C form a partition of {1, ..., k} (2)

Ia = A = {a1, ..., aj} ∧ j > 0 ∧

1 ≤ ∀i < j :

Pai
.state = CHAIN

Pai
.forward ∈ {NULL, ai+1}

Pai
.forward = ai+1 ⊕ ai : forward(ai+1) ∈ N

 ∧

Paj
.state = CHAIN ∧ Paj

.forward = NULL ∧ M.tail = aj (3)

Ib = ∀i ∈ B :

(

Pi.state = CHAIN ∧ Pi.forward = NULL ∧
M : get(i) ∈ N

)

(4)

Ic = ∀i ∈ C : (Pi.state = FREE ∧ Pi.forward = NULL) (5)

It = Pa1
.content ∈ {NULL, CVAL} ∧

(Pa1
.content = CVAL ⊕ a1 : put(CVAL) ∈ N) ∧

1 ≤ ∀i ≤ k, i 6= a1 : Pi.content = NULL (6)

Iu = All messages in N are unique and explicitly mentioned in I (7)

Informally, Ia states that all the proxy nodes in A form a chain, where ⊕ denotes
the exclusive-or (see Figure 15). We call Pa1

the head of the chain and Paj
the tail

of the chain. Ib states that all the proxy nodes in B will eventually become part
of the chain. When it is known from which source node a target node will receive

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 847

Class of inactive proxies Class of requesting proxies Class of requesting proxies

C AB

unknown to manager known to manager (in chain)

Fig. 16. Classifying the proxy nodes.

the content, then the target node is considered part of the chain. Ic states that all
other proxy nodes (which are in C) are not part of the chain. The content invariant
It states that there is exactly one content-edge in the system and that it belongs to
the head of the chain. Writing the uniqueness invariant Iu as an explicit formula
is left as an exercise for the reader.

Figure 16 illustrates the partitioning of the proxy nodes in classes C, B, and A.
During execution, a proxy node changes class according to the arrows. The node
is in class C when it does not have the content-edge and has not requested it. The
node moves from class C to B when the content-edge is requested. The node moves
from class B to A when the manager is informed of the request. The node moves
from class A to C when the content-edge leaves the node. Within class A, the
content-edge moves from one node to the next in the chain. The node reaches the
head of the chain when it receives the content-edge.

A.1.2 Safety Theorem

Theorem S. The chain invariant (formula I in Section A.1.1) is an invariant
of the mobile state protocol (Section 6.4).

Proof. It is clear that I holds in the configuration C0 with N = ∅, A = {1},
B = ∅, and C = {2, ..., k}. Consider a configuration Ci in which I holds. Then we
show that I also holds in configuration Ci+1:

(1) Rule 1 is only applicable when C 6= ∅. Applying rule 1 removes one element
from C and adds it to B. This affects Ib and Ic. It is clear that both formulas
and Iu continue to hold.

(2) Rule 2 is applicable when P.content=CVAL. Since the request messages’s sec-
ond argument is CVAL, therefore applying rule 2 changes nothing in the in-
variant.

(3) Rule 3 is applicable when the second alternative (a1 : put(CVAL) ∈ N) of the
disjunction in It holds. Applying the rule causes only the first alternative to
hold, which maintains the truth of It and Iu.

(4) Rule 4 is applicable when the second alternative (ai : forward(ai+1) ∈ N) of a
disjunction in Ia holds. Applying the rule causes only the first alternative to
hold, which maintains the truth of Ia and Iu.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

848 · Peter Van Roy et al.

(5) Rule 5 is applicable when the first alternatives of the disjunctions in Ia and It

hold. From Ia and It we deduce that when rule 5 is applicable, it is applicable
at node Pa1

, that Pa1
.forward = a2, and that therefore j ≥ 2. Applying the

rule removes a1 from A and adds it to C, maintaining the truth of Ia and Ic.
Since a2 : put(CVAL) is added to the network, the truth of It is maintained.

(6) Rule 6 is applicable when B is nonempty. Applying the rule removes one
element from B and adds it to A. Reasoning from the value of M.tail shows
that this element becomes the new aj . In other words, each reduction of the
manager node adds one element to the chain. The truth of Iu is maintained.

This proves the theorem.

A.1.3 Liveness Theorem

Theorem L. Given the fairness assumptions of Section 6.4.1, requesting the
content at a proxy node will cause it eventually to arrive once.

Proof. The statement of the theorem means that for all proxy nodes P we have
one of the following three cases:

(1) P.content = CVAL. The content is at the node.

(2) P.content = NULL ∧ P.state = FREE. Reducing rule 1 causes P.content =
CVAL eventually to become true once through the application of rule 3.

(3) P.content = NULL ∧ P.state = CHAIN. Then P.content = CVAL will eventu-
ally become true once through the application of rule 3.

Case 1 is evident. In case 2, rule 1 is clearly applicable, and reducing it gives the
condition of case 3. It is clear that the only way in which P.content = CVAL can
become true is through the reduction of rule 3. In what follows, we consider only
case 3.

In case 3, rule 1 has been reduced once at node P . This causes an eventual
reduction of rule 6 once, which results in a configuration Cx with invariant Ix such
that i ∈ Ax. If | Ax |= 1 then the proof is done. Let us assume without loss of
generality that | Ax |≥ 2. What is the relationship between Ax and Ax+1? That is,
what happens to Ax during reduction of a single rule? Inspecting the rules shows
that there are three possibilities (assume | Ax |= j):

Ax+1 = Ax (1)

Ax+1 = Ax \ {a1} (2)

Ax+1 = Ax ∪ {aj+1} (3)

We must show that in any configuration Cx with | Ax |≥ 2, possibility (2) is
eventually executed. From inspection, this is only possible by applying rule 5.

We show that from Cx it will always become possible to apply rule 5. We use
the fact that when rules 3, 4, or 5 become applicable, they stay applicable until
reduced. Assume that Ia contains a1 : forward(a2). Then we can apply rule
4. Therefore we can assume without loss of generality that Pa1

.forward = a2.
Similarly, by possibly applying rule 3, we can assume Pa1

.content = CVAL. The
equations Pa1

.forward = a2 and Pa1
.content = CVAL imply the conditions of rule

5. Therefore rule 5 will eventually be reduced. This proves that the head a1 is

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 849

eventually removed from Ax. Since new nodes are only added at the tail, this
proves that all elements will eventually receive the token. This shows that the
content eventually arrives. We know that nodes are only removed at the head and
that the chain does not contain cycles. This shows that the content arrives exactly
once.

A.2 Mobile State Protocol Implements Distributed Semantics

The proof is presented as two lemmas and a theorem. From the two lemmas it
follows that the mobile state protocol is observationally equivalent to a much-
simplified protocol with one proxy node, one reduction rule, and no manager. In a
similar manner to Section 6.1.3, we then use abstraction to show that the behav-
ior of this simplified protocol exactly corresponds to the distributed semantics of
exchange.

Lemma A. Invoking Send(P,request(T,N)) will eventually result in exactly one
atomic execution at P of the derived rule:

(EXCH)
Receive(P,request(T,N)) ∧ P.content6=NULL
Send(T,proceed(P.content))
P.content ← N

Proof. We prove the result in two parts. We first show that eventually rule 1
or rule 2 is reduced exactly once. Assume the Receive(P,request(T,N)) condition
corresponding to the send becomes true at proxy P. Enumerating all possible values
of P.state and P.content gives the following four cases:

(1) P.state=FREE ∧ P.content6=NULL. We show that this condition never occurs
in a reachable configuration. By Theorem S, the chain invariant I is valid in all
reachable configurations. Then according to It, P.content6=NULL means that
P=Pa1

. From Ia we see that Pa1
.state=CHAIN.

(2) P.state=FREE ∧ P.content=NULL. Rule 1 is applicable and stays applicable,
so by the fairness assumption eventually it is reduced.

(3) P.state=CHAIN ∧ P.content6=NULL. Rule 2 is applicable. Either it is eventu-
ally reduced, in which case all is well, or it is never reduced. The latter can only
happen if rule 5 is reduced, which makes P.state=FREE ∧ P.content=NULL.
The previous case then applies.

(4) P.state=CHAIN ∧ P.content=NULL. No rule is applicable. However, since
P.state=CHAIN, this means that rule 1 has been reduced by the reception of
another request message. By Theorem L, eventually P.content6=NULL. When
this happens, the previous case applies.

This shows that eventually rule 1 or rule 2 will be reduced. The first condition
Receive(P,request(T,N)) of the (EXCH) rule is therefore taken care of. We now
show that in each case the lemma is true:

(1) Rule 1 is reduced. By Theorem L, the content arrives exactly once by the
reduction of rule 3. This makes true the second condition P.content 6=NULL of
the (EXCH) rule. Between the reduction of rule 1 and the arrival of the content,
only rule 4 is potentially applicable. Reducing rule 4 is irrelevant since it only
changes the value of P.forward, which does not change the value of any other

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

850 · Peter Van Roy et al.

Table V. Correspondence between distributed semantics and graph notation

Distributed Semantics Distribution Graph Notation

Representatives Xq , Yq , Zq Nodes Nx, Ny, Nz on site q

Cell representative Cq Cell proxy Pq

C1=n ∧ ... ∧ Ck=n Access structure containing Pi for 1 ≤ ∀i ≤ k

(n:Z)p ∧ 1 ≤ ∀i ≤ k, i 6= p : (n:⊥)i Pp.content=Nz, 1 ≤ ∀i ≤ k, i 6= p: Pi.content=NULL
{Exchange C X Y}q exchange and bind(P,Nx,Ny) in thread on site q, until

just before bind operation
(X=Z)q bind(Nx,Nz) in thread on site q

node attribute nor the applicability of any rules. When the content arrives,
rule 3 becomes applicable. Reduction of rule 3 makes the lemma true.

(2) Rule 2 is reduced. Inspection of rule 2 makes it clear that the lemma is true.

This proves the lemma.

Lemma B. The P.content value at the end of one (EXCH) rule is used as
the P.content value at the beginning of exactly one other (EXCH) rule, or of no
(EXCH) rules if no further (EXCH) rules are executed.

Proof. By Theorem S, either P.content6=NULL on exactly one proxy or there is
exactly one put(N) message in transit. We also know that the transfer of P.content
between two proxies conserves its value, since the transfer can only be done by re-
ducing rule 5 at the source and rule 3 at the destination. This proves the lemma.

Theorem T2. The mobile state protocol of Section 6.4 implements the dis-
tributed semantics of Section 6.1.

Proof. We first make clear the correspondence between the notations of Sec-
tions 6.1 and 6.4 (Table V). Then we show that the execution of the exchange
procedure follows exactly the distributed reduction rule.

By Lemma A, executing exchange and bind(P,Nx,Ny) in thread T on site q even-
tually reduces one (EXCH) rule. The bind operation becomes applicable when the
message sent by this rule is received by the thread. The receive therefore marks
the end of the exchange reduction. Denote P.content=Nz just before entering the
(EXCH) rule’s body. By Lemma B, Nz is the result of the previous exchange.
Then, assuming the correspondence in Table V holds just before the (EXCH) rule,
we show that the correspondence holds just after the (EXCH) rule:

(1) The nodes of the access structure are undisturbed.

(2) Pq .content=Ny and by Theorem S, 1 ≤ ∀i ≤ k, i 6= q: Pi.content=NULL.

(3) The operation bind(Nx,Nz) is applicable in thread T after the exchange.

This corresponds exactly to the distributed reduction rule of Section 6.1.

ACKNOWLEDGEMENTS

We thank Luc Onana for fruitful discussions that led to mobile ports and to the
proof given in Appendix A.1. We thank Christian Schulte for his help with the
shared editor. We thank Michel Sintzoff, Joachim Niehren, and the anonymous
referees for their perceptive comments that permitted us to improve and complete
the presentation.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

Mobile Objects in Distributed Oz · 851

REFERENCES

Abelson, H., Sussman, G. J., and Sussman, J. 1985. Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, Mass.

Armstrong, J., Williams, M., Wikström, C., and Virding, R. 1996. Concurrent Programming
in Erlang. Prentice-Hall, Englewood Cliffs, N.J.

Axling, T., Haridi, S., and Fahlen, L. 1995. Concurrent constraint programming virtual reality
applications. In the 2nd International Conference on Military Applications of Synthetic Envi-
ronments and Virtual Reality (MASEVR 95). Defence Material Administration, Stockholm,
Sweden.

Bal, H. E., Kaashoek, F. E., and Tanenbaum, A. S. 1992. Orca: A language for parallel
programming of distributed systems. IEEE Trans. Softw. Eng. 18, 3 (Mar.), 190–205.

Bal, H. E., Steiner, J. G., and Tanenbaum, A. S. 1989. Programming languages for distributed
computing systems. ACM Comput. Surv. 21, 3 (Sept.), 261–322.

Barth, P. S., Nikhil, R. S., and Arvind. 1991. M-structures: Extending a parallel, nonstrict,
functional language with state. In Functional Programming and Computer Architecture.
Springer-Verlag, Berlin.

Birrell, A. D. and Nelson, B. J. 1984. Implementing remote procedure calls. ACM Trans.
Comput. Syst. 2, 1 (Feb.), 39–59.

Callaghan, B. 1996. WebNFS—The file system for the World-Wide Web. White paper, Sun
Microsystems, Mountain View, Calif. May.

Cardelli, L. 1995. A language with distributed scope. ACM Trans. Comput. Syst. 8, 1 (Jan.),
27–59. Also appeared in POPL 95.

Carlsson, C. and Hagsand, O. 1996. DIVE—A platform for multi-user virtual environments.
Computers and Graphics 17, 6.

Carriero, N. and Gelernter, D. 1992. Coordination languages and their significance. Commun.
ACM 35, 2 (Feb.), 96–107.

Carter, J. B., Bennett, J. K., and Zwaenepoel, W. 1991. Implementation and performance
of Munin. In the 13th ACM Symposium on Operating System Principles. ACM, New York,
152–164.

Comer, D. E. 1995. Internetworking with TCP/IP. Vol. 1: Principles, Protocols, and Architec-
ture. Prentice-Hall, Englewood Cliffs, N.J.

Coulouris, G., Dollimore, J., and Kindberg, T. 1994. Distributed Systems Concepts and
Design 2nd ed. Addison-Wesley, Reading, Mass.

Crowcroft, J. 1996. Open Distributed Systems. University College London Press, London, U.K.

Deering, S. 1989. Host extensions for IP multicasting. Tech. Rep. RFC1112. Aug.

Ericsson. 1996. Open Telecom Platform—User’s Guide, Reference Manual, Installation Guide,
OS Specific Parts. Telefonaktiebolaget LM Ericsson, Stockholm, Sweden.

Fischer, K., Kuhn, N., and Müller, J. P. 1994. Distributed, knowledge-based, reactive schedul-
ing in the transportation domain. In the 10th IEEE Conference on Artificial Intelligence and
Applications. IEEE, New York.

Fischer, K., Muller, J. P., and Pischel, M. 1995. A model for cooperative transportation
scheduling. In the 1st International Conference on Multiagent Systems (ICMAS 95). 109–
116.

Foody, M. 1997. Let’s talk (Special report building networked applications). BYTE 22, 4 (Apr.),
99–102.

Halstead, R. H. 1985. MultiLisp: A language for concurrent symbolic computation. ACM Trans.
Program. Lang. Syst. 7, 4 (Oct.), 501–538.

Haridi, S. 1996. An Oz 2.0 tutorial. Available at http://sics.se/~seif/oz.html.

Haridi, S., Van Roy, P., and Smolka, G. 1997. An overview of the design of Distributed Oz.
In the 2nd International Symposium on Parallel Symbolic Computation (PASCO 97). ACM,
New York.

Henz, M. 1997. Objects in Oz. Doctoral dissertation, Univ. des Saarlandes, Saarbrücken, Germany.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

852 · Peter Van Roy et al.

Henz, M., Lauer, S., and Zimmermann, D. 1996. COMPOzE—Intention-based music composi-

tion through constraint programming. In the International Conference on Tools with Artificial
Intelligence. IEEE, New York.

Henz, M. and Würtz, J. 1996. Using Oz for college timetabling. In the International Conference
on the Practice and Theory of Automated Timetabling, E. K. Burke and P. Ross, Eds. Lecture
Notes in Computer Science, vol. 1153. Springer-Verlag, Berlin, 162–177.

Iannucci, R. A. 1990. Parallel Machines: Parallel Machine Languages. The Emergence of Hybrid
Dataflow Computer Architectures. Kluwer, Dordrecht, the Netherlands.

Jul, E. 1988. Object mobility in a distributed object-oriented system. Ph.D. thesis, Univ. of
Washington, Seattle, Wash.

Jul, E., Levy, H., Hutchinson, N., and Black, A. 1988. Fine-grained mobility in the Emerald
system. ACM Trans. Comput. Syst. 6, 1 (Feb.), 109–133.

Lampson, B. W. 1993. Reliable messages and connection establishment. In Distributed Systems,
S. Mullender, Ed. Addison-Wesley, Reading, Mass., 251–281.

Leth, L. and Thomsen, B. 1992. Some Facile chemistry. Tech. Rep. ECRC-92-14, ECRC, Munich,
Germany. May.

Lynch, N. 1996. Distributed Algorithms. Morgan Kaufmann, San Francisco, Calif.

General Magic. Telescript Developer Resources. General Magic, See
http://www.genmagic.com/.

Sun Microsystems. 1996. The Java Series. Sun Microsystems, Mountain View, Calif. Available
at http://www.aw.com/cp/javaseries.html.

Otte, R., Patrick, P., and Roy, M. 1996. Understanding CORBA: The Common Object Request
Broker Architecture. Prentice-Hall PTR, Upper Saddle River, N.J.

Plainfossé, D. and Shapiro, M. 1995. A survey of distributed garbage collection techniques. In
the International Workshop on Memory Management. Lecture Notes in Computer Science,
vol. 986. Springer-Verlag, Berlin, 211–249.

Schmeier, S. and Achim, S. 1996. PASHA II—Personal assistant for scheduling appointments.
In the 1st International Conference on the Practical Application of Intelligent Agents and
Multi-Agent Technology (PAAM 96). The Practical Application Company, Lancashire, United
Kingdom.

Shapiro, E. 1989. The family of concurrent logic programming languages. ACM Comput.
Surv. 21, 3 (Sept.), 413–510.

Smolka, G. 1995a. An Oz Primer. Programming Systems Lab, Univ. des Saarlandes, Saarbrücken,
Germany. Available at http://www.ps.uni-sb.de.

Smolka, G. 1995b. The Oz programming model. In Computer Science Today. Lecture Notes in
Computer Science, vol. 1000. Springer-Verlag, Berlin, 324–343.

Smolka, G., Henz, M., and Würtz, J. 1995. Object-oriented concurrent constraint program-
ming in Oz. In Principles and Practice of Constraint Programming, P. Van Hentenryck and
V. Saraswat, Eds. MIT Press, Cambridge, Mass., 29–48.

Smolka, G., Schulte, C., and Van Roy, P. 1995. PERDIO—Persistent and distributed pro-

gramming in Oz. BMBF project proposal. Available at http://www.ps.uni-sb.de.

Tanenbaum, A. S. 1995. Distributed Operating Systems. Prentice-Hall, Englewood Cliffs, N.J.

Tel, G. 1994. An Introduction to Distributed Algorithms. Cambridge University Press, Cam-
bridge, United Kingdom.

Walser, J. P. 1996. Feasible cellular frequency assignment using constraint programming ab-

stractions. In the 1st Workshop on Constraint Programming Applications, CP 96.

Wikström, C. 1994. Distributed programming in Erlang. In the 1st International Symposium
on Parallel Symbolic Computation (PASCO 94). World Scientific, Singapore, 412–421.

Received January 1997; revised April 1997; accepted May 1997

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.

	Introduction
	Object Mobility
	Two Semantics
	Developing an Application
	Mobility Control and State
	Overview of the Article

	A Shared Graphic Editor
	Language Properties
	Network Transparency
	Flexible Network Awareness
	Latency Tolerance
	Language Security

	Language Semantics
	Oz Programming Model
	Compound Entities

	Distribution Model
	Replication
	Logic Variables
	Mobility Control
	Programming with Mobility Control

	Cells: Semantics and Mobile State Protocol
	Cell Semantics
	The Graph Model
	Informal Description
	Formal Specification

	System Architecture
	Language Graph Layer
	Memory Management Layer
	Reliable Message Layer

	Related Work
	Distributed Shared Memory
	Emerald
	Obliq

	Conclusions, Status, and Current Work
	CORRECTNESS PROOF OF MOBILE STATE PROTOCOL
	Mobile State Protocol Correctly Migrates the Content-edge
	Mobile State Protocol Implements Distributed Semantics

