
Scientific Programming 10 (2002) 91–100 91
IOS Press

Mobile objects in Java

Luc Moreaua and Daniel Ribbensb

aElectronics and Computer Science, University of Southampton, SO17 1BJ Southampton, UK

Tel.: + 44 23 8059 4487; Fax: + 44 23 8059 2865; E-mail: L.Moreau@ecs.soton.ac.uk
bService d’Informatique, University of Liège, 4000 Liège, Belgium

Tel.: +32 4366 2640; Fax: +32 4366 2984; E-mail: ribbens@montefiore.ulg.ac.be

Abstract: Mobile Objects in Java provides support for object mobility in Java. Similarly to the RMI technique, a notion of

client-side stub, called startpoint, is used to communicate transparently with a server-side stub, called endpoint. Objects and

associated endpoints are allowed to migrate. Our approach takes care of routing method calls using an algorithm that we studied

in [22]. The purpose of this paper is to present and evaluate the implementation of this algorithm in Java. In particular, two

different strategies for routing method invocations are investigated, namely call forwarding and referrals. The result of our

experimentation shows that the latter can be more efficient by up to 19%.

1. Introduction

Over the last few years, mobile agents have emerged

as a powerful paradigm to structure complex distributed

applications. Intuitively, a mobile agent can be seen

as a running software that may decide to suspend its

execution on a host and transfer its state to another host,

where it can resume its activity. Cardelli [5] argues

that mobile agents are the right abstraction to develop

applications distributed across “network barriers”, e.g.

in the presence of firewalls or when connectivity is in-

termittent. In Telescript [17], software migration is

presented as an alternative to communications over a

wide-area network, in which clients move to servers to

perform computations. Lange [16] sees mobile agents

as an evolution of the client-server paradigm, and enu-

merates several reasons for using software mobility.

It is a challenge to design and implement mobile

agent applications because numerous problems such

as security, resource discovery and communications,

need to be addressed. Therefore, we introduce Mobile

Objects in Java, a middleware that helps implement

mobile agent systems by providing a concept of mobile

object. Its specific contribution is a communication

mechanism consisting of the invocation of methods on

objects that may be mobile.

Our motivation has been driven by developments in

distributed computing over the last couple of decades.

Successive paradigms such as remote procedure calls

(RPC) [3], method invocation in Network Objects [4]

and remote method invocation (RMI) in Java [12],

amongst others, abstract away from the reality of dis-

tribution. They successively provided programmers

with new and more sophisticated abstractions. RPC

provides homogeneity, by its marshalling and unmar-

shalling of data structures using data representation

suitable for heterogeneous platforms. Network Objects

offers memory uniformity because remote method in-

vocations are syntactically identical to local ones and

garbage collection takes care of local and distributed

objects. Java RMI provides code propagation because

the programmer no longer needs to replicate code to

remote machines, but instead Java RMI is able to load

code dynamically.

The next logical step is to hide the location and

movement of objects. A similar approach has also been

adopted by the network community, which devised the

next generation of the IP protocol (IPv6) with support

for mobile addresses [14].

There exists an incremental approach to introduce

mobility into an infrastructure that is unaware of mobil-

ity [7,16]. It consists of associating each mobile entity

with a stationary home agent, which acts as an inter-

mediary for all communications. While this approach

preserves compatibility with an existing infrastructure,

introducing an indirection to a home agent for every

ISSN 1058-9244/02/$8.00 2002 – IOS Press. All rights reserved

92 L. Moreau and D. Ribbens / Mobile objects in Java

communication puts a burden on the infrastructure; this

may hamper the scalability of the approach, in particu-

lar, in massively distributed systems, such as the amor-

phous computer [27] or the ubiquitous/pervasive com-

puting environment [1]. Free from any compatibility

constraint, we adopted an algorithm to route messages

to mobile agents that does not require any static loca-

tion: the theoretical definition of this algorithm based

on forwarding pointers and the proof of its correctness

have been investigated in a previous publication [22].

The purpose of this paper is to present Mobile Ob-

jects in Java, an implementation of the algorithm,

which offers transparent method invocation and dis-

tributed garbage collection for mobile objects. By

transparent, we mean that mobile and non-mobile ob-

jects present a same interface, which is independent of

the object location and its migratory status. Distributed

garbage collection ensures that an object, whether mo-

bile or not, can be reclaimed once it is no longer ref-

erenced. While implementing our algorithm, it be-

came clear that two strategies could be adopted, which

we named call forwarding and referrals; we present

these strategies and evaluate their performance through

a benchmark.

This paper is organised as follows. First, we provide

more motivation for mobile agents by presenting two

promising application domains in Section 2. Then, in

Section 3, we summarise the algorithm we have inves-

tigated in [22]. In Section 4, we describe its imple-

mentation in Java, providing a transparent interface to

mobile objects. We then discuss two different methods

for routing method invocations, namely forwarding and

referrals, in Section 5. In order to compare these tech-

niques, we devise a synthetic benchmark, and analyse

results in Section 6. Finally, we compare our approach

with related work in Section 7.

2. Motivation

In this Section, we provide further motivation for

mobile agents. We describe two promising applications

where mobile agents act semi-autonomously on behalf

of users. The reasons for doing so, however, differ

substantially in the two applications.

Digital library

Yan and Rana [30] present a high-level service for

a digital library of radar images of the Earth. The li-

brary is composed of a set of confidential images and

associated annotations with attached ownership. They

extend a Web-based client-server architecture with mo-

bile agents that perform tasks on behalf of users and that
are able to migrate to a predefined itinerary of hosts.

After being dispatched, agents migrate securely, with
data, code and state to an itinerary of servers that may

have relevant data and services. Agents become inde-

pendent of the user who created them: they can survive
intermittent or unreliable network connections. Mobile

agents are beneficial for several reasons.

(i) They avoid the delivery of large volume of sci-

entific data required for data mining of images;

(ii) They help maintain confidentiality and own-
ership of data, by being run through security

checks, ensuring that they have the rights to
access the data;

(iii) They are allowed specific queries on the li-
brary according to the “security level” they were

granted.

Fig. 1. Architecture.

Mobile users

The context of the Magnitude project [24] is the
“ubiquitous computing environment” [27] where em-

bedded devices and artifacts abound in buildings and
homes, and have the ability to sense and interact with

devices carried by people in their vicinity. Applications
running on mobile devices interact with the infrastruc-

ture, and find and exploit services to fulfill the user’s

needs.
However, communications between mobile devices

and the infrastructure have some limitations, in the form
of intermittent connectivity and low bandwidth. Fur-

thermore, processing power and memory capacity of
compact mobile devices remain relatively small. As

a result, such an environment would prevent the large
scale deployment of advanced services that are com-

munication and computation intensive.
We adopt mobile agents as proxies for mobiles users.

As illustrated by Fig. 1, we utilise mobile agents, as

L. Moreau and D. Ribbens / Mobile objects in Java 93

semi-autonomous entities, which can migrate from mo-

bile devices to infrastructure locations to take advan-

tage of the resources their specific tasks require; mobile

agents perform their tasks on the infrastructure, possi-

bly involving further migration, and then return results

back to mobile users.

Summary

Both scenarios use the idea of mobile agent, as a

semi-autonomous proxy for a user. If granted the right

to do so, mobile agents may migrate to new locations,

where they can take advantage of local resources.

3. Message routing algorithm

In this section, we summarise the message routing

algorithm for mobile agents that we formalised in [22].

We consider a set of mobile objects and a set of sites (in

our case JVMs) taking part into a computation. Each

mobile object is associated with a timestamp, which is

a counter incremented every time the object changes

location. Each site keeps a record of the location where

every mobile object known to the site is thought to

be, and of the timestamp the object had at the time.

Therefore, in a system composed of several sites, sites

may have different information about a same mobile

object (depending on how fast location information is

propagated between sites).

The algorithm proceeds as follows. When a mobile

object decides to migrate from a site A to another site

B, it informs A of its intention of migrating; a trans-

portation service is used to transport the object to B.

When the mobile object arrives at B, its safe arrival

is acknowledged by informing its previous site A of

its new location and of its new timestamp; site A can

then update its local table with the mobile object’s new

position and timestamp.

Mobile objects delegate to sites the task of send-

ing messages to other objects. When a site receives

a request for sending a message to a mobile object, it

searches its table in order to find the object location.

If the object is local, the message is passed onto the

object. If the object is not local, but known to be at a re-

mote location, the message is forwarded to the remote

location.

As migration is not atomic, a mobile object may have

left a site, but the acknowledgement of its safe arrival

may not have been received by the site yet. In such

a case, the site temporarily has to enqueue messages

aimed at the object; as soon as the acknowledgement

arrives, delayed messages may be forwarded.

Timestamps are used to guarantee that sites always

update their knowledge about mobile objects with more

recent information than the one they currently have.

If a site receives information with a timestamp that is

smaller than the timestamp in its table, the received

information is discarded. Such a timestamp mechanism

is mandatory to avoid cyclic routing of messages [22].

In the algorithm described so far, a mobile object

leaves a trail of forwarding pointers during its migra-

tion. In order to reduce the length of the chain of for-

warding pointers, routing information and associated

timestamp may be propagated by any site to any site;

timestamps are again used to guarantee that the most

recent information is stored in routing tables. In the

rest of the paper, we discuss an implementation of this

abstract algorithm.

4. Implementation in Java

In Java RMI [12], an object whose methods can be

invoked from another JVM is implemented by a remote

object. Such a remote object is described by one or

more remote interfaces. Remote method invocation is

the action of invoking a method of a remote interface

on a remote object. In practice, a stub acts as a client’s

local representative or proxy for a remote object. The

stub of a remote object implements the same interface

as the remote object: when a method is called on the

stub, arguments are serialised and communicated to the

remote object,1 where the method can be called; its

result is transmitted back to the stub and becomes the

method call result. A very desirable feature of this

approach is that local and remote method invocation

share an identical syntax.

Now, we present an approach in which remote ob-

jects are allowed to be mobile, but clients still use the

same stub-based method invocation mechanism, mak-

ing them unaware of the location and movement of the

mobile object.

4.1. Startpoints and endpoints

Figure 2 displays the different entities of our imple-

mentation. The right-hand side of the picture repre-

1Before Java 1.2, there was a notion of skeleton, which was a

server-side representative of the object, responsible for deserialising

the arguments.

94 L. Moreau and D. Ribbens / Mobile objects in Java

Fig. 2. Startpoint and endpoint.

sents the “server-side” on JVM2, composed of a mo-

bile object; the left-hand side is concerned with the

“client-side” on JVM1.

We adopt Nexus terminology [8], and we respec-

tively name startpoint and endpoint the client-side and

server-side representatives of a remote object. A mo-

bile object is specified by an interface, which must also

be implemented by its startpoints. Startpoints contain

an RMI stub representing the current location of a mo-

bile object, and permit direct communication with the

endpoint; the endpoint passes messages to the mobile

object. Additionally, the startpoint contains the mobile

object’s timestamp t. (The endpoint also has the same

timestamp t.)

Figure 3 displays the new configuration after the

mobile object has migrated to JVM3. There exists a

new endpoint acting as a server-side representative at

the new location. Its timestamp is t + 1 following its

increase after migration. The endpoint is referred to by

a startpoint with timestamp t+1, which is sent to JVM2

as an acknowledgement to the safe arrival at JVM3.

This startpoint is used by the endpoint on JVM2 as a

forwarding pointer to the new object location. When

a method is activated on the startpoint on JVM1, the

call is still transmitted to JVM2, where the endpoint is

aware that the object has moved to JVM3 and uses the

same mechanism to forward the call.

As opposed to simple message passing, a remote

method invocation is expected to return a result.2 In

a first instance, our implementation is based on call

forwarding and the result is propagated back along the

chain to the initial startpoint where the method call was

initiated.

In such an algorithm, it is important to reduce any

chain of forwarding pointers in order to reduce the cost

2In the particular case of a procedure returning a type void, no

result is returned, but the method invocation terminates after the call

has been completed remotely; for the sake of presentation, we will

no longer distinguish this case from normal return of values.

of method invocation, but also to make the system more

resilient to failures. In Fig. 3, when JVM2 has to for-

ward a call to JVM3, JVM2 knows that information

on JVM1 is out of date. Therefore, when the result is

returned to JVM1, we can also return updated informa-

tion about the mobile object location. To this end, we

made the remote interface implemented by endpoints

different from the interface implemented by mobile ob-

jects: we return not only the “usual result”, but also the

new object location.

Returning updated location information at the same

time as returning results may not propagate information

soon enough, because processing on the server may be

long. Therefore, independently, we might like to in-

form previous JVMs in the chain about the location of

the mobile object. Since regular remote method invo-

cation does not give any information about the method

caller, we provide, as extra arguments, the stubs point-

ing to the JVMs involved in the chain.

In summary, a startpoint implements the same inter-

face as a mobile object. An endpoint has a derived in-

terface passing extra routing information, both during

the forward call and during the return of a result. The

RMI-stub encapsulated in the startpoint implements the

same interface as the endpoint.

For the sake of illustration, let us consider the method

talk specified in the interface Talker implemented

by a mobile object.

interface Talker {

int talk(int v, String s);

}

A startpoint associated with such a mobile ob-

ject also implements the interface Talker. The

endpoint of such a mobile object implements the

Endpoint TalkerI interface containing a method

talk:

interface _Endpoint_TalkerI {

_int_Result talk (List from,

L. Moreau and D. Ribbens / Mobile objects in Java 95

Fig. 3. Mobile object migration.

int _v, String _s);

}

The extra argumentfrom is a list of RMI stubs to the

JVMs that were involved in the passing of the current

method call. The type int Result encapsulates an

int as well as new routing information. We have im-

plemented a stub compiler which takes care of gener-

ating such interfaces. It also creates the definitions of

the startpoint and endpoint classes.

4.2. Object migration

We provide a new abstract classUnicastMobile-

Object, which encapsulates the behaviour common to

all mobile objects. A mobile object must be defined as

a subclass of UnicastMobileObject, from which

two methods can be inherited:

protected void migrate(String url,

Serializable state)

protected void install(Object state)

A mobile object can initiate its migration to another

JVM, identified by a RMI-style URL, using the method

migrate. The current object content will be serial-

ized in conjunction with an extra argument. Upon an

object’s arrival, the method install is activated with

the state argument passed to migrate. Both methods

are defined as “protected” to guarantee that they are

invoked only under the object’s control.

The Java object model does not make any guaran-

tee regarding which thread executes remote methods.

Therefore, for a single object, there may be several

threads executing in parallel when a request for mi-

grating is issued by one of them. As Java does not

support thread migration, it is not possible to suspend

the execution of all threads in order to resume them at

the destination. Instead, we allow an object to migrate

when there is only one thread executing a method of

this object. It is therefore the programmer’s respon-

sibility to synchronize and terminate threads currently

executing in parallel, and, if necessary, to save their

state in a serializable field of the object.

Mobile Objects in Java also introduce the concept of

“platform”, a JVM that runs mobile objects securely. A

platform is a RMI UnicastRemoteObject which

advertises its presence by binding itself with a RMI-

style URL (specified at construction time) in a RMI-

registry. This is such a URL which is expected as

a first argument by migrate. Hooks are provided

to perform security checks before executing objects in

their sandbox [20].

4.3. Startpoint deserialisation

In our system, on a given platform, there is at most

one instance of a startpoint that refers to a given mobile

object. In order to preserve this invariant, each platform

maintains a table of all the startpoints it knows, which

is updated when startpoints are deserialised. (We use

the Java method doReadResolve [13] to override

the object returned from the stream.)

A desirable consequence of this implementation is

that all objects using a specific startpoint share the ben-

efit of the most recent routing information for that start-

point. The table of startpoints is a hash table, using a

unique name given to mobile objects as a hashing key.

This table uses weak references [11] to guarantee that

startpoints do not remain accessible longer than neces-

sary. As a result, we ensure that mobile objects may be

properly garbage collected.

4.4. Clearing routing information

Routing information has to be cleared when it is no

longer needed. Indeed, platforms run for a long period

of time and host many visiting mobile objects, which

leave forwarding pointers as they migrate to their next

destination. We need to ensure that routing tables do not

become filled with unnecessary routing information.

We have observed [22] that the task of clearing rout-

ing tables is equivalent to the distributed termination

96 L. Moreau and D. Ribbens / Mobile objects in Java

problem [25]. A forwarding endpoint is allowed to

be cleared if it can be proved that no other platform

will ever forward method calls to it. This may be im-

plemented using a distributed reference counting algo-

rithm [23,25]. In particular, RMI provides a method

Unreferenced for remote objects which is called

when there is no remote reference to this object [12].

When this method is called on an endpoint, it may be

unexported, and the reference to the next startpoint in

the chain may be lost. Note that this mechanism can

only work if tables of startpoints contain weak refer-

ences to these. Otherwise, if startpoints remain live,

the RMI-stubs they contain will also remain live, which

will prevent the call of the Unreferenced method

on the associated endpoints.

5. Forwarding vs referrals

In our theoretical algorithm [22], messages are

routed individually; a reply would be regarded as a sep-

arate message to be routed independently. The view

that we have adopted for Mobile Objects in Java differs

slightly because it is based on the remote method invo-

cation paradigm: methods are invoked and are expected

to produce a result. In the previous section, we showed

that the result could be propagated backwards along the

chain of forwarding pointers left by the mobile object.

Long chains of remote method invocations offer too

little resilience to failures of intermediary nodes. In-

stead of forwarding a method call, an endpoint could

throw an exception indicating that the mobile object

has migrated. The exception could contain the new

startpoint pointing at the mobile object location.

The approach consisting of throwing an exception

containing a new startpoint, instead of forwarding a

call, is similar to the referral mechanism [9] used in

distributed search systems such as Whois++ [26] and

LDAP [28]. It then puts the onus on the method in-

voker to re-try the invocation with the next location of

the object; once the object has been reached, the result

may then be returned to the caller directly. In our im-

plementation, the startpoint is in charge of re-trying a

method invocation until it becomes successful. There-

fore, from the programmer’s viewpoint, there is no syn-

tactic difference between the two approaches. An op-

tion passed as argument to the stub compiler specifies

whether code has to be generated for referrals or for

call forwarding. In the rest of the paper, we compare

the performance of the two approaches.

6. Benchmark

The scientific programming community has a tra-

dition of adopting benchmarks to evaluate the perfor-

mance of computers; for instance, the Linpack Bench-

mark is a numerically intensive test used to measure

floating point performance. Unfortunately, we lack

benchmarks specifically suited to evaluate routing al-

gorithms for mobile objects. This may be explained

by the relative novelty of the concept of mobile ob-

ject, and the inexistence of widely accepted applica-

tions for mobile agents. In a previous paper [23], we

observed that there was no recognised benchmark for

evaluating distributed garbage collectors; therefore, we

designed some synthetic benchmarks for such a type of

distributed algorithms. We propose to adopt a similar

approach here.

A synthetic benchmark is an abstraction of a real

program, where routing of messages may have an im-

pact on the performance of the computation. In our

benchmark, we measure the cost of invoking a method

on a mobile object that has changed location since the

last time the method was invoked on it. In the con-

text of the Magnitude architecture of Section 2, such a

benchmark is reminiscent of the communications one

may have with a mobile agent visiting several locations

to perform a task.

Figure 4 summarises the “Itinerary Benchmark”. An

Itinerary consists of N platforms P0, . . . , PN−1 to be

visited by a mobile object. A platform P , not part of

the itinerary, is used to initiate invocations of a method

m on the remote mobile object. Every method invoca-

tion takes as argument a list of J platform identifiers

that the mobile object has successively to migrate to; an

itinerary is completed when the mobile object returns

to the first platform P0. As method m is invoked on the

mobile object, it spawns a thread responsible for mi-

grating the mobile object to J platforms, while method

m terminates in parallel. On platform P , we measure

the time taken to perform all method calls necessary to

complete an itinerary.

Figure 5 illustrates the execution of the Itinerary

benchmark over 10 platforms (5 rather heavily loaded

workstations/servers each running 2 JVMs), connected

by a local area network. Each method call forced the

object to migrate to one new location. We ran the same

benchmark using both the call forwarding and the re-

ferrals techniques. We can see that in this specific in-

stance, referrals are on average 9% faster than call for-

warding, over 200 itineraries. We should observe the

abnormal duration of the first itinerary in Fig. 5: in-

L. Moreau and D. Ribbens / Mobile objects in Java 97

Fig. 4. Itinerary Benchmark.

deed, it can be up to an order of magnitude slower than

the others since it forces object byte-code to be loaded

dynamically as the mobile object visits each platform

for the first time.

In Fig. 6, we summarise our results,which we discuss

now. Several variants of the Itinerary benchmark were

considered.

(i) We always ran the Itinerary benchmark on 10

platforms. In one case, the platforms executed

on 5 rather heavily loaded workstations/servers

each running 2 JVMs) connected by a 100Mb

local area network (Notation: LAN). In the

other case, the platforms executed on 5 nodes

of a cluster (Linux 2.2, 450 Mhz) with dedi-

cated 100Mb network, with each node running

2 JVMs (Notation: Cluster).

(ii) The partitioning of the platforms may be de-

terministic or non-determinisic. In the former

case, the object systematically visits platforms

in the same order (Notation: Sequential). In the

latter case, the order of platforms is decided ran-

domly for each itinerary (Notation: Random).

(iii) We ran the Itinerary benchmark using both the

call forwarding (Notation: CF) and the referrals

techniques (Notation: Ref).

(iv) When a mobile object migrates to successive lo-

cations, its new position can be acknowledged

to all its previous locations (Notation: Eager

Acknowledgement), or to its directly previous

location only (Notation: One Acknowledge-

ment).

In order to reduce some of the non-deterministic na-

ture of the benchmark, we have introduced a delay be-
tween each method call to the mobile object, which

gave time to the object to migrate to its location. Such
a delay is not included in the results.

In the first table of Fig. 6, eager acknowledgement
of object migration resulted in methods calls to be for-

warded at most once. This is confirmed by the aver-

age duration of a method call, which does not incur
any significant variation as J , the number of migra-

tions associated with a method call, increases. We also
observe that there is no significant difference between

sequential and random itineraries. Finally, the referrals
technique appears to be marginally more efficient than

call forwarding.
In the second table of Fig. 6, acknowledgements of

object position is back-propagated to the object’s pre-
vious location only. Therefore, as we increase J , the

number of platforms that the mobile object has to mi-
grate to for each method call, we observe that method

calls have to be forwarded further. Again, we do not

observe any significant difference between sequential
and random itineraries. However, the referrals tech-

nique becomes significantly more efficient than call for-
warding: its efficiency is in the range [11%–19%] for a

LAN, whereas its in the range [6%–11%] for a cluster.
Instrumenting the Itinerary benchmark turned out to

be more difficult than anticipated. Indeed, many ele-

98 L. Moreau and D. Ribbens / Mobile objects in Java

2048

4096

8192

0 20 40 60 80 100 120 140 160 180 200

T
im

e
 i
n

 m
s
 (

lo
g

 s
c
a

le
)

Number of itineraries

Comparison of Call forwarding and Referrals [sequential (eager ack) 200 1]

Call Fowarding (Itinerary Average: 2657.99, Method Average: 265.799)
Referral Style (Itinerary Average: 2431.27, Method Average: 243.127)

Fig. 5. An illustration of call forwarding vs referrals (LAN).

Fig. 6. Average duration of a method call to a mobile object.

ments, not in our control, interact with our implemen-

tation. In particular, platform to platform communi-

cations were implemented with Java RMI, which uses

Birrel’s distributed garbage collector [4]. Such a dis-

tributed GC introduces synchronisations every time a

stub is communicated by a remote method invocation;

in particular, such synchronisations occur in the bench-

mark when an object migration is acknowledged, or

when stubs are piggybacked. An alternative would be

to use another algorithm [23] which does not introduce

such synchronisations. Our rationale for comparing

sequential and random itineraries was to test whether a

cost was incurred because new connections needed to

be opened. Java RMI hides the implementation details

in a totally opaque manner, and we have no control over

the management of these resources in our implementa-

tion.

Discussion

Call forwarding requires two interventions of each

intermediary platform for forwarding the call and the

result, whereas referrals require only one such inter-

vention. We believe that this element is the principal

explanation for the superior performance of referrals

in the presence of heavily loaded platforms (as in our

LAN). We anticipate that such a configuration is similar

to the environment in which mobile agents are likely to

be deployed (cf. Section 2).

At the beginning of our investigation, we debated

whether referrals would be penalised by having to open

new connections between the benchmark platform and

itinerary platforms. In all likelihood, such connections

had to be opened for distributed GC purpose in both

variants of the algorithm, and therefore no significant

change of performance could be attributed to this as-

pect. Tools to instrument resources used within the

JVM would be extremely valuable in this context.

L. Moreau and D. Ribbens / Mobile objects in Java 99

7. Related work and conclusion

We have presented Mobile Objects in Java a library

able to route method invocations to mobile objects. We

have discussed two ways of forwarding calls, namely

call forwarding and referrals; the latter turned out to

be more efficient in our benchmark. There is a third

method where the caller explicitly passes a reference

to itself, which is used by the callee to return the re-
sult. Such a method discussed in [8,21] allows the

result to “short-cut” the chain of forwarding calls. A

more extensive study is required to investigate the per-

formance of these three methods (as well as the home

agent approach) in various scenarios.

Mobile Objects in Java is an integral part of a mobile

agent system that we use to support mobile users in

the Magnitude project [24]. From a software engineer-
ing viewpoint, such a library provides a separation of

concern between higher-level interactions and message

routing. We are adopting such a communication model

in three different circumstances.

(i) User-driven communication to their mobile

agents;
(ii) Return of results from a mobile agent to a mo-

bile personal digital assistant;

(iii) Communications between mobile agents.

There are a number of other systems that support

mobile computations, but they adopt a different philos-

ophy. Emerald [15] supports migration of an object, in-
cluding threads running in parallel. In Kali Scheme [6],

continuations may be migrated between address spaces.

None of them provides the transparent routing of mes-

sages, as described in this paper. Other approaches rely

on a stationary entity to support communications be-

tween mobile objects, including Aglets [16], Nomadic

Pict [29], April [18] and the InterAgent Communica-

tion Library [19]. Jumping Beans [2] is a commercial
product offering support for mobile applications, but

requires a server to be visited by mobile agents dur-

ing each agent migration. Stationary and central loca-

tions put an extra burden on the infrastructure which

we wanted to avoid in our implementation.

Our investigation has highlighted a number of dif-

ficulties concerning the evaluation of algorithms for

mobile agents.

(i) In high-level implementations such as ours, in

particular above Java RMI, the lack of tools

to instrument low-level resources (connections,

distributed garbage collection) makes it some-

what difficult to explain observed behaviours.

(ii) The absence of widely recognised benchmarks

does not ease comparison with other authors.

(iii) In mobile computing, social human behaviours

dictate the patterns of physical mobility; these

can be extensively used in simulations. Because

we lack widely accepted applications of mobile

agents, we also lack accepted models of their

mobility.

It is this specific problem that Huet [10] addresses

by looking at a formal modelisation of routing algo-

rithms as stochastic processes. In particular, he com-

pares a centralised forwarder with distributed forward-

ing pointers. From the slides that were accessible to us,

we were enable to establish the patterns of mobility he

adopted, and whether call forwarding or referrals were

considered. A challenging issue is to define simula-

tions that are refined enough to take into account other

activities such as distributed garbage collection, which

itself also lacks recognised benchmarks.

In the future, we wish to investigate strategies for

propagating information about object’s locations inde-

pendently of remote method invocation. Such a study

will have to consider new benchmarks, ideally derived

from real applications, and should also include alter-

native routing algorithms. Furthermore, other require-

ments and their implications on performance need to

be investigated, such as security and robustness of di-

rectory services.

Acknowledgements

David De Roure pointed out an analogy between the

directory service described in this paper and the notion

of referrals used in distributed search systems and in

“query routing”. Thanks to Omer Rana for discussions

on their agent-based Digital Library system, and to

Danius Michaelides for his comments on the paper.

This research is funded in part by EPSRC and QuinetiQ

project “Magnitude” reference (GR/N35816).

References

[1] S. Adams and D. DeRoure, A Simulator for an Amorphous
Computer, in: Proceedings of the 12th European Simulation

Multiconference (ESM’98), Manchester, UK, June 1998.

[2] Ad Astra, Jumping beans, Technical report, White Paper,

1999, http://www.JumpingBeans.com/.

[3] A.D. Birrell and B.J. Nelson, Implementing Remote Procedure

Calls, ACM Transactions on Computer Systems 2(1) (February

1984), 39–59.

100 L. Moreau and D. Ribbens / Mobile objects in Java

[4] A. Birrell, G. Nelson, S. Owicki and E. Wobber, Network Ob-

jects, Technical Report 115, Digital Systems Research Center,

February 1994.

[5] L. Cardelli, Abstractions for Mobile Computation, in: Secure

Internet Programming: Security Issues for Distributed and

Mobile Objects, J. Vitek and C. Jensen, eds, Vol. 1603 of

Lecture Notes in Computer Science, 1999.
[6] H. Cejtin, S. Jagannathan and R. Kelsey, Higher-order dis-

tributed objects, ACM Transactions on Programming Lan-

guages and Systems 17(5) (September 1995), 704–739.

[7] J. Dale and F.G. McCabe, Agent Management Support for

Mobility, Fipa’98 draft specification, Fujitsu Laboratories of

America, 1998.

[8] I. Foster, C. Kesselman and S. Tuecke, The Nexus Approach

to Integrating Multithreading and Communication, Journal of

Parallel and Distributed Computing 37 (1996), 70–82.

[9] N. Gibbins and W. Hall, Scalability issues for query routing

service discovery. in: Proceedings of the Second Workshop on

Infrastructure for Agents, MAS and Scalable MAS, May 2001.

[10] F. Huet, Distribution and localisation, http://www.irit.fr/

ACTIVITES/PLASMA/PRO-Toulouse2001/LesPropositions

/LesTransparents/pro-huet.pdf.

[11] Java Reference Objects, http://java.sun.com/j2se/1.3/docs/
guide/refobs/.

[12] Java Remote Method Invocation Specification, November

1996.

[13] Java Object Serialization Specification, November 1998.

[14] D.B. Johnson and C. Perkins, Mobility Support in IPv6, In-

ternet draft, IETF Mobile IP Working Group, 1999. draft-ietf-

mobileip-ipv6-09.txt.

[15] E. Jul, Migration of light-weight processes in Emerald, Op-

erating Systems Technical Committee Newsletter 3(1) (1989),

25–30.

[16] D.B. Lange and M. Ishima, Programming and Deploying Java

Mobile Agents with Aglets, Addison-Wesley, 1998.

[17] General Magic, Telescript Technology: Mobile Agents, 1996.

[18] F.G. McCabe and K.L. Clark, APRIL – Agent Process Interac-

tion Language, in: Proc. of ECAI’94 Workshop on Agent The-

ories, Architectures and Languages, Springer-Verlag, 1995.

[19] F.H. McCabe, InterAgent Communications Reference manual,

Technical report, Fujitsu Laboratories of America, 1999.

[20] G. McGraw and E.W. Felten, Securing Java, Wiley, 1999.

[21] D. Michaelides, L. Moreau and D. DeRoure, A Uniform Ap-

proach to Programming the World Wide Web, Computer Sys-

tems Science and Engineering 14(2) (1999), 69–91.

[22] L. Moreau, Distributed Directory Service and Message Router
for Mobile Agents, Science of Computer Programming 39(2–

3) (2001), 249–272.

[23] L. Moreau, Tree Rerooting in Distributed Garbage Collection:

Implementation and Performance Evaluation, Higher-Order

and Symbolic Computation, To appear.

[24] L. Moreau, D. De Roure, W. Hall and N. Jennings, MAG-

NITUDE: Mobile AGents Negotiating for ITinerant Users in

the Distributed Enterprise, http://www.ecs.soton.ac.uk/˜lavm/
magnitude/, 2001.

[25] G. Tel and F. Mattern, The Derivation of Distributed Termina-

tion Detection Algorithms from Garbage Collection Schemes,

ACM Transactions on Programming Languages and Systems

15(1) (January 1993), 1–35.

[26] C. Weider, J. Fullton and S. Spero, Architecture of Whois++

Index Service, Request for comments 1913, Internet Engineer-

ing Task Force, 1996.
[27] M. Weiser, Some Computer Science Problems in Ubiquitous

Computing, Communications of the ACM 36(7) (July 1993),

74–84.

[28] M. Whalh, T. Howes and S. Kille, Light Weight Directory

Access Protocol (v3), Request for comments 2251, Internet

Engineering Task Force, 1997.

[29] P. Wojciechowski and P. Sewell, Nomadic Pict: Language and

Infrastructure Design for Mobile Agents, in: First Interna-

tional Symposium on Agent Systems and Applications/Third

International Symposium on Mobile Agents (ASA/MA’99), Oc-

tober 1999.

[30] Y. Yang, O.F. Rana, C. Georgousopoulos, D.W. Walker and

R.D. Williams, Mobile agents and the sara digital library,

in: Proceedings of IEEE Advances in Digital Libraries 2000,

Washington, DC, May 2000, pp. 71–77.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

